Skip to main content
Erschienen in: Archives of Virology 11/2018

24.07.2018 | Original Article

Cor interacts with outer membrane proteins to exclude FhuA-dependent phages

verfasst von: Emma S. Arguijo-Hernández, Javier Hernandez-Sanchez, Saida J. Briones-Peña, Norma Oviedo, Guillermo Mendoza-Hernández, Gabriel Guarneros, Luis Kameyama

Erschienen in: Archives of Virology | Ausgabe 11/2018

Einloggen, um Zugang zu erhalten

Abstract

Superinfection exclusion (Sie) of FhuA-dependent phages is carried out by Cor in the Escherichia coli mEp167 prophage lysogenic strain. In this work, we present evidence that Cor is an outer membrane (OM) lipoprotein that requires the participation of additional outer membrane proteins (OMPs) to exclude FhuA-dependent phages. Two Cor species of ~13 and ~8.5 kDa, corresponding to the preprolipoprotein/prolipoprotein and lipoprotein, were observed by Western blot. Cell mutants for CorC17F, CorA18D and CorA57E lost the Sie phenotype for FhuA-dependent phages. A copurification affinity binding assay combined with LC_ESI_MS/MS showed that Cor bound to OMPs: OmpA, OmpC, OmpF, OmpW, LamB, and Slp. Interestingly, Sie for FhuA-dependent phages was reduced on Cor overexpressing FhuA+ mutant strains, where ompA, ompC, ompF, ompW, lamB, fhuE, genes were knocked out. The exclusion was restored when these strains were supplemented with plasmids expressing these genes. Sie was not lost in other Cor overexpressing FhuA+ null mutant strains JW3938(btuB-), JW5100(tolB-), JW3474(slp-). These results indicate that Cor interacts and requires some OMPs to exclude FhuA-dependent phages.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38PubMedPubMedCentral Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38PubMedPubMedCentral
2.
Zurück zum Zitat Sukupolvi S (1984) Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett 21:83–87CrossRef Sukupolvi S (1984) Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett 21:83–87CrossRef
4.
Zurück zum Zitat Silverman JA, Benson SA (1987) Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol 169:4830–4833CrossRefPubMedPubMedCentral Silverman JA, Benson SA (1987) Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol 169:4830–4833CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRefPubMed Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRefPubMed
6.
Zurück zum Zitat Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedPubMedCentral Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedPubMedCentral
7.
Zurück zum Zitat Hernandez-Sanchez J, Bautista-Santos A, Fernandez L, Bermudez-Cruz RM, Uc-Mass A, Martinez-Penafiel E, Martinez MA, Garcia-Mena J, Guarneros G, Kameyama L (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Arch Virol 153:1271–1280CrossRefPubMed Hernandez-Sanchez J, Bautista-Santos A, Fernandez L, Bermudez-Cruz RM, Uc-Mass A, Martinez-Penafiel E, Martinez MA, Garcia-Mena J, Guarneros G, Kameyama L (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Arch Virol 153:1271–1280CrossRefPubMed
8.
Zurück zum Zitat Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447CrossRefPubMed Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447CrossRefPubMed
9.
Zurück zum Zitat Morona R, Tommassen J, Henning U (1985) Demonstration of a bacteriophage receptor site on the Escherichia coli K12 outer-membrane protein OmpC by the use of a protease. Eur J Biochem 150:161–169CrossRefPubMed Morona R, Tommassen J, Henning U (1985) Demonstration of a bacteriophage receptor site on the Escherichia coli K12 outer-membrane protein OmpC by the use of a protease. Eur J Biochem 150:161–169CrossRefPubMed
10.
Zurück zum Zitat Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRefPubMed Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRefPubMed
11.
Zurück zum Zitat Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698CrossRefPubMedPubMedCentral Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Uc-Mass A, Loeza EJ, de la Garza M, Guarneros G, Hernandez-Sanchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–433CrossRefPubMed Uc-Mass A, Loeza EJ, de la Garza M, Guarneros G, Hernandez-Sanchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–433CrossRefPubMed
14.
Zurück zum Zitat Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722PubMedPubMedCentral Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722PubMedPubMedCentral
15.
Zurück zum Zitat Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 347–356 Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 347–356
16.
Zurück zum Zitat Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180CrossRefPubMed Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180CrossRefPubMed
17.
Zurück zum Zitat Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8CrossRefPubMed Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8CrossRefPubMed
18.
Zurück zum Zitat Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186CrossRefPubMed Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186CrossRefPubMed
19.
Zurück zum Zitat Gonzalez-Garcia VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martin-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentral Gonzalez-Garcia VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martin-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92:47–60CrossRefPubMedPubMedCentral Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92:47–60CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370PubMed Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370PubMed
22.
Zurück zum Zitat Samsonov VV, Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646CrossRefPubMed Samsonov VV, Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646CrossRefPubMed
23.
Zurück zum Zitat Darlington OF, Levine M (1971) Superinfection exclusion by P22 prophage and the replication complex. J Virol 8:347–348PubMedPubMedCentral Darlington OF, Levine M (1971) Superinfection exclusion by P22 prophage and the replication complex. J Virol 8:347–348PubMedPubMedCentral
24.
Zurück zum Zitat Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417CrossRefPubMed Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417CrossRefPubMed
25.
Zurück zum Zitat Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086CrossRefPubMedPubMedCentral Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98CrossRefPubMedPubMedCentral Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019CrossRefPubMedPubMedCentral Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561CrossRefPubMed Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561CrossRefPubMed
29.
30.
Zurück zum Zitat Inouye S, Nakazawa A, Nakazawa T (1983) Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J Bacteriol 155:1192–1199PubMedPubMedCentral Inouye S, Nakazawa A, Nakazawa T (1983) Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J Bacteriol 155:1192–1199PubMedPubMedCentral
31.
Zurück zum Zitat Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694(1–3):IN1–9PubMed Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694(1–3):IN1–9PubMed
32.
Zurück zum Zitat Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516CrossRefPubMedPubMedCentral Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Braun V, Killmann H, Herrmann C (1994) Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J Bacteriol 176:4710–4717CrossRefPubMedPubMedCentral Braun V, Killmann H, Herrmann C (1994) Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J Bacteriol 176:4710–4717CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Decker K, Krauel V, Meesmann A, Heller KJ (1994) Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol Microbiol 12:321–332CrossRefPubMed Decker K, Krauel V, Meesmann A, Heller KJ (1994) Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol Microbiol 12:321–332CrossRefPubMed
35.
Zurück zum Zitat Mondigler M, Ayoub AT, Heller KJ (2006) The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 46:116–125CrossRefPubMed Mondigler M, Ayoub AT, Heller KJ (2006) The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 46:116–125CrossRefPubMed
36.
Zurück zum Zitat Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652CrossRefPubMed Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652CrossRefPubMed
37.
Zurück zum Zitat Susskind MM, Botstein D, Wright A (1974) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. Virology 62:350–366CrossRefPubMed Susskind MM, Botstein D, Wright A (1974) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. Virology 62:350–366CrossRefPubMed
38.
39.
Zurück zum Zitat Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407CrossRefPubMedPubMedCentral Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452PubMedPubMedCentral Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452PubMedPubMedCentral
41.
Zurück zum Zitat Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMed Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMed
42.
Zurück zum Zitat Kameyama L, Fernandez L, Calderon J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263:100–111CrossRefPubMed Kameyama L, Fernandez L, Calderon J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263:100–111CrossRefPubMed
43.
Zurück zum Zitat Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage ∅80. Virology 19:475–482CrossRefPubMed Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage ∅80. Virology 19:475–482CrossRefPubMed
44.
Zurück zum Zitat Dhillon TS, Dhillon EK (1976) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20:385–396CrossRefPubMed Dhillon TS, Dhillon EK (1976) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20:385–396CrossRefPubMed
45.
Zurück zum Zitat Silhavy TJ, Berman, ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor Silhavy TJ, Berman, ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor
46.
Zurück zum Zitat Polayes D, Hughes AJ (1994) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. FOCUS 16:81–84 Polayes D, Hughes AJ (1994) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. FOCUS 16:81–84
47.
Zurück zum Zitat Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. IRL Press, Oxford, pp 109–135 Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. IRL Press, Oxford, pp 109–135
48.
Zurück zum Zitat Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMed Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMed
49.
Zurück zum Zitat Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedPubMedCentral Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedPubMedCentral
50.
Zurück zum Zitat Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMed Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMed
51.
Zurück zum Zitat Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMed Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMed
52.
Zurück zum Zitat Ricci DP, Hagan CL, Kahne D, Silhavy TJ (2012) Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci USA 109:3487–3491CrossRefPubMed Ricci DP, Hagan CL, Kahne D, Silhavy TJ (2012) Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci USA 109:3487–3491CrossRefPubMed
53.
54.
Zurück zum Zitat Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMed Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMed
55.
Zurück zum Zitat Vostrov AA, Vostrukhina OA, Svarchevsky AN, Rybchin VN (1996) Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178:1484–1486CrossRefPubMedPubMedCentral Vostrov AA, Vostrukhina OA, Svarchevsky AN, Rybchin VN (1996) Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178:1484–1486CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56CrossRefPubMed Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56CrossRefPubMed
57.
Zurück zum Zitat Kleanthous C, Rassam P, Baumann CG (2015) Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 35:109–115CrossRefPubMedPubMedCentral Kleanthous C, Rassam P, Baumann CG (2015) Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 35:109–115CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720CrossRefPubMedPubMedCentral Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720CrossRefPubMedPubMedCentral
Metadaten
Titel
Cor interacts with outer membrane proteins to exclude FhuA-dependent phages
verfasst von
Emma S. Arguijo-Hernández
Javier Hernandez-Sanchez
Saida J. Briones-Peña
Norma Oviedo
Guillermo Mendoza-Hernández
Gabriel Guarneros
Luis Kameyama
Publikationsdatum
24.07.2018
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 11/2018
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-3954-z

Weitere Artikel der Ausgabe 11/2018

Archives of Virology 11/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.