Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 10/2022

Open Access 31.05.2022 | Correction

Correction to: An [18F]FDG‑PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients

verfasst von: David Wallis, Michaël Soussan, Maxime Lacroix, Pia Akl, Clément Duboucher, Irène Buvat

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 10/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
The original article can be found online at https://​doi.​org/​10.​1007/​s00259-021-05513-x.
This article is part of the Topical Collection on Erratum.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Correction to: European Journal of Nuclear Medicine and Molecular Imaging
The author regret that the author names for reference 27 of the original article are incorrectly formatted. The correct format appears below:
C Nioche, F Orlhac, S Boughdad, S Reuzé, J Goya-Outi, C Robert, C Pellot-Barakat, M Soussan, F Frouin, and I Buvat. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Research 2018; 78(16):4786–4789.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Metadaten
Titel
Correction to: An [18F]FDG‑PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients
verfasst von
David Wallis
Michaël Soussan
Maxime Lacroix
Pia Akl
Clément Duboucher
Irène Buvat
Publikationsdatum
31.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 10/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05855-0

Weitere Artikel der Ausgabe 10/2022

European Journal of Nuclear Medicine and Molecular Imaging 10/2022 Zur Ausgabe