Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01.12.2014 | Research

Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study

verfasst von: Sung Ho Jang, Woo Hyuk Jang, Pyung Hun Chang, Seung-Hyun Lee, Sang-Hyun Jin, Young Gi Kim, Sang Seok Yeo

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Neuromuscular electrical stimulation (NMES) has been used in the field of rehabilitation for a long time. Previous studies on NMES have focused on the peripheral effect, in contrast, relatively little is known about the effect on the cerebral cortex. In the current study, we attempted to investigate the change of cortical activation pattern induced by NMES during execution of hand movements in normal subjects, using functional near infrared spectroscopy (fNIRS).

Methods

Twelve healthy normal subjects were randomly assigned to the NMES group (six subjects) and the sham group (six subjects). We measured oxy-hemoglobin (HbO) in six regions of interest (ROI) during pre-NMES and post-NMES motor phase; the left dorsolateral and ventrolateral prefrontal cortex, premotor cortex, primary sensory-motor cortex (SM1), hand somatotopic area of SM1, and posterior parietal cortex. Between the pre-NMES and the post-NMES motor phases, real or sham NMES was applied on finger and wrist extensors of all subjects during a period of 5 minutes.

Results

In all groups, during the pre-NMES motor phase, the HbO value in the hand somatotopic area of the left SM1 was higher than those of other ROIs. In the NMES group, during the post-NMES motor phase, HbO value variation in the hand somatotopic area of the left SM1 showed a significant decrease, compared with that of sham group (p < 0.05). However, in the sham group, similar aspect of results in HbO values of all ROIs was observed between pre-NMES and post-NMES motor phases (p > 0.05).

Conclusions

Results of this study showed that NMES induced a decrease of cortical activation during execution of hand movements. This finding appears to indicate that application of NMES can increase the efficiency of the cerebral cortex during execution of motor tasks.
Literatur
1.
Zurück zum Zitat Levine M, McElroy K, Stakich V, Cicco J: Comparing Conventional Physical Therapy Rehabilitation With Neuromuscular Electrical Stimulation After TKA. Orthopedics. 2013, 36: e319-e324.CrossRefPubMed Levine M, McElroy K, Stakich V, Cicco J: Comparing Conventional Physical Therapy Rehabilitation With Neuromuscular Electrical Stimulation After TKA. Orthopedics. 2013, 36: e319-e324.CrossRefPubMed
2.
Zurück zum Zitat Maddocks M, Gao W, Higginson IJ, Wilcock A: Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2013, 1: CD009419-PubMed Maddocks M, Gao W, Higginson IJ, Wilcock A: Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2013, 1: CD009419-PubMed
3.
Zurück zum Zitat Lee SY, Im SH, Kim BR, Choi JH, Lee SJ, Han EY: The effects of neuromuscular electrical stimulation on cardiopulmonary function in healthy adults. Annals of Rehabilitation Medicine. 2012, 36: 849-856.CrossRefPubMedPubMedCentral Lee SY, Im SH, Kim BR, Choi JH, Lee SJ, Han EY: The effects of neuromuscular electrical stimulation on cardiopulmonary function in healthy adults. Annals of Rehabilitation Medicine. 2012, 36: 849-856.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat de Oliveira MM, Aragao FA, Vaz MA: Neuromuscular electrical stimulation for muscle strengthening in elderly with knee osteoarthritis - a systematic review. Complement Inflamm. 2013, 19: 27-31. de Oliveira MM, Aragao FA, Vaz MA: Neuromuscular electrical stimulation for muscle strengthening in elderly with knee osteoarthritis - a systematic review. Complement Inflamm. 2013, 19: 27-31.
5.
Zurück zum Zitat Vaz MA, Baroni BM, Geremia JM, Lanferdini FJ, Mayer A, Arampatzis A, Herzog W: Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J Orthop Res. 2013, 31: 511-516.CrossRefPubMed Vaz MA, Baroni BM, Geremia JM, Lanferdini FJ, Mayer A, Arampatzis A, Herzog W: Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J Orthop Res. 2013, 31: 511-516.CrossRefPubMed
6.
Zurück zum Zitat Malhotra S, Rosewilliam S, Hermens H, Roffe C, Jones P, Pandyan AD: A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. Clin Rehabil. 2012, 27: 579-590.CrossRefPubMed Malhotra S, Rosewilliam S, Hermens H, Roffe C, Jones P, Pandyan AD: A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. Clin Rehabil. 2012, 27: 579-590.CrossRefPubMed
7.
Zurück zum Zitat Doucet BM, Lam A, Griffin L: Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012, 85: 201-215.PubMedPubMedCentral Doucet BM, Lam A, Griffin L: Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012, 85: 201-215.PubMedPubMedCentral
8.
Zurück zum Zitat Kim KM, Croy T, Hertel J, Saliba S: Effects of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction on quadriceps strength, function, and patient-oriented outcomes: a systematic review. J Orthop Sports Phys Ther. 2010, 40: 383-391.CrossRefPubMed Kim KM, Croy T, Hertel J, Saliba S: Effects of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction on quadriceps strength, function, and patient-oriented outcomes: a systematic review. J Orthop Sports Phys Ther. 2010, 40: 383-391.CrossRefPubMed
10.
Zurück zum Zitat Hara Y: Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med Sch. 2008, 75: 4-14.CrossRefPubMed Hara Y: Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med Sch. 2008, 75: 4-14.CrossRefPubMed
11.
Zurück zum Zitat Daly JJ, Ruff RL: Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Sci World J. 2007, 7: 2031-2045.CrossRef Daly JJ, Ruff RL: Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Sci World J. 2007, 7: 2031-2045.CrossRef
12.
Zurück zum Zitat Chae J, Yu D: A critical review of neuromuscular electrical stimulation for treatment of motor dysfunction in hemiplegia. Assist Technol. 2000, 12: 33-49.CrossRefPubMed Chae J, Yu D: A critical review of neuromuscular electrical stimulation for treatment of motor dysfunction in hemiplegia. Assist Technol. 2000, 12: 33-49.CrossRefPubMed
13.
Zurück zum Zitat Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A: Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke. 1998, 29: 975-979.CrossRefPubMed Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A: Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke. 1998, 29: 975-979.CrossRefPubMed
14.
Zurück zum Zitat Bowman BR, Baker LL, Waters RL: Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Arch Phys Med Rehabil. 1979, 60: 497-502.PubMed Bowman BR, Baker LL, Waters RL: Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Arch Phys Med Rehabil. 1979, 60: 497-502.PubMed
15.
Zurück zum Zitat Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ: Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke. 1999, 30: 1384-1389.CrossRefPubMed Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ: Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke. 1999, 30: 1384-1389.CrossRefPubMed
16.
Zurück zum Zitat Joa KL, Han YH, Mun CW, Son BK, Lee CH, Shin YB, Ko HY, Shin YI: Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. J Neuroeng Rehabil. 2012, 9: 48-CrossRefPubMedPubMedCentral Joa KL, Han YH, Mun CW, Son BK, Lee CH, Shin YB, Ko HY, Shin YI: Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. J Neuroeng Rehabil. 2012, 9: 48-CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Takeuchi M, Hori E, Takamoto K, Tran AH, Satoru K, Ishikawa A, Ono T, Endo S, Nishijo H: Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation. Brain Topogr. 2009, 22: 197-214.CrossRefPubMedPubMedCentral Takeuchi M, Hori E, Takamoto K, Tran AH, Satoru K, Ishikawa A, Ono T, Endo S, Nishijo H: Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation. Brain Topogr. 2009, 22: 197-214.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S: Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp. 2009, 30: 963-975.CrossRefPubMed Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S: Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp. 2009, 30: 963-975.CrossRefPubMed
19.
Zurück zum Zitat Han BS, Jang SH, Chang Y, Byun WM, Lim SK, Kang DS: Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. Am J Phys Med Rehabil. 2003, 82: 17-20.CrossRefPubMed Han BS, Jang SH, Chang Y, Byun WM, Lim SK, Kang DS: Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. Am J Phys Med Rehabil. 2003, 82: 17-20.CrossRefPubMed
20.
Zurück zum Zitat Xu M, Takata H, Ge S, Hayami T, Yamasaki T, Tobimatsu S, Iramina K: NIRS measurement of hemodynamic evoked responses in the primary sensorimotor cortex. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 2492-2495.PubMed Xu M, Takata H, Ge S, Hayami T, Yamasaki T, Tobimatsu S, Iramina K: NIRS measurement of hemodynamic evoked responses in the primary sensorimotor cortex. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 2492-2495.PubMed
21.
Zurück zum Zitat Iftime-Nielsen SD, Christensen MS, Vingborg RJ, Sinkjaer T, Roepstorff A, Grey MJ: Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 2012, 33: 40-49.CrossRefPubMed Iftime-Nielsen SD, Christensen MS, Vingborg RJ, Sinkjaer T, Roepstorff A, Grey MJ: Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 2012, 33: 40-49.CrossRefPubMed
22.
Zurück zum Zitat Scremin OU, Cuevas-Trisan RL, Scremin AM, Brown CV, Mandelkern MA: Functional electrical stimulation effect on skeletal muscle blood flow measured with H2(15)O positron emission tomography. Arch Phys Med Rehabil. 1998, 79: 641-646.CrossRefPubMed Scremin OU, Cuevas-Trisan RL, Scremin AM, Brown CV, Mandelkern MA: Functional electrical stimulation effect on skeletal muscle blood flow measured with H2(15)O positron emission tomography. Arch Phys Med Rehabil. 1998, 79: 641-646.CrossRefPubMed
23.
Zurück zum Zitat Bourguignon M, Jousmaki V, Marty B, Wens V, Op de Beeck M, Van Bogaert P, Nouali M, Metens T, Lubicz B, Lefranc F, Bruneau M, De Witte O, Goldman S, De Tiège X: Comprehensive Functional Mapping Scheme for Non-Invasive Primary Sensorimotor Cortex Mapping. Brain Topogr. 2012, 26: 511-523.CrossRefPubMed Bourguignon M, Jousmaki V, Marty B, Wens V, Op de Beeck M, Van Bogaert P, Nouali M, Metens T, Lubicz B, Lefranc F, Bruneau M, De Witte O, Goldman S, De Tiège X: Comprehensive Functional Mapping Scheme for Non-Invasive Primary Sensorimotor Cortex Mapping. Brain Topogr. 2012, 26: 511-523.CrossRefPubMed
24.
Zurück zum Zitat Arenth PM, Ricker JH, Schultheis MT: Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities. Clin Neuropsychol. 2007, 21: 38-57.CrossRefPubMed Arenth PM, Ricker JH, Schultheis MT: Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities. Clin Neuropsychol. 2007, 21: 38-57.CrossRefPubMed
25.
Zurück zum Zitat Irani F, Platek SM, Bunce S, Ruocco AC, Chute D: Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol. 2007, 21: 9-37.CrossRefPubMed Irani F, Platek SM, Bunce S, Ruocco AC, Chute D: Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol. 2007, 21: 9-37.CrossRefPubMed
26.
Zurück zum Zitat Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage. 2011, 54: 2922-2936.CrossRefPubMed Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage. 2011, 54: 2922-2936.CrossRefPubMed
27.
Zurück zum Zitat Schurholz M, Rana M, Robinson N, Ramos-Murguialday A, Cho W, Rohm M, Rupp R, Birbaumer N, Sitaram R: Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS. Conf Proc IEEE Eng Med Biol Soc. 2012, 2012: 4728-4731.PubMed Schurholz M, Rana M, Robinson N, Ramos-Murguialday A, Cho W, Rohm M, Rupp R, Birbaumer N, Sitaram R: Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS. Conf Proc IEEE Eng Med Biol Soc. 2012, 2012: 4728-4731.PubMed
28.
Zurück zum Zitat Fazio R, Coenen C, Denney RL: The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality. 2011, 17: 1-8. Fazio R, Coenen C, Denney RL: The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality. 2011, 17: 1-8.
29.
Zurück zum Zitat Cope M, Delpy DT: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988, 26: 289-294.CrossRefPubMed Cope M, Delpy DT: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988, 26: 289-294.CrossRefPubMed
30.
Zurück zum Zitat Ye JC, Tak S, Jang KE, Jung J, Jang J: NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. NeuroImage. 2009, 44: 428-447.CrossRefPubMed Ye JC, Tak S, Jang KE, Jung J, Jang J: NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. NeuroImage. 2009, 44: 428-447.CrossRefPubMed
31.
Zurück zum Zitat Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE: Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. NeuroImage. 2006, 31: 1453-1474.CrossRefPubMedPubMedCentral Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE: Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. NeuroImage. 2006, 31: 1453-1474.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Amiez C, Petrides M: Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog Neurobiol. 2009, 89: 220-230.CrossRefPubMed Amiez C, Petrides M: Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog Neurobiol. 2009, 89: 220-230.CrossRefPubMed
33.
Zurück zum Zitat Dassonville P, Lewis SM, Zhu XH, Ugurbil K, Kim SG, Ashe J: Effects of movement predictability on cortical motor activation. Neurosci Res. 1998, 32: 65-74.CrossRefPubMed Dassonville P, Lewis SM, Zhu XH, Ugurbil K, Kim SG, Ashe J: Effects of movement predictability on cortical motor activation. Neurosci Res. 1998, 32: 65-74.CrossRefPubMed
34.
Zurück zum Zitat Perrey S: Non-invasive NIR spectroscopy of human brain function during exercise. Methods. 2008, 45: 289-299.CrossRefPubMed Perrey S: Non-invasive NIR spectroscopy of human brain function during exercise. Methods. 2008, 45: 289-299.CrossRefPubMed
35.
Zurück zum Zitat Bapi RS, Miyapuram KP, Graydon FX, Doya K: fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences. NeuroImage. 2006, 32: 714-727.CrossRefPubMed Bapi RS, Miyapuram KP, Graydon FX, Doya K: fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences. NeuroImage. 2006, 32: 714-727.CrossRefPubMed
36.
Zurück zum Zitat Kwon YH, Nam KS, Park JW: Identification of cortical activation and white matter architecture according to short-term motor learning in the human brain: functional MRI and diffusion tensor tractography study. Neurosci Lett. 2012, 520: 11-15.CrossRefPubMed Kwon YH, Nam KS, Park JW: Identification of cortical activation and white matter architecture according to short-term motor learning in the human brain: functional MRI and diffusion tensor tractography study. Neurosci Lett. 2012, 520: 11-15.CrossRefPubMed
37.
Zurück zum Zitat Halsband U, Lange RK: Motor learning in man: a review of functional and clinical studies. J Physiol Paris. 2006, 99: 414-424.CrossRefPubMed Halsband U, Lange RK: Motor learning in man: a review of functional and clinical studies. J Physiol Paris. 2006, 99: 414-424.CrossRefPubMed
38.
Zurück zum Zitat Floyer-Lea A, Matthews PM: Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005, 94: 512-518.CrossRefPubMed Floyer-Lea A, Matthews PM: Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005, 94: 512-518.CrossRefPubMed
39.
Zurück zum Zitat Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG: Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995, 377: 155-158.CrossRefPubMed Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG: Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995, 377: 155-158.CrossRefPubMed
40.
Zurück zum Zitat Kawashima R, Roland PE, O'Sullivan BT: Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci. 1994, 14: 3462-3474.PubMed Kawashima R, Roland PE, O'Sullivan BT: Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci. 1994, 14: 3462-3474.PubMed
41.
Zurück zum Zitat Ungerleider LG, Doyon J, Karni A: Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem. 2002, 78: 553-564.CrossRefPubMed Ungerleider LG, Doyon J, Karni A: Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem. 2002, 78: 553-564.CrossRefPubMed
42.
Zurück zum Zitat Park JW, Kim YH, Jang SH, Chang WH, Park CH, Kim ST: Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation. 2010, 26: 95-103.PubMed Park JW, Kim YH, Jang SH, Chang WH, Park CH, Kim ST: Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation. 2010, 26: 95-103.PubMed
43.
Zurück zum Zitat Toni I, Krams M, Turner R, Passingham RE: The time course of changes during motor sequence learning: a whole-brain fMRI study. NeuroImage. 1998, 8: 50-61.CrossRefPubMed Toni I, Krams M, Turner R, Passingham RE: The time course of changes during motor sequence learning: a whole-brain fMRI study. NeuroImage. 1998, 8: 50-61.CrossRefPubMed
44.
Zurück zum Zitat de Kroon JR, van der Lee JH, IJzerman MJ, Lankhorst GJ: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil. 2002, 16: 350-360.CrossRefPubMed de Kroon JR, van der Lee JH, IJzerman MJ, Lankhorst GJ: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil. 2002, 16: 350-360.CrossRefPubMed
45.
Zurück zum Zitat Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S: Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil. 1998, 79: 570-575.CrossRefPubMed Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S: Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil. 1998, 79: 570-575.CrossRefPubMed
46.
Zurück zum Zitat Sonde L, Gip C, Fernaeus SE, Nilsson CG, Viitanen M: Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm. Scand J Rehabil Med. 1998, 30: 95-99.CrossRefPubMed Sonde L, Gip C, Fernaeus SE, Nilsson CG, Viitanen M: Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm. Scand J Rehabil Med. 1998, 30: 95-99.CrossRefPubMed
47.
Zurück zum Zitat Cauraugh J, Light K, Kim S, Thigpen M, Behrman A: Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000, 31: 1360-1364.CrossRefPubMed Cauraugh J, Light K, Kim S, Thigpen M, Behrman A: Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000, 31: 1360-1364.CrossRefPubMed
Metadaten
Titel
Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study
verfasst von
Sung Ho Jang
Woo Hyuk Jang
Pyung Hun Chang
Seung-Hyun Lee
Sang-Hyun Jin
Young Gi Kim
Sang Seok Yeo
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2014
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-29

Weitere Artikel der Ausgabe 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie