Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 15.07.2020 | COVID-19 | Research Letter

Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study

verfasst von: Guillermo Rodriguez-Nava, Daniela Patricia Trelles-Garcia, Maria Adriana Yanez-Bello, Chul Won Chung, Valeria Patricia Trelles-Garcia, Harvey J. Friedman

Erschienen in: Critical Care | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CI
Confidence interval
COVID-19
Coronavirus disease 2019
HR
Hazard ratio
ICU
Intensive care unit
IQR
Interquartile range
PaO2/FiO2
Arterial oxygen partial pressure to fractional inspired oxygen
PH
Proportional hazards
SARS-CoV
Severe acute respiratory syndrome coronavirus
SpO2
Oxygen saturation
WHO
World Health Organization
To the editor,
Since the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) a pandemic, the medical community started a race against time to find effective treatments for this disease [1]. Atorvastatin as adjuvant immunomodulatory therapy is of particular interest given its low cost, known safety profile, and availability. The severe acute respiratory syndrome coronavirus (SARS-CoV) has been shown to interact with Toll-like receptors on the host cell membrane, increasing the expression of the MYD88 gene, ultimately activating NF-κB and triggering inflammatory pathways. Experimental models have demonstrated that statins stabilize MYD88 levels after a pro-inflammatory trigger, and, in a murine model, atorvastatin significantly attenuated NF-κB activation [2]. Furthermore, in the real world, two retrospective cohort studies reported a reduced risk of influenza death among statin users [3, 4]. Therefore, we assessed whether statin users at a dose of 40 mg daily had reduced inpatient mortality hazard from COVID-19.
In this retrospective cohort study, we used a de-identified dataset that included 87 adult patients with laboratory-confirmed COVID-19 admitted to our community hospital intensive care unit (ICU) located in Evanston, IL, from March to May 2020. We performed a Cox proportional hazards (PH) regression model to examine the relationship between adjuvant treatments and inpatient mortality. To minimize confounders, we adjusted for age, hypertension, cardiovascular disease, invasive mechanical ventilation, severity according to the National Institutes of Health criteria (respiratory rate > 30, SpO2 < 94%, PaO2/FiO2 < 300 mmHg or lung infiltrates > 50%), number of comorbidities (as a continuous variable), and other adjuvant therapies (including hydroxychloroquine, intravenous steroids, azithromycin, tocilizumab, colchicine, and antibiotics), forcing these variables into the model. We also performed a sensitivity analysis calculating the E value (with the lower confidence limit) as described by VanderWeele et al. [5, 6] for the obtained point estimate. The E value is defined as the minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have with both the exposure and the outcome, conditional on the measured covariates, to explain away a specific exposure-outcome association fully.
The median age was 68 years (interquartile range [IQR], 58–75 years), 56 (64.4%) were males, and 50 (57.5%) were skilled nursing facility residents. Of these patients, 39 (44.8%) were ultimately discharged from the hospital, median length of stay 13 days (IQR, 7 to 21 days), and 48 (55.2%) had died, median length of stay 9.5 days (IQR, 3 to 14.75 days), a statistically significant difference (p = 0.032 by Mann-Whitney U test). A total of 24 (61.5%) survivors received atorvastatin 40 mg daily compared to 23 (47.9%) of non-survivors (p = 0.20 by chi-squared). In the multivariable Cox PH regression model, atorvastatin non-users had a 73% chance of faster progression to death compared with atorvastatin users (when probability = HR/HR + 1) (Table 1). The E value for the point estimate was 3.29 and the E value for the lower confidence interval was 1.69, meaning that a confounder not included in the multivariable Cox PH regression model associated with atorvastatin use and inpatient mortality in patients with COVID-19 by a hazard ratio of 1.69-fold each could explain away the lower confidence limit, but weaker confounding could not.
Table 1
Multivariable Cox regression of target interventions for COVID-19
Intervention
Adjusted HRa
95% CI
pvalueb
Atorvastatin
0.38
0.18–0.77
0.008
Steroids
1.93
0.81–4.59
0.136
Hydroxychloroquine
0.81
0.31–2.10
0.675
Colchicine
0.41
0.17–0.98
0.045
Tocilizumab
1.17
0.42–3.25
0.765
Azithromycin
0.49
0.20–1.23
0.132
Abbreviations: CI confidence interval, COVID-19 coronavirus disease 2019, HR hazard ratio
aAdjusted for age, number of comorbidities, hypertension, cardiovascular disease, severity, invasive mechanical ventilation, and antibiotics other than azithromycin
bp < 0.05 was considered statistically significant
In conclusion, we found a slower progression to death associated with atorvastatin in patients with COVID-19 admitted to our ICU. Given the observational nature of this study, results should be taken with caution; randomized controlled trials are needed to confirm this benefit (STATCO19, identifier NCT04380402). To date, supportive care remains the mainstay of therapy, and the clinical efficacy for various treatments is still under investigation.

Acknowledgements

We dedicate this work to the intensive care unit nurses who did a fantastic job during the peak of the crisis, taking care of a higher patient ratio than usual, providing compassionate and high-quality care regardless of the increased workload, and risking their health selflessly to help the community. Without them, our work would have been harder.
Research using de-identified data does not constitute research with human subjects because there is no interaction with any individual, and no identifiable private information is used. The project did not, therefore, require IRB or ethics committee review by AMITA Health.
The research presents no more than minimal risk of harm to subjects and involves no procedures; hence, written consent requirement was waived.

Competing interests

The authors declare no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mccreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis. 2020;7(4):ofaa105.CrossRef Mccreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis. 2020;7(4):ofaa105.CrossRef
2.
Zurück zum Zitat Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID19 infection. Eur Heart J Cardiovasc Pharmacother. 2020. [Epub ahead of print]. Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID19 infection. Eur Heart J Cardiovasc Pharmacother. 2020. [Epub ahead of print].
3.
Zurück zum Zitat Frost FJ, Petersen H, Tollestrup K, Skipper B. Influenza and COPD mortality protection as pleiotropic, dose-dependent effects of statins. Chest. 2007;131(4):1006–12.CrossRef Frost FJ, Petersen H, Tollestrup K, Skipper B. Influenza and COPD mortality protection as pleiotropic, dose-dependent effects of statins. Chest. 2007;131(4):1006–12.CrossRef
4.
Zurück zum Zitat Vandermeer ML, Thomas AR, Kamimoto L, et al. Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: a multistate study. J Infect Dis. 2012;205(1):13–9.CrossRef Vandermeer ML, Thomas AR, Kamimoto L, et al. Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: a multistate study. J Infect Dis. 2012;205(1):13–9.CrossRef
5.
Zurück zum Zitat VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167(4):268–74.CrossRef VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167(4):268–74.CrossRef
6.
Zurück zum Zitat Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Website and R package for computing E-values. Epidemiology. 2018;29(5):e45–7.CrossRef Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Website and R package for computing E-values. Epidemiology. 2018;29(5):e45–7.CrossRef
Metadaten
Titel
Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study
verfasst von
Guillermo Rodriguez-Nava
Daniela Patricia Trelles-Garcia
Maria Adriana Yanez-Bello
Chul Won Chung
Valeria Patricia Trelles-Garcia
Harvey J. Friedman
Publikationsdatum
15.07.2020
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03154-4

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.