Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 6/2022

09.12.2021 | COVID-19 | Original Article

Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

verfasst von: Donghwi Hwang, Seung Kwan Kang, Kyeong Yun Kim, Hongyoon Choi, Jae Sung Lee

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) to correct the attenuation (μ) of the annihilation photons in PET.

Methods

One of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images (μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT scans were used for neural network training and testing.

Results

The error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).

Conclusion

The use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA reconstruction, but CNNMLAA outperformed CNNNAC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef
6.
Zurück zum Zitat Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.CrossRefPubMed
7.
Zurück zum Zitat Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.CrossRefPubMed
8.
Zurück zum Zitat Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med. 2010;51:1431–8.CrossRefPubMed Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med. 2010;51:1431–8.CrossRefPubMed
9.
Zurück zum Zitat An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim H-J, et al. MRI-based attenuation correction for PET/MRI using multiphase level-set method. J Nucl Med. 2016;57:587–93.CrossRefPubMed An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim H-J, et al. MRI-based attenuation correction for PET/MRI using multiphase level-set method. J Nucl Med. 2016;57:587–93.CrossRefPubMed
10.
Zurück zum Zitat Sureshbabu W, Mawlawi O. PET/CT imaging artifacts. J Nucl Med Technol. 2005;33:156–61.PubMed Sureshbabu W, Mawlawi O. PET/CT imaging artifacts. J Nucl Med Technol. 2005;33:156–61.PubMed
11.
Zurück zum Zitat Beyer T, Bockisch A, Kühl H, Martinez M-J. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med. 2006;47:91–9.PubMed Beyer T, Bockisch A, Kühl H, Martinez M-J. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med. 2006;47:91–9.PubMed
13.
Zurück zum Zitat Ladefoged CN, Law I, Anazodo U, Lawrence KS, Izquierdo-Garcia D, Catana C, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59.CrossRefPubMed Ladefoged CN, Law I, Anazodo U, Lawrence KS, Izquierdo-Garcia D, Catana C, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59.CrossRefPubMed
15.
Zurück zum Zitat Kim JH, Lee JS, Song I-C, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med. 2012;53:1878–82.CrossRefPubMed Kim JH, Lee JS, Song I-C, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med. 2012;53:1878–82.CrossRefPubMed
16.
Zurück zum Zitat Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRefPubMed Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRefPubMed
17.
Zurück zum Zitat Lodge MA, Mhlanga JC, Cho SY, Wahl RL. Effect of patient arm motion in whole-body PET/CT. J Nucl Med. 2011;52:1891–7.CrossRefPubMed Lodge MA, Mhlanga JC, Cho SY, Wahl RL. Effect of patient arm motion in whole-body PET/CT. J Nucl Med. 2011;52:1891–7.CrossRefPubMed
21.
Zurück zum Zitat Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Proc Med Image Comput Comput Assist Interv. 2019:723–31. Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Proc Med Image Comput Comput Assist Interv. 2019:723–31.
22.
Zurück zum Zitat Bauer CE, Brefczynski-Lewis J, Marano G, Mandich MB, Stolin A, Martone P, et al. Concept of an upright wearable positron emission tomography imager in humans. Brain Behav. 2016;6:e00530.CrossRefPubMedPubMedCentral Bauer CE, Brefczynski-Lewis J, Marano G, Mandich MB, Stolin A, Martone P, et al. Concept of an upright wearable positron emission tomography imager in humans. Brain Behav. 2016;6:e00530.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.CrossRefPubMedPubMedCentral Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hwang D, Kim KY, Kang SK, Choi H, Seo S, Paeng JC, et al. Accurate attenuation correction for whole-body Ga-68-DOTATOC PET studies using deep learning. J Nucl Med. 2019;60:568.CrossRef Hwang D, Kim KY, Kang SK, Choi H, Seo S, Paeng JC, et al. Accurate attenuation correction for whole-body Ga-68-DOTATOC PET studies using deep learning. J Nucl Med. 2019;60:568.CrossRef
34.
Zurück zum Zitat Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol. 2021;66:115009.CrossRef Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol. 2021;66:115009.CrossRef
35.
Zurück zum Zitat Chun SY, Kim KY, Lee JS, Fessier JA. Joint estimation of activity distribution and attenuation map for TOF-PET using alternating direction method of multiplier. Proc IEEE Int Symp Biomed Imaging. 2016:86–9. Chun SY, Kim KY, Lee JS, Fessier JA. Joint estimation of activity distribution and attenuation map for TOF-PET using alternating direction method of multiplier. Proc IEEE Int Symp Biomed Imaging. 2016:86–9.
40.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc Med Image Comput Comput Assist Interv. 2015:234–41. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc Med Image Comput Comput Assist Interv. 2015:234–41.
Metadaten
Titel
Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography
verfasst von
Donghwi Hwang
Seung Kwan Kang
Kyeong Yun Kim
Hongyoon Choi
Jae Sung Lee
Publikationsdatum
09.12.2021
Verlag
Springer Berlin Heidelberg
Schlagwort
COVID-19
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 6/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05637-0

Weitere Artikel der Ausgabe 6/2022

European Journal of Nuclear Medicine and Molecular Imaging 6/2022 Zur Ausgabe