Skip to main content
Erschienen in: Medical Microbiology and Immunology 2-3/2022

02.03.2022 | COVID-19 | Review Zur Zeit gratis

Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy

verfasst von: Amirmasoud Rayati Damavandi, Razieh Dowran, Sarah Al Sharif, Fatah Kashanchi, Reza Jafari

Erschienen in: Medical Microbiology and Immunology | Ausgabe 2-3/2022

Einloggen, um Zugang zu erhalten

Abstract

An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Literatur
2.
Zurück zum Zitat Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedPubMedCentralCrossRef Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966PubMedCrossRef Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966PubMedCrossRef
4.
Zurück zum Zitat Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (Lond, Engl) 361(9366):1319–1325CrossRef Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (Lond, Engl) 361(9366):1319–1325CrossRef
5.
Zurück zum Zitat Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef
6.
Zurück zum Zitat Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733PubMedPubMedCentralCrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–27.e19PubMedPubMedCentralCrossRef Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–27.e19PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, Maceil A et al (2021) Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020-January 12, 2021. MMWR Morbid Mortal Weekly Rep. 70(3):95–99CrossRef Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, Maceil A et al (2021) Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020-January 12, 2021. MMWR Morbid Mortal Weekly Rep. 70(3):95–99CrossRef
11.
Zurück zum Zitat Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020:5 Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020:5
12.
Zurück zum Zitat Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Sci (N Y, NY). 372(6544):815–821CrossRef Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Sci (N Y, NY). 372(6544):815–821CrossRef
14.
Zurück zum Zitat Ferrareze PAG, Franceschi VB, Mayer AM, Caldana GD, Zimerman RA, Thompson CE (2021) E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 93:104941PubMedPubMedCentralCrossRef Ferrareze PAG, Franceschi VB, Mayer AM, Caldana GD, Zimerman RA, Thompson CE (2021) E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 93:104941PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Kumar S, Nyodu R, Maurya VK, Saxena SK (2020) Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19) 2020:23–31 Kumar S, Nyodu R, Maurya VK, Saxena SK (2020) Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19) 2020:23–31
16.
Zurück zum Zitat Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–130PubMedCrossRef Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–130PubMedCrossRef
18.
Zurück zum Zitat Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceut Sin B 10(7):1228–1238CrossRef Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceut Sin B 10(7):1228–1238CrossRef
19.
Zurück zum Zitat Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27(12):1202–1208PubMedPubMedCentralCrossRef Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27(12):1202–1208PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL et al (2020) The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem 296:100111PubMedPubMedCentralCrossRef Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL et al (2020) The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem 296:100111PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Grubaugh ND, Petrone ME, Holmes EC (2020) We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol 5(4):529–530PubMedCrossRef Grubaugh ND, Petrone ME, Holmes EC (2020) We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol 5(4):529–530PubMedCrossRef
22.
Zurück zum Zitat Sevajol M, Subissi L, Decroly E, Canard B, Imbert I (2014) Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 194:90–99PubMedPubMedCentralCrossRef Sevajol M, Subissi L, Decroly E, Canard B, Imbert I (2014) Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 194:90–99PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Niesen MJM, Anand P, Silvert E, Suratekar R, Pawlowski C, Ghosh P et al (2021) COVID-19 vaccines dampen genomic diversity of SARS-CoV-2: unvaccinated patients exhibit more antigenic mutational variance. medRxiv. 2021:8 Niesen MJM, Anand P, Silvert E, Suratekar R, Pawlowski C, Ghosh P et al (2021) COVID-19 vaccines dampen genomic diversity of SARS-CoV-2: unvaccinated patients exhibit more antigenic mutational variance. medRxiv. 2021:8
24.
Zurück zum Zitat Kemp SA, Collier DA, Datir RP, Ferreira I, Gayed S, Jahun A et al (2021) SARS-CoV-2 evolution during treatment of chronic infection. Nature 592(7853):277–282PubMedPubMedCentralCrossRef Kemp SA, Collier DA, Datir RP, Ferreira I, Gayed S, Jahun A et al (2021) SARS-CoV-2 evolution during treatment of chronic infection. Nature 592(7853):277–282PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Mansbach RA, Chakraborty S, Nguyen K, Montefiori DC, Korber B, Gnanakaran S (2021) The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci Adv 7:16CrossRef Mansbach RA, Chakraborty S, Nguyen K, Montefiori DC, Korber B, Gnanakaran S (2021) The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci Adv 7:16CrossRef
29.
Zurück zum Zitat Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y et al (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17(7):765–767PubMedPubMedCentralCrossRef Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y et al (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17(7):765–767PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Jackson CB, Zhang L, Farzan M, Choe H (2021) Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 538:108–115PubMedCrossRef Jackson CB, Zhang L, Farzan M, Choe H (2021) Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 538:108–115PubMedCrossRef
31.
Zurück zum Zitat Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–84.e5PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–84.e5PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620PubMedPubMedCentralCrossRef Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S et al (2006) SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281(6):3198–3203PubMedCrossRef Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S et al (2006) SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281(6):3198–3203PubMedCrossRef
34.
Zurück zum Zitat Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al (2013) The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87(10):5502–5511PubMedPubMedCentralCrossRef Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al (2013) The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87(10):5502–5511PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Liu T, Luo S, Libby P, Shi GP (2020) Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Therapeut. 213:107587CrossRef Liu T, Luo S, Libby P, Shi GP (2020) Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Therapeut. 213:107587CrossRef
36.
Zurück zum Zitat Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):134PubMedPubMedCentralCrossRef Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):134PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K et al (2021) D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep 34(2):108630PubMedCrossRef Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K et al (2021) D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep 34(2):108630PubMedCrossRef
38.
Zurück zum Zitat Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F (2021) Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. Int J Infect Dis 103:611–616PubMedCrossRef Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F (2021) Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. Int J Infect Dis 103:611–616PubMedCrossRef
39.
Zurück zum Zitat Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP et al (2021) SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 90:104760PubMedPubMedCentralCrossRef Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP et al (2021) SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 90:104760PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR et al (2021) The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife 2021:10 Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR et al (2021) The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife 2021:10
41.
Zurück zum Zitat Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD et al (2020) SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11(1):6013PubMedPubMedCentralCrossRef Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD et al (2020) SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11(1):6013PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM et al (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science (N Y, NY) 372(6541):525–530CrossRef Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM et al (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science (N Y, NY) 372(6541):525–530CrossRef
43.
Zurück zum Zitat Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P et al (2020) Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18(1):179PubMedPubMedCentralCrossRef Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P et al (2020) Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18(1):179PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Groves DC, Rowland-Jones SL, Angyal A (2021) The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 538:104–107PubMedCrossRef Groves DC, Rowland-Jones SL, Angyal A (2021) The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 538:104–107PubMedCrossRef
46.
Zurück zum Zitat Polydorides S, Archontis G (2021) Computational optimization of the SARS-CoV-2 receptor-binding-motif affinity for human ACE2. Biophys J 2021:1 Polydorides S, Archontis G (2021) Computational optimization of the SARS-CoV-2 receptor-binding-motif affinity for human ACE2. Biophys J 2021:1
47.
Zurück zum Zitat Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM (2021) Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2021:1–11 Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM (2021) Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2021:1–11
48.
Zurück zum Zitat Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215–220PubMedCrossRef Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215–220PubMedCrossRef
49.
Zurück zum Zitat Villoutreix BO, Calvez V, Marcelin AG, Khatib AM (2021) In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 variants with a focus at the ACE2-spike RBD interface. Int J Mol Sci 22:4CrossRef Villoutreix BO, Calvez V, Marcelin AG, Khatib AM (2021) In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 variants with a focus at the ACE2-spike RBD interface. Int J Mol Sci 22:4CrossRef
50.
Zurück zum Zitat Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A et al (2021) Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591(7849):293–299PubMedPubMedCentralCrossRef Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A et al (2021) Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591(7849):293–299PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Kemp S, Datir R, Collier D (2020) Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/ΔV70. bioRxiv. 2020:1 Kemp S, Datir R, Collier D (2020) Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/ΔV70. bioRxiv. 2020:1
53.
Zurück zum Zitat Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Papa G et al (2021) Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv. 2020:12 Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Papa G et al (2021) Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv. 2020:12
54.
Zurück zum Zitat Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC et al (2020) The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. bioRxiv. 2020:107 Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC et al (2020) The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. bioRxiv. 2020:107
55.
Zurück zum Zitat Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci (N Y, NY). 372(6538):3055CrossRef Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci (N Y, NY). 372(6538):3055CrossRef
56.
Zurück zum Zitat Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274PubMedCrossRef Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274PubMedCrossRef
57.
Zurück zum Zitat Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S et al (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855):616–622PubMedPubMedCentralCrossRef Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S et al (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855):616–622PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. bioRxiv 2021:428137 Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. bioRxiv 2021:428137
59.
Zurück zum Zitat Funk T, Pharris A, Spiteri G, Bundle N, Melidou A, Carr M et al (2021) Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26:16CrossRef Funk T, Pharris A, Spiteri G, Bundle N, Melidou A, Carr M et al (2021) Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26:16CrossRef
60.
Zurück zum Zitat Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS et al (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182(5):1295–310.e20PubMedPubMedCentralCrossRef Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS et al (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182(5):1295–310.e20PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Pan T, Chen R, He X, Yuan Y, Deng X, Li R et al (2021) Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Therapy 6(1):420CrossRef Pan T, Chen R, He X, Yuan Y, Deng X, Li R et al (2021) Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Therapy 6(1):420CrossRef
62.
Zurück zum Zitat Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ et al (2020) Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science (N Y, NY) 369(6511):1603–1607CrossRef Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ et al (2020) Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science (N Y, NY) 369(6511):1603–1607CrossRef
63.
Zurück zum Zitat Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J et al (2021) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54(7):1611–21.e5PubMedPubMedCentralCrossRef Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J et al (2021) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54(7):1611–21.e5PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H et al (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184(9):2362–71.e9CrossRef Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H et al (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184(9):2362–71.e9CrossRef
65.
Zurück zum Zitat Chen Q, Huang XY, Sun MX, Li RT, Gu H, Tian Y et al (2021) Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2. Natl Sci Rev 8(11):nwab167PubMedPubMedCentralCrossRef Chen Q, Huang XY, Sun MX, Li RT, Gu H, Tian Y et al (2021) Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2. Natl Sci Rev 8(11):nwab167PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–76.e6PubMedPubMedCentralCrossRef Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–76.e6PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE (2021) SARS-CoV-2 variants of concern are emerging in India. Nat Med 27(7):1131–1133PubMedCrossRef Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE (2021) SARS-CoV-2 variants of concern are emerging in India. Nat Med 27(7):1131–1133PubMedCrossRef
71.
Zurück zum Zitat Pascarella S, Ciccozzi M, Zella D, Bianchi M, Benetti F, Benvenuto D et al (2021) SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate? J Med Virol 397:952 Pascarella S, Ciccozzi M, Zella D, Bianchi M, Benetti F, Benvenuto D et al (2021) SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate? J Med Virol 397:952
72.
Zurück zum Zitat Laffeber C, de Koning K, Kanaar R, Lebbink JHG (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 433(15):167058PubMedPubMedCentralCrossRef Laffeber C, de Koning K, Kanaar R, Lebbink JHG (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 433(15):167058PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X et al (2021) Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Sci (N Y, NY) 373(6556):818–823CrossRef Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X et al (2021) Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Sci (N Y, NY) 373(6556):818–823CrossRef
74.
Zurück zum Zitat Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Jolly B, Bhoyar RC et al (2021) Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. medRxiv. 2021:8076 Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Jolly B, Bhoyar RC et al (2021) Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. medRxiv. 2021:8076
75.
Zurück zum Zitat Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S et al (2021) Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2021:1 Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S et al (2021) Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2021:1
79.
Zurück zum Zitat Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC et al (2020) The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv. 2020:311 Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC et al (2020) The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv. 2020:311
80.
Zurück zum Zitat Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G (2021) Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2021:1 Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G (2021) Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2021:1
81.
Zurück zum Zitat Pascarella S, Ciccozzi M, Bianchi M, Benvenuto D, Cauda R, Cassone A (2021) The electrostatic potential of the omicron variant spike is higher than in delta and delta-plus variants: a hint to higher transmissibility? J Med Virol 2021:1 Pascarella S, Ciccozzi M, Bianchi M, Benvenuto D, Cauda R, Cassone A (2021) The electrostatic potential of the omicron variant spike is higher than in delta and delta-plus variants: a hint to higher transmissibility? J Med Virol 2021:1
82.
Zurück zum Zitat Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y et al (2021) SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 6(1):430PubMedPubMedCentralCrossRef Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y et al (2021) SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 6(1):430PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C et al (2021) Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv. 2021:7432 Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C et al (2021) Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv. 2021:7432
84.
Zurück zum Zitat Wang Y, Zhang L, Li Q, Liang Z, Li T, Liu S et al (2022) The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 11(1):1–5PubMedCrossRef Wang Y, Zhang L, Li Q, Liang Z, Li T, Liu S et al (2022) The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 11(1):1–5PubMedCrossRef
85.
Zurück zum Zitat Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ et al (2021) Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv. 2021:68 Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ et al (2021) Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv. 2021:68
86.
Zurück zum Zitat Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602(7898):671–5. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602(7898):671–5.
87.
Zurück zum Zitat Aggarwal A, Stella AO, Walker G, Akerman A, Milogiannakis V, Brilot F, et al (2021) SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv [Preprint]. 2021 Dec 15:2021:2021.12.14.21267772. https://doi.org/10.1101/2021.12.14.21267772 Aggarwal A, Stella AO, Walker G, Akerman A, Milogiannakis V, Brilot F, et al (2021) SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv [Preprint]. 2021 Dec 15:2021:2021.12.14.21267772. https://​doi.​org/​10.​1101/​2021.​12.​14.​21267772
88.
Zurück zum Zitat Redd AD, Nardin A, Kared H, Bloch EM, Abel B, Pekosz A, et al (2021) Minimal cross-over between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. bioRxiv [Preprint]. 2021 Dec 9:2021.12.06.471446. https://doi.org/10.1101/2021.12.06.471446 Redd AD, Nardin A, Kared H, Bloch EM, Abel B, Pekosz A, et al (2021) Minimal cross-over between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. bioRxiv [Preprint]. 2021 Dec 9:2021.12.06.471446. https://​doi.​org/​10.​1101/​2021.​12.​06.​471446
90.
Zurück zum Zitat Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al (2022) Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England).399(10323):437–46. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al (2022) Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England).399(10323):437–46.
91.
Zurück zum Zitat Mahase E (2021) Covid-19: Hospital admission 50–70% less likely with omicron than delta, but transmission a major concern. BMJ (Clin Res Ed) 375:3151 Mahase E (2021) Covid-19: Hospital admission 50–70% less likely with omicron than delta, but transmission a major concern. BMJ (Clin Res Ed) 375:3151
92.
Zurück zum Zitat Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C et al (2021) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2021:1–18 Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C et al (2021) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2021:1–18
93.
Zurück zum Zitat Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al (2022) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602(7898):664–70. Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al (2022) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602(7898):664–70.
94.
Zurück zum Zitat Leist SR, Dinnon KH 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ et al (2020) A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183(4):1070–85.e12PubMedPubMedCentralCrossRef Leist SR, Dinnon KH 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ et al (2020) A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183(4):1070–85.e12PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solís L, et al (2021) The Emergence of Sars-CoV-2 Variant Lambda (C.37) in South America. Microbiol Spectr. 9(2):e0078921.PubMedCrossRef Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solís L, et al (2021) The Emergence of Sars-CoV-2 Variant Lambda (C.37) in South America. Microbiol Spectr. 9(2):e0078921.PubMedCrossRef
98.
Zurück zum Zitat Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184(13):3426–37.e8PubMedPubMedCentralCrossRef Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184(13):3426–37.e8PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, et al (2021) SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 373(6555):648–54. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, et al (2021) SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 373(6555):648–54.
101.
Zurück zum Zitat Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) SARS-CoV-2 lambda variant remains susceptible to neutralization by mRNA vaccine-elicited antibodies and convalescent serum. bioRxiv [Preprint]. 2021 Jul 3:2021.07.02.450959. doi: https://doi.org/10.1101/2021.07.02.450959 Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) SARS-CoV-2 lambda variant remains susceptible to neutralization by mRNA vaccine-elicited antibodies and convalescent serum. bioRxiv [Preprint]. 2021 Jul 3:2021.07.02.450959. doi: https://​doi.​org/​10.​1101/​2021.​07.​02.​450959
102.
Zurück zum Zitat Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Andrés Prada D et al (2021) Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. MedRxiv 26:2100008 Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Andrés Prada D et al (2021) Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. MedRxiv 26:2100008
106.
Zurück zum Zitat Collier DA, De Marco A, Ferreira I, Meng B, Datir RP, Walls AC et al (2021) Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141PubMedCrossRef Collier DA, De Marco A, Ferreira I, Meng B, Datir RP, Walls AC et al (2021) Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141PubMedCrossRef
107.
Zurück zum Zitat Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27(4):622–625PubMedCrossRef Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27(4):622–625PubMedCrossRef
108.
Zurück zum Zitat Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS et al (2021) Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. medRxiv 385:585 Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS et al (2021) Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. medRxiv 385:585
109.
Zurück zum Zitat Miyakawa K, Jeremiah SS, Kato H, Ryo A (2021) Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv 12:987 Miyakawa K, Jeremiah SS, Kato H, Ryo A (2021) Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv 12:987
110.
Zurück zum Zitat Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD, Veesler D et al (2020) Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv. 2020:1 Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD, Veesler D et al (2020) Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv. 2020:1
111.
Zurück zum Zitat Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E (2021) Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325(13):1324–1326PubMedPubMedCentralCrossRef Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E (2021) Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325(13):1324–1326PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. J Clin Microbiol. 59(11):e0092121. Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. J Clin Microbiol. 59(11):e0092121.
113.
Zurück zum Zitat Pereira F, Tosta S, Lima MM, Reboredo de Oliveira da Silva L, Nardy VB, Gómez MKA, et al (2021) Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report. J Med Virol. 93(9):5523–6. Pereira F, Tosta S, Lima MM, Reboredo de Oliveira da Silva L, Nardy VB, Gómez MKA, et al (2021) Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report. J Med Virol. 93(9):5523–6.
115.
Zurück zum Zitat West AP, Jr., Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, et al (2021) Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nat Commun. 12(1):4886. West AP, Jr., Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, et al (2021) Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nat Commun. 12(1):4886.
116.
Zurück zum Zitat Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, et al (2021) Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature. 597(7878):703–8. Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, et al (2021) Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature. 597(7878):703–8.
118.
Zurück zum Zitat McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC et al (2021) N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184(9):2332–47.e16PubMedPubMedCentralCrossRef McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC et al (2021) N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184(9):2332–47.e16PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv 94:e00127 Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv 94:e00127
121.
Zurück zum Zitat Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY et al (2021) Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis 74:366–368CrossRef Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY et al (2021) Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis 74:366–368CrossRef
125.
Zurück zum Zitat Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R et al (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Sci (N Y, NY) 371(6525):172–177CrossRef Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R et al (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Sci (N Y, NY) 371(6525):172–177CrossRef
126.
Zurück zum Zitat Hodcroft EB, Domman DB, Snyder DJ, Oguntuyo KY, Van Diest M, Densmore KH et al (2021) Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. medRxiv 2021:2021.02.12.21251658 Hodcroft EB, Domman DB, Snyder DJ, Oguntuyo KY, Van Diest M, Densmore KH et al (2021) Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. medRxiv 2021:2021.02.12.21251658
129.
Zurück zum Zitat Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN et al (2021) Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29(1):44-57.e9PubMedPubMedCentralCrossRef Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN et al (2021) Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29(1):44-57.e9PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839):682–687PubMedPubMedCentralCrossRef Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839):682–687PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183(4):1024–42.e21PubMedPubMedCentralCrossRef Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183(4):1024–42.e21PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS et al (2021) Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science (N Y, NY) 371(6531):850–854CrossRef Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS et al (2021) Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science (N Y, NY) 371(6531):850–854CrossRef
133.
Zurück zum Zitat Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R et al (2021) D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29(1):23-31.e4PubMedCrossRef Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R et al (2021) D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29(1):23-31.e4PubMedCrossRef
134.
Zurück zum Zitat Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y et al (2020) Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183(3):739–51.e8PubMedPubMedCentralCrossRef Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y et al (2020) Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183(3):739–51.e8PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 27(4):620–1. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 27(4):620–1.
136.
Zurück zum Zitat Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135PubMedCrossRef Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135PubMedCrossRef
137.
Zurück zum Zitat Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 6(5):e335–e345PubMedPubMedCentralCrossRef Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 6(5):e335–e345PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Krammer F, Simon V et al (2021) SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2:283–284CrossRef Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Krammer F, Simon V et al (2021) SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2:283–284CrossRef
139.
Zurück zum Zitat Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Lancet Microbe 586:583 Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Lancet Microbe 586:583
140.
Zurück zum Zitat Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G et al (2021) Increased resistance of SARS-CoV-2 variant P1 to antibody neutralization. Cell Host Microbe 29(5):747-751.e414PubMedPubMedCentralCrossRef Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G et al (2021) Increased resistance of SARS-CoV-2 variant P1 to antibody neutralization. Cell Host Microbe 29(5):747-751.e414PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V et al (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Sci (N Y, NY) 369(6506):1014–1018CrossRef Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V et al (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Sci (N Y, NY) 369(6506):1014–1018CrossRef
142.
Zurück zum Zitat Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA et al (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5):1171–87.e20PubMedPubMedCentralCrossRef Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA et al (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5):1171–87.e20PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 596(7871):276–80. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 596(7871):276–80.
144.
Zurück zum Zitat Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv [Preprint]. 2021 May 16:2021.05.14.444076. https://doi.org/10.1101/2021.05.14.444076 Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv [Preprint]. 2021 May 16:2021.05.14.444076. https://​doi.​org/​10.​1101/​2021.​05.​14.​444076
145.
Zurück zum Zitat Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 385(7):585–94. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 385(7):585–94.
146.
Zurück zum Zitat Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I et al (2020) SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 5:237 Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I et al (2020) SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 5:237
147.
Zurück zum Zitat Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424PubMedPubMedCentralCrossRef Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K (2022) Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies. J Autoimmunity. 126:102779CrossRef Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K (2022) Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies. J Autoimmunity. 126:102779CrossRef
151.
Zurück zum Zitat Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Controll Release 217:345–351CrossRef Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Controll Release 217:345–351CrossRef
152.
Zurück zum Zitat Callaway E (2020) The race for coronavirus vaccines: a graphical guide. Nature 580(7805):576–577PubMedCrossRef Callaway E (2020) The race for coronavirus vaccines: a graphical guide. Nature 580(7805):576–577PubMedCrossRef
154.
Zurück zum Zitat Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M et al (2021) Publisher correction: COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 590(7844):E17PubMedCrossRef Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M et al (2021) Publisher correction: COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 590(7844):E17PubMedCrossRef
155.
Zurück zum Zitat Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA et al (2021) BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384(15):1412–1423PubMedCrossRef Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA et al (2021) BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384(15):1412–1423PubMedCrossRef
156.
Zurück zum Zitat Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA et al (2021) Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 384(15):1466–1468PubMedCrossRef Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA et al (2021) Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 384(15):1466–1468PubMedCrossRef
157.
Zurück zum Zitat Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C et al (2021) Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet (London, England). 397(10292):2331–2333PubMedCentralCrossRef Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C et al (2021) Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet (London, England). 397(10292):2331–2333PubMedCentralCrossRef
158.
Zurück zum Zitat Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al (2021) Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet (London, England). 398(10309):1407–16. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al (2021) Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet (London, England). 398(10309):1407–16.
159.
Zurück zum Zitat Hansen CH, Schelde AB, Moustsen-Helms IR, Emborg H-D, Krause TG, Mølbak K et al (2021) Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study. medRxiv [Preprint]. 2021 Dec 23:2021.12.20.21267966. doi: https://doi.org/10.1101/2021.12.20.21267966 Hansen CH, Schelde AB, Moustsen-Helms IR, Emborg H-D, Krause TG, Mølbak K et al (2021) Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study. medRxiv [Preprint]. 2021 Dec 23:2021.12.20.21267966. doi: https://​doi.​org/​10.​1101/​2021.​12.​20.​21267966
160.
Zurück zum Zitat Lu L, Mok BW, Chen LL, Chan JM, Tsang OT, Lam BH et al (2021) Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin Infect Dis.2021 Dec 16:ciab1041. https://doi.org/10.1093/cid/ciab1041. Epub ahead of print. Lu L, Mok BW, Chen LL, Chan JM, Tsang OT, Lam BH et al (2021) Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin Infect Dis.2021 Dec 16:ciab1041. https://​doi.​org/​10.​1093/​cid/​ciab1041. Epub ahead of print.
161.
Zurück zum Zitat Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al (2022) Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 602(7898):654–6. Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al (2022) Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 602(7898):654–6.
162.
Zurück zum Zitat Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, et al (2022) mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell.185(3):457–66.e4. Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, et al (2022) mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell.185(3):457–66.e4.
163.
Zurück zum Zitat Schmidt F, Muecksch F, Weisblum Y, Da Silva J, Bednarski E, Cho A, et al (2022) Plasma Neutralization of the SARS-CoV-2 Omicron Variant. N Engl J Med. 386(6):599–601. Schmidt F, Muecksch F, Weisblum Y, Da Silva J, Bednarski E, Cho A, et al (2022) Plasma Neutralization of the SARS-CoV-2 Omicron Variant. N Engl J Med. 386(6):599–601.
167.
Zurück zum Zitat Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN et al (2020) An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 383(20):1920–1931PubMedCrossRef Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN et al (2020) An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 383(20):1920–1931PubMedCrossRef
168.
Zurück zum Zitat Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B et al (2021) A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20):2791–2799PubMedPubMedCentralCrossRef Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B et al (2021) A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20):2791–2799PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R et al (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384(5):403–416PubMedCrossRef Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R et al (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384(5):403–416PubMedCrossRef
170.
Zurück zum Zitat Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF et al (2021) Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 384(14):1372–1374PubMedCrossRef Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF et al (2021) Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 384(14):1372–1374PubMedCrossRef
171.
Zurück zum Zitat Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE et al (2021) Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med 384(15):1468–1470PubMedCrossRef Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE et al (2021) Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med 384(15):1468–1470PubMedCrossRef
172.
Zurück zum Zitat Choi A, Koch M, Wu K, Dixon G, Oestreicher J, Legault H et al (2021) Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. J Virol 2021:Jvio31321 Choi A, Koch M, Wu K, Dixon G, Oestreicher J, Legault H et al (2021) Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. J Virol 2021:Jvio31321
173.
Zurück zum Zitat Pajon R, Doria-Rose NA, Shen X, Schmidt SD, O'Dell S, McDanal C, et al (2022) SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N Engl J Med. 2022 Jan 26:NEJMc2119912. https://doi.org/10.1056/NEJMc2119912. Epub ahead of print. Pajon R, Doria-Rose NA, Shen X, Schmidt SD, O'Dell S, McDanal C, et al (2022) SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N Engl J Med. 2022 Jan 26:NEJMc2119912. https://​doi.​org/​10.​1056/​NEJMc2119912. Epub ahead of print.
175.
Zurück zum Zitat Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR et al (2021) Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (Lond, Engl) 396(10267):1979–1993CrossRef Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR et al (2021) Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (Lond, Engl) 396(10267):1979–1993CrossRef
176.
Zurück zum Zitat Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (Lond, Engl) 397(10269):99–111CrossRef Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (Lond, Engl) 397(10269):99–111CrossRef
177.
Zurück zum Zitat Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet (Lond, Engl) 397(10282):1351–1362CrossRef Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet (Lond, Engl) 397(10282):1351–1362CrossRef
178.
Zurück zum Zitat Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L et al (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 384(20):1885–1898PubMedCrossRef Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L et al (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 384(20):1885–1898PubMedCrossRef
179.
Zurück zum Zitat Clemens SAC, Folegatti PM, Emary KRW, Weckx LY, Ratcliff J, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun 12(1):5861PubMedPubMedCentralCrossRef Clemens SAC, Folegatti PM, Emary KRW, Weckx LY, Ratcliff J, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun 12(1):5861PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM et al (2021) Interim results of a phase 1–2a trial of Ad26COV2S Covid-19 vaccine. N Engl J Med 384(19):1824–1835PubMedCrossRef Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM et al (2021) Interim results of a phase 1–2a trial of Ad26COV2S Covid-19 vaccine. N Engl J Med 384(19):1824–1835PubMedCrossRef
181.
Zurück zum Zitat Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 384:2187–2201PubMedCrossRef Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 384:2187–2201PubMedCrossRef
182.
Zurück zum Zitat Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M et al (2021) Durable humoral and cellular immune responses following Ad26.COV2.S vaccination for COVID-19. MedRxiv 325:1535 Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M et al (2021) Durable humoral and cellular immune responses following Ad26.COV2.S vaccination for COVID-19. MedRxiv 325:1535
184.
Zurück zum Zitat Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F et al (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385(13):1172–1183PubMedCrossRef Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F et al (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385(13):1172–1183PubMedCrossRef
185.
Zurück zum Zitat Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L et al (2021) Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 Variant. N Engl J Med 384(20):1899–1909PubMedPubMedCentralCrossRef Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L et al (2021) Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 Variant. N Engl J Med 384(20):1899–1909PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Mahase E (2021) Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ (Clin Res Ed). 372:296 Mahase E (2021) Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ (Clin Res Ed). 372:296
188.
Zurück zum Zitat Yang S, Li Y, Dai L, Wang J, He P, Li C et al (2021) Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 21(8):1107–1119PubMedPubMedCentralCrossRef Yang S, Li Y, Dai L, Wang J, He P, Li C et al (2021) Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 21(8):1107–1119PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q et al (2021) Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2(10):e494PubMedPubMedCentralCrossRef Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q et al (2021) Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2(10):e494PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W et al (2021) Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2(7):e285PubMedPubMedCentralCrossRef Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W et al (2021) Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2(7):e285PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J et al (2021) Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect 2021:1–24 Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J et al (2021) Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect 2021:1–24
193.
Zurück zum Zitat Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Danilenko ED, Imatdinov IR, Nechaeva EA et al (2021) Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Ann RAMS 76(1):5–19CrossRef Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Danilenko ED, Imatdinov IR, Nechaeva EA et al (2021) Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Ann RAMS 76(1):5–19CrossRef
194.
Zurück zum Zitat Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Usova SV, Danilenko ED, Nechaeva EA et al (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (Phase I-II). Russ J Infect Immunity 11(1):283–296CrossRef Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Usova SV, Danilenko ED, Nechaeva EA et al (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (Phase I-II). Russ J Infect Immunity 11(1):283–296CrossRef
195.
Zurück zum Zitat Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn AM, Gonzalez-Roche D, Bequet-Romero M, Marquez-Perera G et al (2021) The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen. medRxiv. 11:1 Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn AM, Gonzalez-Roche D, Bequet-Romero M, Marquez-Perera G et al (2021) The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen. medRxiv. 11:1
196.
Zurück zum Zitat Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J et al (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39(40):5940–5953PubMedPubMedCentralCrossRef Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J et al (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39(40):5940–5953PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 21(1):39–51PubMedCrossRef Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 21(1):39–51PubMedCrossRef
198.
Zurück zum Zitat Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N et al (2021) Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326(1):35–45PubMedCrossRef Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N et al (2021) Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326(1):35–45PubMedCrossRef
199.
Zurück zum Zitat Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D et al (2021) Persistence of antibody and T cell responses to the Sinopharm/BBIBP-CorV vaccine in Sri Lankan individuals. medRxiv [Preprint]. 2021 Oct 18:2021.10.14.21265030. doi: https://doi.org/10.1101/2021.10.14.21265030. Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D et al (2021) Persistence of antibody and T cell responses to the Sinopharm/BBIBP-CorV vaccine in Sri Lankan individuals. medRxiv [Preprint]. 2021 Oct 18:2021.10.14.21265030. doi: https://​doi.​org/​10.​1101/​2021.​10.​14.​21265030.
200.
Zurück zum Zitat Yu X, Wei D, Xu W, Li Y, Li X, Zhang X-x et al (2021) Reduced sensitivity of SARS-CoV-2 Omicron variant to booster-enhanced neutralization. medRxiv. 398:10316 Yu X, Wei D, Xu W, Li Y, Li X, Zhang X-x et al (2021) Reduced sensitivity of SARS-CoV-2 Omicron variant to booster-enhanced neutralization. medRxiv. 398:10316
201.
Zurück zum Zitat Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(2):181–192PubMedCrossRef Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(2):181–192PubMedCrossRef
202.
Zurück zum Zitat Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812PubMedPubMedCentralCrossRef Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S et al (2021) Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (Lond, Engl) 398(10296):213–222CrossRef Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S et al (2021) Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (Lond, Engl) 398(10296):213–222CrossRef
204.
Zurück zum Zitat Palacios R, Batista AP, Albuquerque CSN, Patiño EG, Santos JdP, Conde MTRP, et al (2021) Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN [Preprint]. 2021 Apr 14. doi: https://doi.org/10.2139/ssrn.3822780. Palacios R, Batista AP, Albuquerque CSN, Patiño EG, Santos JdP, Conde MTRP, et al (2021) Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN [Preprint]. 2021 Apr 14. doi: https://​doi.​org/​10.​2139/​ssrn.​3822780.
205.
Zurück zum Zitat Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G et al (2021) Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med 385(10):875–884PubMedCrossRef Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G et al (2021) Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med 385(10):875–884PubMedCrossRef
206.
Zurück zum Zitat Vacharathit V, Aiewsakun P, Manopwisedjaroen S, Srisaowakarn C, Laopanupong T, Ludowyke N et al (2021) CoronaVac induces lower neutralising activity against variants of concern than natural infection. Lancet Infect Dis 21(10):1352–1354PubMedPubMedCentralCrossRef Vacharathit V, Aiewsakun P, Manopwisedjaroen S, Srisaowakarn C, Laopanupong T, Ludowyke N et al (2021) CoronaVac induces lower neutralising activity against variants of concern than natural infection. Lancet Infect Dis 21(10):1352–1354PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Hitchings MDT, Ranzani OT, Torres MSS, de Oliveira SB, Almiron M, Said R, et al (2021) Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg Health Am 1:100025. Hitchings MDT, Ranzani OT, Torres MSS, de Oliveira SB, Almiron M, Said R, et al (2021) Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg Health Am 1:100025.
208.
Zurück zum Zitat Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA et al (2021) Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe. 2(10):e527–e535PubMedPubMedCentralCrossRef Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA et al (2021) Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe. 2(10):e527–e535PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Kang M, Yi Y, Li Y, Sun L, Deng A, Hu T, et al (2022) Effectiveness of Inactivated COVID-19 Vaccines Against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China : A Cohort Study. Ann Intern Med. 2022 Feb 1:M21-3509. doi: https://doi.org/10.7326/M21-3509. Epub ahead of print. Kang M, Yi Y, Li Y, Sun L, Deng A, Hu T, et al (2022) Effectiveness of Inactivated COVID-19 Vaccines Against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China : A Cohort Study. Ann Intern Med. 2022 Feb 1:M21-3509. doi: https://​doi.​org/​10.​7326/​M21-3509. Epub ahead of print.
210.
Zurück zum Zitat Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 21(5):637–646PubMedPubMedCentralCrossRef Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 21(5):637–646PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis 21(7):950–961PubMedPubMedCentralCrossRef Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis 21(7):950–961PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V et al (2021) Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial. medRxiv. 24:102298 Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V et al (2021) Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial. medRxiv. 24:102298
213.
Zurück zum Zitat Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N et al (2021) Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. J Travel Med 28:4 Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N et al (2021) Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. J Travel Med 28:4
214.
Zurück zum Zitat Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY et al (2021) Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J Travel Med 28:7CrossRef Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY et al (2021) Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J Travel Med 28:7CrossRef
215.
Zurück zum Zitat Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G et al (2021) Comparable neutralization of SARS-CoV-2 Delta AY.1 and Delta with individuals sera vaccinated with BBV152. J Travel Med 384:2212 Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G et al (2021) Comparable neutralization of SARS-CoV-2 Delta AY.1 and Delta with individuals sera vaccinated with BBV152. J Travel Med 384:2212
216.
Zurück zum Zitat Morens DM, Taubenberger JK, Fauci AS (2022) Universal Coronavirus Vaccines - An Urgent Need. N Engl J Med. 386(4):297–9. Morens DM, Taubenberger JK, Fauci AS (2022) Universal Coronavirus Vaccines - An Urgent Need. N Engl J Med. 386(4):297–9.
219.
Zurück zum Zitat Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA et al (2021) A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Sci Adv 7(37):eabh1547PubMedPubMedCentralCrossRef Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA et al (2021) A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Sci Adv 7(37):eabh1547PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Markosian C, Staquicini DI, Dogra P, Dodero-Rojas E, Tang FHF, Smith TL, et al (2021) Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools. bioRxiv [Preprint]. 2021 Aug 30:2021.08.30.458222. doi: https://doi.org/10.1101/2021.08.30.458222. Markosian C, Staquicini DI, Dogra P, Dodero-Rojas E, Tang FHF, Smith TL, et al (2021) Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools. bioRxiv [Preprint]. 2021 Aug 30:2021.08.30.458222. doi: https://​doi.​org/​10.​1101/​2021.​08.​30.​458222.
221.
Zurück zum Zitat Lucchese G, Stufano A, Kanduc D (2011) Searching for an effective, safe and universal anti-HIV vaccine: finding the answer in just one short peptide. Self/nonself 2(1):49–54PubMedPubMedCentralCrossRef Lucchese G, Stufano A, Kanduc D (2011) Searching for an effective, safe and universal anti-HIV vaccine: finding the answer in just one short peptide. Self/nonself 2(1):49–54PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat Goldstein G, Chicca JJ 2nd (2010) A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 28(4):1008–1014PubMedCrossRef Goldstein G, Chicca JJ 2nd (2010) A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 28(4):1008–1014PubMedCrossRef
223.
Zurück zum Zitat Andresen BS, Vinner L, Tang S, Bragstad K, Kronborg G, Gerstoft J et al (2007) Characterization of near full-length genomes of HIV type 1 strains in Denmark: basis for a universal therapeutic vaccine. AIDS Res Hum Retroviruses 23(11):1442–1448PubMedCrossRef Andresen BS, Vinner L, Tang S, Bragstad K, Kronborg G, Gerstoft J et al (2007) Characterization of near full-length genomes of HIV type 1 strains in Denmark: basis for a universal therapeutic vaccine. AIDS Res Hum Retroviruses 23(11):1442–1448PubMedCrossRef
224.
Zurück zum Zitat Paredes MI, Lunn SM, Famulare M, Frisbie LA, Painter I, Burstein R, et al (2022) Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study. medRxiv [Preprint]. 2022 Feb 16:2021.09.29.21264272. https://doi.org/10.1101/2021.09.29.21264272. Paredes MI, Lunn SM, Famulare M, Frisbie LA, Painter I, Burstein R, et al (2022) Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study. medRxiv [Preprint]. 2022 Feb 16:2021.09.29.21264272. https://​doi.​org/​10.​1101/​2021.​09.​29.​21264272.
226.
Zurück zum Zitat Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS et al (2021) SARS-CoV-2 variants B1351 and P1 escape from neutralizing antibodies. Cell 184(9):2384–93.e12CrossRef Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS et al (2021) SARS-CoV-2 variants B1351 and P1 escape from neutralizing antibodies. Cell 184(9):2384–93.e12CrossRef
227.
Zurück zum Zitat Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184(9):2372–83.e9PubMedPubMedCentralCrossRef Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184(9):2372–83.e9PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ et al (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 10:14031 Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ et al (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 10:14031
229.
Zurück zum Zitat Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 586:567 Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 586:567
230.
Zurück zum Zitat Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al (2021) Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv [Preprint]. 2021 Sep 30:2021.06.28.21259420. doi: https://doi.org/10.1101/2021.06.28.21259420 Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al (2021) Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv [Preprint]. 2021 Sep 30:2021.06.28.21259420. doi: https://​doi.​org/​10.​1101/​2021.​06.​28.​21259420
231.
Zurück zum Zitat Tada T, Zhou H, Samanovic MI, Dcosta BM, Cornelius A, Mulligan MJ et al (2021) Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants. BioRxiv 384:2187 Tada T, Zhou H, Samanovic MI, Dcosta BM, Cornelius A, Mulligan MJ et al (2021) Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants. BioRxiv 384:2187
Metadaten
Titel
Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy
verfasst von
Amirmasoud Rayati Damavandi
Razieh Dowran
Sarah Al Sharif
Fatah Kashanchi
Reza Jafari
Publikationsdatum
02.03.2022
Verlag
Springer Berlin Heidelberg
Schlagwörter
COVID-19
COVID-19-Impfung
Erschienen in
Medical Microbiology and Immunology / Ausgabe 2-3/2022
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-022-00729-6

Weitere Artikel der Ausgabe 2-3/2022

Medical Microbiology and Immunology 2-3/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.