Skip to main content
Erschienen in: BMC Infectious Diseases 1/2021

Open Access 01.12.2021 | COVID-19 | Research

Development and validation of a simple-to-use nomogram to predict the deterioration and survival of patients with COVID-19

verfasst von: Zhiyong Zeng, Chaohui Wu, Zhenlv Lin, Yong Ye, Shaodan Feng, Yingying Fang, Yanmei Huang, Minhua Li, Debing Du, Gongping Chen, Dezhi Kang

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2021

Abstract

Background

COVID-19 pandemic has forced physicians to quickly determine the patient’s condition and choose treatment strategies. This study aimed to build and validate a simple tool that can quickly predict the deterioration and survival of COVID-19 patients.

Methods

A total of 351 COVID-19 patients admitted to the Third People’s Hospital of Yichang between 9 January to 25 March 2020 were retrospectively analyzed. Patients were randomly grouped into training (n = 246) or a validation (n = 105) dataset. Risk factors associated with deterioration were identified using univariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression. The factors were then incorporated into the nomogram. Kaplan-Meier analysis was used to compare the survival of patients between the low- and high-risk groups divided by the cut-off point.

Results

The least absolute shrinkage and selection operator (LASSO) regression was used to construct the nomogram via four parameters (white blood cells, C-reactive protein, lymphocyte≥0.8 × 109/L, and lactate dehydrogenase ≥400 U/L). The nomogram showed good discriminative performance with the area under the receiver operating characteristic (AUROC) of 0.945 (95% confidence interval: 0.91–0.98), and good calibration (P = 0.539). Besides, the nomogram showed good discrimination performance and good calibration in the validation and total cohorts (AUROC = 0.979 and AUROC = 0.954, respectively). Decision curve analysis demonstrated that the model had clinical application value. Kaplan-Meier analysis illustrated that low-risk patients had a significantly higher 8-week survival rate than those in the high-risk group (100% vs 71.41% and P < 0.0001).

Conclusion

A simple-to-use nomogram with excellent performance in predicting deterioration risk and survival of COVID-19 patients was developed and validated. However, it is necessary to verify this nomogram using a large-scale multicenter study.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12879-021-06065-z.
Zhiyong Zeng, Debing Du, Gongping Chen and Dezhi Kang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALT
Alanine aminotransferase
APTT
Activated partial thromboplastin time
ARDS
Acute respiratory distress syndrome
AST
Aspartate Aminotransferase
AUC
Area under the curve
CHD
Coronary heart disease
CI
Confidence interval
CK
Creatine kinase
CKMB
Creatine kinase-MB
COPD
Chronic obstructive pulmonary disease
COVID-19
Coronavirus disease 2019
CRP
C-reactive protein
CRRT
Continuous renal replacement therapy
CVD
Cardiovascular disease
DBIL
Direct bilirubin
DCA
Decision curve analysis
DM
Diabetes mellitus
HL
Hosmer-Lemeshow
IQR
Interquartile
LASSO
Least absolute shrinkage and selection operator
LDH
Lactate dehydrogenase
NIVV
Non-invasive ventilation
OR
Odds ratio
PCT
Procalcitonin
PT
Prothrombin time
ROC
Receiver operating characteristic
RT-PCR
Reverse transcription-polymerase chain reaction
SD
Standard deviation
TBIL
Total bilirubin
WBC
White blood cells

Introduction

The respiratory disease coronavirus disease 2019 (COVID-19) caused by severe acute respiratory coronavirus type 2 (SARS-CoV-2) has been spreading globally since December 2019 [1, 2]. COVID-19 information is becoming more detailed as clinical cases increase. Most patients can be cured clinically. However, some COVID-19 patients get worse due to progressive pneumonia, severe dyspnea, gastrointestinal bleeding, or multiple organ failure, and even die [35]. Critically ill patients are at a higher risk of death, with a mortality rate of up to 49% [3]. Currently, there are no drugs for the COVID-19 treatment [69]. Therefore, it is urgent to determine factors to quickly predict the deterioration of COVID-19 patients.
Cheng et al. [10] showed that the MuLBSTA score (the multilobular infiltration, hypolymphocytosis, bacterial coinfection, smoking history, hypertension, and age) can be used to predict COVID-19 pneumonia mortality. However, in this study, only two of the 11 deaths were consistent with the MuLBSTA score. Furthermore, there is a discrepancy between the disease severity and the MuLBSTA score in clinical trials. The disease can rapidly spread in some patients with a low MuLBSTA score. Ji et al. [11] showed that CALL Score (comorbidity, age, lymphocyte, and lactate dehydrogenase) can be used to predict progression risk in COVID-19 patients. Liang et al. [12] reported that clinical risk score (chest radiographic abnormality, age, hemoptysis, dyspnea, unconsciousness, comorbidities, cancer history, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and direct bilirubin) is associated with critical illness. However, these methods are complex and require professional radiologists and respiratory doctors to assess the infiltration of multiple lung lobes, especially during this time of the severe epidemic.
Therefore, this study aimed to construct a simple nomogram using common clinical features for the early identification of COVID-19 patients with rapid deterioration and help clinicians to quickly choose better treatment strategies.

Methods

Study participants

The consecutive COVID-19 patients were those admitted to Third People’s Hospital of Yichang between 9 January to 25 March 2020. This study included only patients with positive fluorescence reverse transcription-polymerase chain reaction (RT-PCR) assay results of nasal and pharyngeal swab specimens or specific IgM or IgG antibodies in serum. The disease condition at hospital admission was evaluated and classified into four groups (Mild, Moderate, Severe, and Critical) according to the “COVID-19 diagnosis and treatment program” (7th version) issued by the National Health Commission of China [13]. Patients were reclassified if their condition deteriorated and reached a higher classification criterion.
Disease deterioration was the primary outcome, defined as a change in disease severity from Mild to Moderate/Severe/Critical, Moderate to Severe/Critical, or Severe to Critical during hospitalization [13]. Mortality was the secondary outcome during the treatment.

Candidate predictors

Candidate variables such as demographics (age, gender, and smoking history), comorbid conditions (diabetes mellitus (DM), hypertension, coronary heart disease (CHD), cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD), cancer, immunodeficiency) were obtained from electronic medical records. Besides laboratory variables were obtained from blood. Whole blood count, coagulation function, routine biochemistry, C-reactive protein (CRP), and procalcitonin (PCT) were assessed in the lab.

Statistical analysis

Continuous normal distribution was expressed as mean ± standard deviation (SD). However, non-continuous normal distribution was expressed as median and interquartile (IQR). Categorical variables were expressed using numbers and proportion (%). The total cohort was randomly divided into training and validation cohorts (7:3). A total of 246 (70.0%) patients were in the training dataset and 105 (30.0%) in the validation dataset. The risk model was established using the following three steps to choose the best predictors of disease deterioration. First, candidate predictors with significant P values were selected using the univariate logistic regression analysis. The optimum subset of predictors was then screened using the least absolute shrinkage and selection operator (LASSO) regression analysis [14]. The lambda parameter that minimized expected model deviance was selected. Finally, the nomogram was constructed using the coefficients for each predictor provided via LASSO regression.
The area under the curve (AUC) of receiver operating characteristic (ROC) analysis was used to evaluate the discriminative performance of the nomogram. A calibration curve was used to measure the nomogram calibration. The Hosmer-Lemeshow test was used to examine the goodness-of-fit [15]. Moreover, the clinical usefulness of the nomogram was assessed using decision curve analysis (DCA), which quantified net benefits at various threshold probabilities [16, 17]. The net benefit was determined by subtracting the false-positive patients from true-positive patients, weighting by the relative harm of no treatment against the negative effects of unnecessary treatment. True positives were the unit of net benefit. For instance, a net benefit of 0.07, means “7 true positives for every 100 patients in the target population.” The decision curves showed that the nomogram is more beneficial than treating either all or no patients, indicating that the nomogram is clinically useful. The performance of the nomogram was further validated in the validation and total cohorts using the earlier described method. Statistics software SPSS 20.0 (IBM, Chicago, IL)) and R software version 3.6.0 were used for all data analysis. A two-sided P < 0.05 indicated a significant difference.

Results

Patient characteristics

A total of 360 consecutive records were included. Nine records were excluded, of which six were duplicate records and three did not have laboratory data. Finally, 351 COVID-19 patients met the study requirements. The random number table was used to randomly divide the total cohort into training cohort (n = 246, 70%) and validation cohort (n = 105, 30%). The clinical characteristics of the training and validation cohorts are shown in Table 1. Despite continuous renal replacement therapy (CRRT), baseline characteristics of both cohorts were comparable, indicating that they could be used as training and validation cohorts.
Table 1
Clinical characteristics of patients infected with COVID-19
Characteristics
Total(n = 351)
Training dataset (n = 246)
Validation dataset (n = 105)
P valuea
Demographics
 Age (years), median (IQR)
54(38–66)
54(38–66.25)
54(37–65.5)
0.581
 Female sex, no. (%)
162(46.2)
117(47.6)
45(42.9)
0.418
 Smoking history, n (%)
57(16.2)
41(16.7)
16(15.2)
0.74
Comorbid conditions, n (%)
 Hypertension
80(22.8)
53(21.5)
27(25.7)
0.407
 Diabetes mellitus
41(11.7)
27(11.0)
14(13.3)
0.529
 Coronary heart disease
20(5.7)
13(5.3)
7(6.7)
0.609
 Cerebrovascular diseases
13(3.7)
9(3.7)
4(3.8)
0.922
 COPD
9(2.6)
7(2.8)
2(1.9)
0.73
 Cancer
9(2.6)
9(3.7)
0(0)
0.062
 Immunodeficiency
1(0.3)
1(0.4)
0(0)
1
Laboratory data
 White blood cells (×109/L), median (IQR)
6.3(5.2–8.4)
6.35(5.2–8.5)
6.2(5.25–8.05)
0.725
 Neutrophil (×109/L), median (IQR)
4.21(3.22–6.34)
4.215(3.2325–6.6425)
4.17(3.145–6.135)
0.696
 Monocyte (×109/L), median (IQR)
0.21(0.15–0.28)
0.21(0.14–0.28)
0.21(0.15–0.27)
0.953
 Lymphocyte (×109/L), median (IQR)
0.91(0.62–1.33)
0.91(0.5975–1.3325)
0.9(0.675–1.345)
0.412
 Distribution, no. (%)
   
0.85
  < 0.8 (×109/L)
133(37.9)
94(38.2)
39(37.1)
 
  ≥ 0.8 (×109/L)
218(62.1)
152(61.8)
66(62.9)
 
 Hemoglobin (g/L), median (IQR)
108(98–121)
107(97.75–120)
110(100–122)
0.365
 Platelet (×109/L), median (IQR)
130(98–170)
130(98–169.25)
130.5(96.25–171.5)
0.734
 PT (s), median (IQR)
10.9(10.5–11.3)
10.9(10.5–11.3)
10.8(10.4–11.2)
0.157
 APTT (s), median (IQR)
29.7(26.3–33.6)
29.85(26.8–33.575)
29.25(25.425–33.8)
0.284
 Fibrinogen (g/L)
2.664(2.026–3.645)
2.664(2.026–3.542)
2.975(2.081–3.959)
0.192
 D-Dimer (mg/L), median (IQR)
0.6(0.51–1.365)
0.62(0.52–1.518)
0.57(0.51–1.048)
0.052
 TBIL (μmol/L), median (IQR)
9.19(6.63–13.77)
9.205(6.635–14.015)
8.99(6.745–13.385)
0.869
 DBIL (μmol/L), median (IQR)
2.39(1.585–3.57)
2.41(1.6225–3.5375)
2.35(1.56–3.845)
0.866
 Albumin (g/L), median (IQR)
37.4(34–40.9)
37.1(34–40.6)
38.1(34–41.3)
0.223
 Globulin (g/L), median (IQR)
26.4(23.825–28.8)
26.4(23.725–28.875)
26.25(23.925–28.75)
0.907
 ALT (U/L), median (IQR)
21(13.75–34)
20(14–34.5)
21(13–33)
0.69
 AST (U/L), median (IQR)
21(16–28)
21(16–29)
22(17–28)
0.786
 ALT peak (U/L), median (IQR)
35(24–61)
35(24–61)
34(22–61.5)
0.984
 AST peak (U/L), median (IQR)
26(20–39)
26(20–42)
25(20–38)
0.432
 Creatinine (μmol/L), median (IQR)
67.35(54.1–79.825)
67.25(54.65–80.35)
68.2(53.65–79.5)
0.57
 Creatinine peak (μmol/L), median (IQR)
73.4(58.25–87.925)
73.1(58.2–87.75)
74(58.25–88.65)
0.993
 LDH (U/L), median (IQR)
207(164.75–263)
203(164.25–269.5)
211.5(166–260.75)
0.882
 LDH peak (U/L), median (IQR)
224.5(175–305.25)
225(175–311.5)
220(177.5–292)
0.762
 Distribution, no. (%)
   
0.92
  < 400 (U/L)
286(81.5)
200(81.3)
86(81.9)
 
  ≥ 400 (U/L)
40(11.4)
29(11.8)
11(10.5)
 
 NA
25(7.1)
17(6.9)
8(7.6)
 
 CK (U/L), median (IQR)
63(41–111.5)
58.5(40–108.5)
69.5(43–126.75)
0.126
 CK-MB (U/L), median (IQR)
12.1(9.4–17.7)
12.1(9.5–17.5)
12.2(9.33–18.48)
0.777
 CRP (mg/L), median (IQR)
21.2(4.65–51.625)
20.7(4.35–52.475)
21.55(6.3–48.475)
0.764
 PCT (ng/L), median (IQR)
0.08(0.05–0.135)
0.08(0.05–0.1375)
0.08(0.06–0.135)
0.665
Clinical classification, no. (%)
   
0.162
 Mild
6(1.7)
2(0.8)
4(3.8)
 
 Moderate
279(79.5)
195(79.3)
84(80)
 
 Severe
33(9.4)
26(10.6)
7(6.7)
 
 Critical
33(9.4)
23(9.3)
10(9.5)
 
Treatment, no. (%)
 Antiviral treatment
349(99.4)
244(99.2)
105(100)
1
 Antibacterial treatment
328(93.4)
229(93.1)
99(94.3)
0.678
 Antifungal treatment
20(5.7)
13(5.3)
7(6.7)
0.33
 Glucocorticoids
119(33.9)
85(34.6)
34(32.4)
0.365
 Intravenous immunoglobulin therapy
66(18.8)
46(18.7)
20(19.0)
0.39
 CRRT
5(1.4)
3(1.2)
2(1.9)
0.024b
 NIVV or high-flow nasal cannula
37(10.5)
28(11.4)
9(8.6)
0.432
 Invasive mechanical ventilation
12(3.4)
7(2.8)
5(4.8)
0.354
 Aggravation, no. (%)
   
0.905
 Mild to Moderate/Severe/Critical
0(0)
0(0)
0(0)
 
 Moderate to Severe/Critical
19(5.4)
14(5.7)
5(4.8)
 
 Severe to Critical
31(8.8)
21(8.5)
10(9.5)
 
 No
301(85.8)
211(85.8)
90(85.7)
 
 Death, no. (%)
14(4.0)
9(3.7)
5(4.8)
0.766
Notes: IQR interquartile, COPD chronic obstructive pulmonary disease, PT prothrombin time, APTT activated partial thromboplastin time, TBIL total bilirubin, DBIL direct bilirubin, ALT alanine aminotransferase, AST aspartate Aminotransferase, LDH lactate dehydrogenase, CK creatine kinase, CKMB Creatine kinase-MB, CRP C-reactive protein, PCT procalcitonin, CRRT continuous renal replacement therapy, NIVV non-invasive ventilation, NA not available; aFor comparison between training dataset and validation dataset; bP < 0.05

Selection of predicting factors associated with deterioration risk

A total of 35 potential predicting factors were used in the development stage of the model. Univariate logistic analysis of the training cohort showed that 24 factors, including age, hypertension, DM, hypertension, CHD, CVD, cancer, White blood cells (WBC), Neutrophil (N), Hemoglobin (HB), Monocyte (Mono), whether lymphocyte (Lym) ≥ 0.8 × 109/L, Platelet (PLT), prothrombin time (PT), Fibrinogen (Fib), D-Dimer, lactate dehydrogenase (LDH) ≥ 400 U/L, aspartate Aminotransferase (AST), alanine aminotransferase (ALT), ASTpeak, ALTpeak, Albumin (ALB), Creatinine, Creatinine peak, CRP, and PCT were significantly associated with deterioration risk (Table 2). LASSO regression was used to build the model since the sample size in this study was inadequate to satisfy the recommended guide of events per variable [18]. The optimal tuning parameter (λ) value of 0.07 with log(λ) = − 2.659 was selected (the minimum criteria). In the training cohort, 24 relevant variables were reduced to four potential predictors (Fig. 1S). The four variables (WBC, CRP, Lym ≥ 0.8 × 109/L, LDH ≥ 400 U/L) with non-zero coefficients were presented in the final model (Table 3).
Table 2
Univariate logistic regression of progression factors in patients with COVID-19
Variables
OR
95CI%
Estimate
S. E
z value
P value
Age (years)
1.339
1.191–1.498
0.041
0.012
3.399
0.001b
Sex
 Male
1
 Female
0.699
0.337–1.448
−0.358
0.372
−0.964
0.335
 Smoking
1.598
0.668–3.823
0.469
0.445
1.054
0.292
 Hypertension
3.96
1.864–8.415
1.376
0.385
3.579
3.452E-04b
 Diabetes mellitus
5.586
2.324–13.426
1.720
0.447
3.845
1.207E-04b
 Coronary heart disease
8.542
2.678–27.24
2.145
0.592
3.625
2.889E-04b
 Cerebrovascular diseases
5.29
1.347–20.777
1.646
0.698
2.358
0.018b
 COPD
2.497
0.465–13.404
0.915
0.857
1.067
0.286
 Cancer
8.625
2.193–33.922
2.155
0.699
3.084
0.002b
 Immunodeficiency
1.00E+ 10
0
16.392
882.743
0.019
0.985
 White blood cells
1.339
1.197–1.498
0.292
0.057
5.116
3.120E-07b
 Neutrophil
1.225
1.12–1.34
0.203
0.046
4.423
9.740E-06b
 Monocyte
0
0–0.027
−7.771
2.122
−3.662
2.507E-04b
Lymphocyte
  < 0.8(×109/L)
1
 
  ≥ 0.8(×109/L)
0.012
0.002–0.087
−4.449
1.026
−4.337
1.440E-05b
 Hemoglobin (g/L)
0.942
0.92–0.965
−0.060
0.012
−4.969
6.740E-07b
 Platelet (×109/L)
0.984
0.976–0.993
−0.016
0.004
−3.627
2.868E-04b
 PT (s)
1.785
1.335–2.387
0.580
0.148
3.912
9.140E-05b
 APTT (s)
1.05
0.994–1.108
0.049
0.028
1.747
0.081
 Fibrinogen (g/L)
0.542
0.363–0.81
−0.612
0.205
−2.990
0.003b
 D-Dimer (mg/L)
1.114
1.059–1.171
0.108
0.026
4.201
2.650E-05b
 TBIL (μmol/L)
1.018
0.963–1.075
0.017
0.028
0.624
0.533
 DBIL (μmol/L)
1.023
0.983–1.065
0.023
0.021
1.129
0.259
 Albumin (g/L)
0.876
0.819–0.938
−0.132
0.035
−3.814
1.369E-04b
 Globulin (g/L)
1.016
0.932–1.108
0.016
0.044
0.362
0.717
 ALT (U/L)
1.011
0.997–1.025
0.011
0.007
1.553
0.120b
 AST (U/L)
1.032
1.011–1.054
0.032
0.011
2.954
0.003b
 ALT peak (U/L)
1.005
1.001–1.009
0.005
0.002
2.400
0.016b
 AST peak (U/L)
1.007
1–1.013
0.007
0.003
1.968
0.049b
 Creatinine (μmol/L)
1.007
1–1.013
0.007
0.003
2.057
0.040b
 Creatinine peak (μmol/L)
1.01
1.003–1.016
0.010
0.003
2.953
0.003b
 CK (U/L)
1.001
1–1.003
0.001
0.001
1.445
0.148
 CKMB (U/L)
1.005
0.999–1.012
0.005
0.003
1.621
0.105
LDH (U/L)
  < 400 U/L
1
  ≥ 400 U/L
17.472
7.053–43.284
2.861
0.463
6.180
6.390E-10b
 CRP (mg/L)
1.029
1.02–1.039
0.029
0.004
6.468
9.960E-11b
 PCT (ng/L)
1.107
1.031–1.189
0.102
0.036
2.793
0.005b
Notes: OR odds ratio, CI confidence interval, S. E standard error, COPD chronic obstructive pulmonary disease, PT prothrombin time, APTT activated partial thromboplastin time, TBIL total bilirubin, DBIL direct bilirubin, ALT alanine aminotransferase, AST aspartate Aminotransferase, LDH lactate dehydrogenase, CK creatine kinase, CKMB Creatine kinase-MB, CRP C-reactive protein, PCT procalcitonin, NA not available; bP < 0.05
Table 3
Risk factors for disease deterioration of patients with COVID-19 identified by LASSO regression
Intercept and variable
LASSO coefficient
Regression coefficient (β)
Intercept
−2.298
−4.262
WBC
0.025
0.059
CRP
0.008
0.012
Lym ≥ 0.8 × 109/L
0.977
3.056
LDH ≥ 400 U/L
−0.759
−1.3
Notes: LASSO least absolute shrinkage and selection operator, WBC white blood cells, CRP C-reactive protein, Lym lymphocyte, LDH lactate dehydrogenase

Prediction nomogram development in the training cohort

A nomogram incorporating the above four independent predictive factors was built (Fig. 1a). AUC of the ROC curve was calculated to assess the performance comparison between this nomogram and the published CALL model [11] (comorbidity, age, lymphocyte, and LDH). The AUC of this nomogram in the training cohort was 0.945, which was higher than the AUC of the CALL model (AUC = 0.909) (Fig. 1b). The cut-off value for risk probability in this model was 0.188, with a sensitivity and specificity of 87.7 and 92.9%, respectively. The calibration curve of this nomogram for the deterioration risk in the training cohort between the observed and predicted risks was consistent (Fig. 1c). The non-significant Hosmer-Lemeshow test (Chi-square = 7.951, P-value = 0.539) indicated a good fit to the model. The clinical value of the nomogram was evaluated using the DCA analysis (Fig. 1d). The DCA curve indicated that if the threshold probability of a patient was between 30 to 80%, using this nomogram to predict patients who could deteriorate is more beneficial than using the “treat-all” or the “treat-no” schemes.

Validation of nomogram performance in the validation and total cohorts

The accuracy of the nomogram in predicting deterioration of COVID-19 patients was high in the validation and total cohorts (AUC = 0.979 and AUC = 0.954, respectively; Fig. 2a-b). Furthermore, calibration plots suggested reasonably good calibration in the validation and total cohorts. The internal calibration plots indicated substantial consistency between the risk predicted by the nomogram and the observed deterioration (Fig. 2c-d). The Hosmer–Lemeshow tests exhibited no statistical significance (Chi-square = 2.172, P-value = 0.988; and Chi-square = 6.577, P-value = 0.681; respectively), suggesting good fitting of the nomogram. Besides, DCA analysis demonstrated significant positive net benefits in the predictive nomogram, exhibiting the favorable potential clinical effect of the nomogram (Fig. 2e-f).

Nomogram for predicting the disease severity and the survival of COVID-19 patients

The total point of each of the 322 cases in the total cohort was calculated based on the nomogram constructed in the training cohort, except for 29 cases due to insufficient information. The total points of patients increased with disease severity, as shown in Fig. 3a (P-value < 0.001). Patients with deterioration had higher points than those without (P-value < 0.001, Fig. 3b). There was a significant difference in points between alive and death groups (P-value < 0.001, Fig. 3c).
The total point of 160 corresponding to 50% of the probability of disease deterioration on the nomogram was defined as the cut-off point to distinguish the high and low-risk patients. A total of 322 patients in the total cohort were divided into low-risk (total point < 160, n = 289) and high-risk (total point ≥160, n = 33) groups. The average follow-up time was 56 days. The Kaplan-Meier analysis results indicated a significant difference in overall survival (OS) rates between the high-risk and low-risk group patients. The high-risk patients showed poorer OS than the low-risk patients (8-week survival rate: 71.41% vs. 100%, Log-rank P < 0.0001, Fig. 3d). Time-dependent ROC curve analysis showed an AUC value of 0.959 at 8 weeks (Fig. 3e), indicating outstanding performance for survival prediction.

Discussion

COVID-19 has various clinical manifestations from asymptomatic diseases to pneumonia and life-threatening complications. During clinical diagnosis and treatment of COVID-19, some patients may have rapid disease deterioration and even die [19]. Presently, there is no therapy for COVID-19 patients. Therefore, it is important to identify risk factors early to predict the likelihood of disease deterioration, thus reducing mortality [12].
Univariate logistic regression analysis identified 24 variables related to the COVID-19 deterioration and the LASSO regression method was used to construct the prediction model. LASSO regression selects the best prediction subset from the high-dimensional original dataset [14], thus significantly improving the accuracy of predicting the deterioration risk of COVID-19 patients in this study. A simple nomogram with four clinical common predictors, including WBC, CRP, whether Lym ≥ 0.8 × 109/L, and LDH ≥ 400 U/L was developed based on LASSO regression. Liang et al. [12] found that lower lymphocyte and higher LDH are independent factors for predicting the occurrence of critical illness and the CALL study used a sample size of 208 patients [11] and found that lower lymphocyte and higher LDH are independent factors for predicting disease progression, similar to this study results. The AUC of this nomogram was 0.945, which was higher than that of the CALL score (AUC = 0.909), indicating the outstanding performance of the nomogram for prediction. Notably, instead of analyzing the absolute value of lymphocytes and LDH as continuous variables, they were divided into binary variables using clinical experience. Furthermore, WBC and CRP were included in the final risk model as inflammation gauges. Importantly, this nomogram using simple and common clinical features can help clinicians to make quick and better decisions.
The nomogram had excellent discrimination, with an AUC of 0.945. Therefore, this nomogram has outstanding clinical transformation value. The nomogram also showed good calibration, thus a convenient tool with clinical value. Besides, the total points of patients increased with disease severity. COVID-19 patients in the total cohort were divided into high-risk and low-risk groups with a significant difference in survival rate to further assess the performance of the nomogram for predicting survival. The time-dependent ROC analysis suggested that the AUC reached 0.959 at 8 weeks, indicating outstanding performance for survival prediction. Remarkably, patients in the low-risk group were all alive.
However, this study has some limitations. First, this was a single-center retrospective analysis study, thus limiting the generalizability of this nomogram in other centers. Multiple external validations using different settings and populations are required to fully understand the transportability of the nomogram. Second, the patients in this study were collected within the early 3-month period of the pandemic. There were no new diagnosed patients from the same institution used as the validation cohort at the later stage due to the effective management of the epidemic situation by the Chinese government, thus affecting the generalizability of the model. Furthermore, the small sample sizes can affect the interpretation of the study results.

Conclusion

In conclusion, the simple nomogram showed excellent performance in predicting deterioration risk in COVID-19 patients. It can help to optimize the use of limited resources, especially in areas with several cases and/or shortages of medical resources.

Acknowledgements

None.

Declarations

The ethics committee of the First Affiliated Hospital of Fujian Medical University approved this study. The study was conducted following the Declaration of Helsinki guidelines. The Ethics Board of the First Affiliated Hospital of Fujian Medical University waived the requirement of written informed consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Mahase E. Covid-19: WHO declares pandemic because of "alarming levels" of spread, severity, and inaction. BMJ. 2020;368:m1036.CrossRef Mahase E. Covid-19: WHO declares pandemic because of "alarming levels" of spread, severity, and inaction. BMJ. 2020;368:m1036.CrossRef
3.
Zurück zum Zitat Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020:382, 1708–1720. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020:382, 1708–1720.
6.
Zurück zum Zitat Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020:382, 1787–1799. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020:382, 1787–1799.
9.
Zurück zum Zitat Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020:323, 1824–1836. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020:323, 1824–1836.
10.
Zurück zum Zitat Cheng Z, Lu Y, Cao Q, Qin L, Pan Z, Yan F, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am J Roentgenol. 2020(215):121–6. Cheng Z, Lu Y, Cao Q, Qin L, Pan Z, Yan F, et al. Clinical Features and Chest CT Manifestations of Coronavirus Disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am J Roentgenol. 2020(215):121–6.
13.
Zurück zum Zitat National Health Commission of the People’s Republic of China. Diagnosis and treatment plan of novel coronavirus pneumonia (Trial version Seventh). 2020. National Health Commission of the People’s Republic of China. Diagnosis and treatment plan of novel coronavirus pneumonia (Trial version Seventh). 2020.
14.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.CrossRef Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.CrossRef
15.
Zurück zum Zitat Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007:35, 2052–2056. Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007:35, 2052–2056.
Metadaten
Titel
Development and validation of a simple-to-use nomogram to predict the deterioration and survival of patients with COVID-19
verfasst von
Zhiyong Zeng
Chaohui Wu
Zhenlv Lin
Yong Ye
Shaodan Feng
Yingying Fang
Yanmei Huang
Minhua Li
Debing Du
Gongping Chen
Dezhi Kang
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2021
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06065-z

Weitere Artikel der Ausgabe 1/2021

BMC Infectious Diseases 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.