Skip to main content
main-content

16.09.2020 | COVID-19 | Pancreas Zur Zeit gratis

Development of a volumetric pancreas segmentation CT dataset for AI applications through trained technologists: a study during the COVID 19 containment phase

Zeitschrift:
Abdominal Radiology
Autoren:
Garima Suman, Ananya Panda, Panagiotis Korfiatis, Marie E. Edwards, Sushil Garg, Daniel J. Blezek, Suresh T. Chari, Ajit H. Goenka
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

To evaluate the performance of trained technologists vis-à-vis radiologists for volumetric pancreas segmentation and to assess the impact of supplementary training on their performance.

Methods

In this IRB-approved study, 22 technologists were trained in pancreas segmentation on portal venous phase CT through radiologist-led interactive videoconferencing sessions based on an image-rich curriculum. Technologists segmented pancreas in 188 CTs using freehand tools on custom image-viewing software. Subsequent supplementary training included multimedia videos focused on common errors, which were followed by second batch of 159 segmentations. Two radiologists reviewed all cases and corrected inaccurate segmentations. Technologists’ segmentations were compared against radiologists’ segmentations using Dice-Sorenson coefficient (DSC), Jaccard coefficient (JC), and Bland–Altman analysis.

Results

Corrections were made in 71 (38%) cases from first batch [26 (37%) oversegmentations and 45 (63%) undersegmentations] and in 77 (48%) cases from second batch [12 (16%) oversegmentations and 65 (84%) undersegmentations]. DSC, JC, false positive (FP), and false negative (FN) [mean (SD)] in first versus second batches were 0.63 (0.15) versus 0.63 (0.16), 0.48 (0.15) versus 0.48 (0.15), 0.29 (0.21) versus 0.21 (0.10), and 0.36 (0.20) versus 0.43 (0.19), respectively. Differences were not significant (p > 0.05). However, range of mean pancreatic volume difference reduced in the second batch [− 2.74 cc (min − 92.96 cc, max 87.47 cc) versus − 23.57 cc (min − 77.32, max 30.19)].

Conclusion

Trained technologists could perform volumetric pancreas segmentation with reasonable accuracy despite its complexity. Supplementary training further reduced range of volume difference in segmentations. Investment into training technologists could augment and accelerate development of body imaging datasets for AI applications.

Nutzen Sie Ihre Chance: Dieser Inhalt ist zurzeit gratis verfügbar.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Jetzt e.Med zum Sonderpreis bestellen!

Literatur
Über diesen Artikel

Webinare und Artikel zur Corona-Krise

Die aktuelle Entwicklung zu SARS-CoV-2 (2019-nCoV) und der Lungenkrankheit COVID-19 im Überblick. » zum Dossier

Bildnachweise