Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 05.08.2020 | COVID-19 | Research Letter

Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19

verfasst von: Hideta Nakamura, Takeshi Kinjo, Wakako Arakaki, Kazuya Miyagi, Masao Tateyama, Jiro Fujita

Erschienen in: Critical Care | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
COVID-19
Coronavirus disease 2019
ARDS
Acute respiratory distress syndrome
RIPK1/3
Receptor-interacting kinase 1 and 3 (RIPK1/3)
IQR
Interquartile range
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Dear Editor:
Patients with coronavirus disease 2019 (COVID-19) can develop acute respiratory distress syndrome (ARDS), which has been linked to poor prognosis and is a major contributor to patient death [1]. A better understanding of the pathophysiology of COVID-19-related ARDS would benefit early, precise treatment.
Cell death plays a major role in ARDS pathogenesis. While apoptosis in acute lung injury is well studied, newly identified cell death signaling has drawn attention as a potential mediator of ARDS [2]. Necroptosis, a caspase-independent form of necrosis involving receptor-interacting kinase 3 (RIPK-3), has been implicated in ARDS development with sepsis and trauma [3]. Since this highly regulated cell death signaling leads to rupture of the plasma membrane and release of damage-associated molecular patterns [4], necroptosis may be a therapeutic target for ARDS. However, the relationship between necroptosis and COVID-19-induced ARDS remains unclear.
Here, we describe serum RIPK-3 levels in COVID-19 patients measured on the first day of hospitalization. Patients were recruited from March 1 to May 30, 2020, and diagnosed as “severe” if any of the following conditions were met [5]: (1) respiratory rate > 30 breaths/min, (2) saturation of peripheral oxygen < 93% in ambient air, (3) ratio of arterial partial pressure of oxygen to the fraction of inspired oxygen < 300 mmHg, or (4) lung infiltrates > 50% within 24–48 h. Blood samples were centrifuged within 30 min and refrigerated at 4 °C, and plasma aliquots were frozen within 12 h. RIPK-3 levels were measured using an enzyme-linked immunosorbent assay (Wuhan Huamei Biotech, Wuhan, China).
This observational study enrolled 16 COVID-19 patients (11 males, 68.8%) (Table 1). Confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was by real-time reverse transcription polymerase chain reaction of nasopharyngeal swabs. Patients’ median age was 55 years (interquartile range [IQR] 40.5–71.5 years), and the median duration from symptom onset to hospitalization was 7 days (3.25–9 days). On admission, 14 patients (87.5%) were confirmed to have COVID-19 pneumonia by chest computed tomography, 10 patients were diagnosed with severe COVID-19 and ARDS, and 6 patients were diagnosed as mild. While hospitalized, the antiviral drug favipiravir was administrated to 11 patients (68.8%) in the context of a clinical trial, whereas azithromycin (n = 11, 68.8%), nafamostat (n = 12, 75%), and tocilizumab (n = 7, 43.7%) were commenced as off-label use. The median levels of serum RIPK-3 were significantly higher in severe COVID-19 cases than in mild cases (483.5 pg/mL, IQR 329.6–867.7 pg/mL vs. 139.9 pg/mL, IQR 95.37–286.8 pg/mL, p = 0.0075) (Fig. 1). Fifteen patients recovered and were discharged, whereas three patients in the severe group were intubated due to severe acute respiratory failure and one of these patients died.
Table 1
Clinical characteristics of patients (n = 16)
Male
11 (68.8%)
Median age, years (IQR)
55 (40.5–71.5)
Median duration from onset of symptoms to hospitalization, days (IQR)
7 (3.25–9)
Underlying disease
 Diabetes mellitus
4 (25%)
 Hypertension
2 (12.5%)
 Heart disease
2 (12.5%)
Treatment
 Azithromycin
11 (68.8%)
 Favipiravir
11 (68.8%)
 Nafamostat
12 (75%)
 Tocilizumab
7 (43.7%)
Disease severity
 Mild
6 (37.5%)
 Severe
10 (62.5%)
PaO2/FiO2 ratio
 > 350
6 (37.5%)
 200–300
5 (31.25%)
 150–200
3 (18.75%)
 < 150
2 (12.5%)
IQR interquartile range, PaO2/FiO2ratio ratio of arterial partial pressure of oxygen to the fraction of inspired oxygen
This is the first study to analyze RIPK-3 in COVID-19 patients. The higher serum RIPK-3 levels in severe patients suggest that RIPK-3-mediated signaling, such as necroptosis, might be involved in the development of acute lung injury associated with COVID-19 pneumonia. Siempos et al. reported plasma RIPK-3 levels were significantly higher in ARDS patients compared to those of non-ARDS patients [6]. Shashaty et al. demonstrated that among patients with sepsis or trauma, the change in plasma RIPK-3 levels 48 h after admission was independently associated with ARDS [3]. Because RIPK-3 mediates not only necroptosis but also other inflammatory pathways [2], the elevation of RIPK-3 does not directly indicate the execution of necroptosis. To confirm the role of RIPK-3 in COVID-19-ARDS patients, further studies are needed including a larger number of participants and histological evaluation of lung tissues, especially since RIPK-3-mediated necroptosis could be a potential therapeutic target for COVID-19-related ARDS.

Acknowledgements

Collaborating author names: Mariko Otsuki, Yuri Higure, Naoya Nishiyama, Masashi Nakamatsu, and Shusaku Haranaga. Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
This study was approved by the ethics committee of the University of the Ryukyus for Medical and Health Research Involving Human Subjects (approval number: 1616).
Written informed consent was obtained from all patients.

Competing interests

Not applicable.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L215–25.CrossRef Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L215–25.CrossRef
3.
Zurück zum Zitat Shashaty MGS, Reilly JP, Faust HE, Forker CM, Glttner CA, Zhang PX, et al. Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Crit Care. 2019;23(1):235.CrossRef Shashaty MGS, Reilly JP, Faust HE, Forker CM, Glttner CA, Zhang PX, et al. Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Crit Care. 2019;23(1):235.CrossRef
4.
Zurück zum Zitat Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;30(5):455–65.CrossRef Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;30(5):455–65.CrossRef
5.
Zurück zum Zitat Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;24. https://doi.org/10.1001/jama.2020.2648. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;24. https://​doi.​org/​10.​1001/​jama.​2020.​2648.
6.
Zurück zum Zitat Siempos II, Ma KC, Imamura M, Baron RM, Fredenburgh LE, Huh JW, et al. RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight. 2018;3(9):e97102.CrossRef Siempos II, Ma KC, Imamura M, Baron RM, Fredenburgh LE, Huh JW, et al. RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight. 2018;3(9):e97102.CrossRef
Metadaten
Titel
Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19
verfasst von
Hideta Nakamura
Takeshi Kinjo
Wakako Arakaki
Kazuya Miyagi
Masao Tateyama
Jiro Fujita
Publikationsdatum
05.08.2020
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03209-6

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.