Skip to main content
Erschienen in: Virology Journal 1/2022

Open Access 01.12.2022 | COVID-19 | Review

Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update

verfasst von: Yicheng Yang, Zhiyao Wei, Changming Xiong, Haiyan Qian

Erschienen in: Virology Journal | Ausgabe 1/2022

Abstract

Myocardial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reportedly related to disease severity and mortality, attracting attention to exploring relevant pathogenic mechanisms. Limited by insufficient evidence, myocardial injury caused by direct viral invasion of cardiomyocytes (CMs) is not fully understood. Based on recent studies, endosomal dependence can compensate for S protein priming to mediate SARS-CoV-2 infection of CMs, damage the contractile function of CMs, trigger electrical dysfunction, and tip the balance of the renin–angiotensin–aldosterone system to exert a myocardial injury effect. In this review, we shed light on the direct injury caused by SARS-CoV-2 to provide a comprehensive understanding of the cardiac manifestations of coronavirus disease 2019 (COVID-19).
Hinweise
Yicheng Yang and Zhiyao Wei have contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
COVID-19
Coronavirus disease 2019
CMs
Cardiomyocytes
hiPS
Human induced pluripotent stem cells
TMPRSS2
Type II transmembrane serine protease
RBD
Receptor-binding domain
hPSC-CMs
Human pluripotent stem cell-derived CMs
ACE2
Angiotensin-converting enzyme 2
RAAS
Renin–angiotensin–aldosterone system
Nsp1
Non-structure protein 1
ILs
Interleukins
hESC-CMs
Human embryonic stem cell-derived CMs
FPD
Field potential duration
ADAM-17
A disintegrin and metalloproteinase-17
Ito
Transient outward potassium current
ICaL
L-type Ca2 + current

Background

The COVID-19 pandemic has resulted in more than 500 million confirmed cases worldwide as of April 2022. Myocardial injury induced by SARS-CoV-2 was reportedly attributable to disease severity and mortality. However, the relevant pathogenetic mechanisms of myocardial injury caused by direct viral invasion of cardiomyocytes have not been fully elucidated. To further understand the direct myocardial injury by SARS-CoV-2, we summarized the relative mechanisms in this review based on the latest knowledge.

Introduction

Coronavirus disease 2019 (COVID-19), a contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic. The R0 of SARS-CoV-2 in the original strain was 2.5, whereas the number increased to approximately 7 in the delta variant (B.1.617.2). Another new variant of the virus, Omicron, first originated in southern Africa (South Africa, Botswana) and later spread to Britain and other countries. Omicron’s R0 could be as high as 10, indicating a more contagious phenotype than earlier virus variants. Omicron has become the current dominant variant worldwide, including in China [1, 2]. Although predominantly characterized by viral pneumonia, cardiac involvement could be prevalent during COVID-19 progression, which is reportedly associated with disease severity and mortality [3, 4].
SARS-CoV-2 invades cells via angiotensin-converting enzyme 2 (ACE2), a membrane protein that counterbalances the adverse effects of the renin–angiotensin–aldosterone system (RAAS) by converting angiotensin II (Ang II) to Ang-(1–7). It recognizes and binds to the ACE2 receptor via the spike (S) protein [5]. Wrapp et al. obtained the trimeric S protein structure by 3D reconstruction technology based on the genomic sequence of SARS-CoV-2 and observed that the binding affinity of the S protein to ACE2 was 10–20 fold higher compared to that of SARS-CoV, partly explaining its high contagiousness [6].
With the COVID-19 pandemic entering the third year, the role of SARS-CoV-2 in the heart and the cardiovascular system has gained attention [79]. Theoretically, cells expressing high ACE2 levels are more vulnerable to SARS-CoV-2 invasion and subsequent organ injury, including cardiomyocytes (CMs). According to clinical observations, increased myocardial biomarker levels unrelated to obstructive coronary artery disease, a condition generally diagnosed as myocardial injury, occurred in 7.2–40.9% of patients with COVID-19 [10]. This complication contributes to disease severity and mortality, with a hazard ratio ranging from 4.3 to 8.9 and an odds ratio from 6.6 to 26.9. Given the current convincing evidence that myocardial injury intensifies the severity of COVID-19, cardiac management should be a priority for physicians. In addition, the long-term effects of COVID-19 on cardiovascular health are still a major global concern [4]. We have previously proposed several pathogenic mechanisms explaining the association of COVID-19 with myocardial injury, including SARS-CoV-2 host cell invasion, myocardial oxygen supply/demand imbalance, abnormal coagulation, and excessive immune reaction [11]. However, limited by insufficient evidence, myocardial injury caused by direct viral invasion of CMs was not fully understood earlier. Given the rapid development of this field, in this review, we shed light on the updated mechanisms of CM impairment associated with direct SARS-CoV-2 invasion to provide a more comprehensive understanding of the cardiac manifestations in COVID-19.

Direct and indirect SARS-CoV-2 entry into CMs

Pathology reports from several studies have identified SARS-CoV-2 viral proteins and genetic material in CMs of patients with COVID-19 [1215], even in those with no clinical signs of cardiac involvement [16, 17]. In addition, in vitro studies with human induced pluripotent stem cells (hiPS) and isolated adult CMs and in vivo experiments using animal models have confirmed that CMs are permissive for SARS-CoV-2 infection [14, 15, 18]. Bojkova et al. successfully infected hiPS-derived CMs with SARS-CoV-2 and demonstrated the presence of intracellular double-strand viral RNA and viral spike glycoprotein protein expression [14]. Increasing concentrations of viral RNA were detected in the supernatants of infected CMs, and SARS-CoV-2 infection ability was confirmed in 3D cardiosphere tissue. Overall, these data support the hypothesis that COVID-19-associated myocardial injury can result from the direct infection of CMs and the cardiotoxic effect of SARS-CoV-2 and is not merely a secondary effect derived from hypoxia and systemic inflammation.
A single-cell sequencing study has revealed that the expression of viral ACE2 receptors is noticeable in CMs from normal hearts and has suggested that ACE2 expression in the adult human heart is higher than that in the lung [19]. Furthermore, ACE2 expression was significantly elevated in CMs of patients with heart disease (e.g., dilated cardiomyopathy, hypertrophic cardiomyopathy, non-COVID-19 myocarditis, aortic stenosis, and heart failure) compared to healthy controls [2022]. These findings are consistent with the clinical observations and epidemiologic reports suggesting that patients with underlying cardiovascular conditions are more vulnerable and prone to myocardial injury [11, 23].
Type II transmembrane serine protease (TMPRSS2) is the protein involved in the cleavage of many SARS-CoV-2 variants. TMPRSS2 cleaves the S protein into the S1 and S2 subunits, exposing the receptor-binding domain (RBD) of the S1 subunit to facilitate recognition and binding to the ACE2 receptor. Notably, SARS-CoV-2 entry into CMs is mediated by an endosomal-dependent mechanism that does not require TMPRSS2, unlike lung-derived cell lines where TMPRSS2 mediates viral entry [13, 14, 19]. Contrary to TMPRSS2, multiple endosomal proteases, including cathepsins and calpains, are highly expressed at a level similar to that in the lungs in human pluripotent stem cell-derived CMs (hPSC-CMs) and CMs from human autopsy specimens, [14, 19]. Bailey et al. inhibited TMPRSS2 and found no effect on hPSC-CMs infection, whereas an endosomal cysteine protease inhibitor abolished SARS-CoV-2 infection [13]. These data suggest that the endosomal-dependent proteases compensate for S protein priming to mediate SARS-CoV-2 infection in CMs. However, Omicron, a recent variant of SARS-CoV-2, only requires ACE2 to invade the cell without the help of TMPRSS2. This variant is encapsulated in endosome bubble, which drifts into the cells and breaks out [24]. Therefore, cells without or with less TMPRSS2 expression are easily infected by Omicron, resulting in relevant damage, and theoretically, CMs are more vulnerable to virus invasion leading to myocardial damage. In conclusion, the specific effects of Omicron on cardiac injury need to be further explored.
In addition to direct attacks, SARS-CoV-2 may also infect CMs indirectly. Kwon et al. isolated extracellular vesicles from lung epithelial cells that overexpressed SARS-CoV-2 genes and found that hiPSC-CMs were receptive to these viral RNA-harboring extracellular vesicles [25]. Viral genes were detected in hiPSC-CMs, along with inflammatory activation.

Pathogenic mechanisms of direct SARS-CoV-2 infection

Recent reports have identified SARS-CoV-2 particles or components within CMs from autopsy and endomyocardial biopsy samples utilizing RNA sequencing, RNAscope, immunohistochemistry, and transmission electron microscopy analysis Direct viral infection leads to adverse effects on CMs in several aspects, such as cell morphology, electrophysiology, subcellular structures, and cell death [15, 16, 2629].

Direct infection can damage the contractile function of CMs

Direct injury to the heart tissue by SARS-CoV-2 could be an underlying cause of heart disease in COVID-19 [30]. Myocardial contractile dysfunction is one of the prominent manifestations of COVID-19-related cardiac complications. The significant reduction in cardiac contractility and subsequent myocardial dysfunction induced by SARS-CoV-2 has received widespread attention. The European Society of Cardiology has published a consensus to elucidate the current knowledge of cardiovascular damage induced by SARS-CoV-2 for alteration in the clinic [31].
The pathogenic mechanisms of SARS-CoV-2 are commonly considered to be multifaceted. One of these mechanisms is based on data indicating that virus infection may directly destroy sarcomeres in CMs. Sarcomeric disruptions and myofibril loss in CMs have been observed occasionally in vivo and in vitro, and both presented similar signatures [14, 16, 32]. Pérez-Bermejo et al. observed that the number of myofibrillar fragments produced by cleaving sarcomeres into individual sarcomeric units increased gradually in the cytoplasm of hiPSC-CMs cytoplasm as the virus exposure time increased, suggesting that the invasion of SARS-CoV-2 exacerbated this non-specific cytopathy. Furthermore, high-content imaging analysis of infected hiPSCs-CMs showed that these fragments and intact sarcomeres possessed identical structures, except for the absence of a dark A-band in the myofibrillar fragments, suggesting the cleavage of thick filaments. Notably, they observed the LKGG↓K sequence in myosin heavy chain protein family members. This sequence is similar to those in viral polyproteins that can be cleaved by the SARS-CoV-2 papain-like protease. This result indicates that the virus-derived proteases, indicating besides processing their target sequences, may possess the capacity to cleave several intracellular proteins and alter the cellular structural integrity [29].
Another pathogenic mechanism of SARS-CoV-2 is related to the fact that the virus damages contractility by disrupting gene expression profiles, particularly of those genes directly involved in sarcomere function. Significant downregulation of genes encoding sarcomeric structural proteins, myosin light chains, and linker of nucleoskeleton and cytoskeleton complex (a subset of proteins that are important for anchoring the nucleus to the actin cytoskeleton) in infected hiPSCs-CMs. Furthermore, study revealed alterations in the expression of genes related to energy production leading to a shift in the energy production mechanism from mitochondrial oxidative phosphorylation to glycolytic metabolism in hiPSC-CMs and hPSC-CMs [18]. The resulting energy reduction can adversely affect contraction at the cellular and tissue levels. Although oxidative stress and inflammation may directly alter gene expression profiles in infected CMs, and other effectors as the non-structure protein 1 (Nsp1) may also play a role. Nsp1 binds to the 40S ribosomal subunit in a manner that its C-terminal domain directly blocks the entry channel of messenger RNA in the ribosome, perturbing the translation activities of host cells and shutting down the translation of host messenger RNA [33]. Collectively, these factors may result in the breakdown of the contractile machinery and the appearance of impaired myocardial contractility.
To evaluate the influence of SARS-CoV-2 infection on cardiac tissue in vivo, Siddiq et al. measured the damage severity of hiPSC-CMs treated with interleukins (ILs) or vehicle in the presence or absence of SARS-CoV-2 infection. ILs treatment alone did not increase the release of troponin-I (a marker for damaged myofibrils) but augmented the cytopathic effect of infection in hiPSC-CMs [34]. These results further emphasize the prominent role of direct SARS-CoV-2 infection in CMs damage and indicate the facilitative role of ILs in vivo. Moreover, researchers have utilized three-dimensional engineered heart tissues (3D-EHTs) to further evaluate the contractile properties of hPSC-CMs at the tissue level and observed that 3D-EHTs infected with SARS-CoV-2 presented weakening contractile forces compared to mock controls [13, 18]. These results shed light on the correlations between the contractile dysfunction at the cellular level induced by direct infection and the prevalent myocardial injury in patients with COVID-19 at the organ-tissue level. However, further investigations are warranted to elucidate the underlying mechanisms thoroughly.

Direct infection can trigger electrical dysfunction of CMs

Patients with COVID-19 are more prone to suffering heart damage or irregular heartbeats, indicating the presence of CMs dysfunction induced by SARS-CoV-2 [35]. In addition to mechanical dysfunction, SARS-CoV-2 infected CMs also have impaired electrical functions. Marchiano et al. discovered that SARS-CoV-2 infection resulted in the abnormal generation and propagation of electrical signals in hPSC-CMs, hiPSC-CMs, and human embryonic stem cell-derived CMs (hESC-CMs), which show reduced beating rate, lower depolarization spike amplitude, and decreased electrical conduction velocity. They also observed a time-dependent increase in the field potential duration (FPD) in H7 hESC-CMs in both spontaneously beating and electrically-paced cultures [18]. Anomalous electrical signals manifest even in the absence of extensive cell death, suggesting that there may be some virus-derived components or subsequently generated substrates that disrupt cellular homeostasis, thus causing electrical dysfunction at the cellular and even at the tissue-organ level. Interestingly, a recent study proposed that SARS-CoV-2 infection-induced CM structural alterations lead to electrophysiological abnormalities. Some researchers have identified syncytia formation in SARS-CoV-2 infected cells and tissue, which is relatively rare but not absent compared to other cytopathies [36, 37]. Coronaviruses commonly induce cell–cell fusion because of the fusogenic property of the S protein and its capability to trigger virus-cell membrane fusion [38]. Schneider et al. identified intracellular junctions between CMs formed by highly-concentrated sarcolemmal t-tubule viral S protein in myocardial specimens from a young woman who died of sudden cardiac death and was found to be COVID-19-positive during the postmortem. The S protein likely tends to promote the formation of junctions between adjacent CMs instead of syncytia due to cytoskeletal constraints and viral infectivity [37, 38]. These cell-to-cell conduits are prone to short-circuit electrically excitable myocardium, and give rise to electrophysiological abnormalities. Moreover, marked pathological Ca2+ flux, sparks, and tsunami-like waves have been observed in hiPSC-CMs built multinucleated cardiomyotubes, which present significantly prolonged action potential duration, elevated membrane capacitance, delayed afterdepolarizations, and erratic beating frequencies frequency compared to mock controls. Altogether, these studies provide a novel perspective on the pathogenic mechanism of COVID-19-related arrhythmias and reiterate the detrimental effects of direct SARS-CoV-2 infection in CMs.

Direct infection tips the balance of RAAS towards cardiac damage

Another widely recognized alteration induced by SARS-CoV-2 infection is the loss of ACE2 and the subsequent events in CMs. ACE2 is a homolog of ACE and negatively regulates RAAS by degrading AngII to Ang (1–7), whereas ACE metabolizes AngI to AngII. Reduction of ACE2 on the CM membrane is induced by suppressed gene expression, enhanced endocytosis, and cleavage by A disintegrin and metalloproteinase-17 (ADAM-17), a transmembrane protease evoked by the sudden-increased in ILs after infection. Decreased ACE2 undermines its counterbalance effect on the AngII/Ang II type-1 receptor pathway and results in the accumulation of AngII and attenuation of the Ang (1–7)/Mas receptor pathway. Excessive AngII induces overt CM autophagy and apoptosis, which is speculated to play a critical role in developing decompensated hypertensive heart disease [39, 40]. Contrary to AngII, Ang (1–7) and Mas are considered cardioprotective factors. Liu et al. observed that Ang (1–7) prevents chronic atrial ionic remodeling by suppressing the decrease of transient outward potassium current (Ito) and L-type Ca2+ current (ICaL), as well as the reduction of Kv4.3 subunit gene expression [41]. In addition, Ang (1–7) is reportedly effective in counteracting the increase in isoproterenol-induced beating rate in CMs, reflecting its potential to attenuate cardiac reactivity in response to acute emotional stress [42]. Dias-Peixoto et al. discovered that CMs from Mas-deficient mice are characterized by reduced peak and slower [Ca2+] transients, suggesting that depression of the Mas receptor pathway might disturb the Ca2+-handling capacity of CMs [43]. Thus, during SARS-CoV-2 infection, the diminished cardioprotective effects and hyperactive harmful processes can synergize and lead to significant CMs damage in various ways. The different mechanisms of direct myocardial injury induced by SARS-CoV-2 are shown in Fig. 1.

Conclusions

The COVID-19 pandemic has resulted in health concerns worldwide. Myocardial damage induced by SARS-CoV-2 has received unprecedented attention because of its direct relation to disease severity and increased mortality in patients with COVID-19. SARS-CoV-2 can invade CMs by recognizing and binding to ACE2 receptors on the cardiomyocyte membrane and endosomal-dependent mechanisms. To improve clinical management and patient prognosis, the relevant mechanisms of myocardial injury caused by SARS-CoV-2 must be explored. We have, thus, reviewed recent studies that shed light on the direct mechanisms of SARS-CoV-2 injury on the myocardium and conclude that viral invasion damages the contractile function of CMs, triggers electrical dysfunction, and tips the RAAS balance to cause myocardial injury. However, further investigations are warranted to elucidate the underlying mechanisms for better awareness and treatment.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10: e17.CrossRef Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10: e17.CrossRef
2.
Zurück zum Zitat Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ Res. 2022;209: 112816.CrossRef Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ Res. 2022;209: 112816.CrossRef
3.
Zurück zum Zitat Psotka M, Abraham W, Fiuzat M, Filippatos G, Lindenfeld J, Ahmad T, Bhatt A, Carson P, Cleland J, Felker G, et al. Conduct of clinical trials in the era of COVID-19: JACC scientific expert panel. J Am Coll Cardiol. 2020;76:2368–78.CrossRef Psotka M, Abraham W, Fiuzat M, Filippatos G, Lindenfeld J, Ahmad T, Bhatt A, Carson P, Cleland J, Felker G, et al. Conduct of clinical trials in the era of COVID-19: JACC scientific expert panel. J Am Coll Cardiol. 2020;76:2368–78.CrossRef
4.
Zurück zum Zitat Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157–72.CrossRef Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157–72.CrossRef
5.
Zurück zum Zitat Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.CrossRef Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.CrossRef
6.
Zurück zum Zitat Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020;367:1260–3.CrossRef Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020;367:1260–3.CrossRef
7.
Zurück zum Zitat Metzler B, Lechner I, Reindl M, Reinstadler SJ. Cardiac injury after COVID-19: primary cardiac and primary non-cardiac etiology makes a difference. Int J Cardiol. 2022;350:17–8.CrossRef Metzler B, Lechner I, Reindl M, Reinstadler SJ. Cardiac injury after COVID-19: primary cardiac and primary non-cardiac etiology makes a difference. Int J Cardiol. 2022;350:17–8.CrossRef
8.
Zurück zum Zitat Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, et al. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res. 2021;128:1214–36.CrossRef Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, et al. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res. 2021;128:1214–36.CrossRef
9.
Zurück zum Zitat Helms J, Combes A, Aissaoui N. Cardiac injury in COVID-19. Intensive Care Med. 2022;48:111–3.CrossRef Helms J, Combes A, Aissaoui N. Cardiac injury in COVID-19. Intensive Care Med. 2022;48:111–3.CrossRef
10.
Zurück zum Zitat Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa F, Adler Y, De Ferrari G. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart (British Cardiac Society). 2020;106:1127–31. Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa F, Adler Y, De Ferrari G. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart (British Cardiac Society). 2020;106:1127–31.
11.
Zurück zum Zitat Wei Z, Geng Y, Huang J, Qian H. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020;22:1994–2006.CrossRef Wei Z, Geng Y, Huang J, Qian H. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020;22:1994–2006.CrossRef
12.
Zurück zum Zitat Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P, Hamm C, Westenfeld R, Schultheiss M, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7:2440–7.CrossRef Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P, Hamm C, Westenfeld R, Schultheiss M, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7:2440–7.CrossRef
14.
Zurück zum Zitat Bojkova D, Wagner J, Shumliakivska M, Aslan G, Saleem U, Hansen A, Luxán G, Günther S, Pham M, Krishnan J, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116:2207–15.CrossRef Bojkova D, Wagner J, Shumliakivska M, Aslan G, Saleem U, Hansen A, Luxán G, Günther S, Pham M, Krishnan J, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116:2207–15.CrossRef
16.
Zurück zum Zitat Bulfamante G, Perrucci G, Falleni M, Sommariva E, Tosi D, Martinelli C, Songia P, Poggio P, Carugo S, Pompilio G. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines. 2020;8:626.CrossRef Bulfamante G, Perrucci G, Falleni M, Sommariva E, Tosi D, Martinelli C, Songia P, Poggio P, Carugo S, Pompilio G. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines. 2020;8:626.CrossRef
17.
Zurück zum Zitat Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5:1281–5.CrossRef Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5:1281–5.CrossRef
18.
Zurück zum Zitat Marchiano S, Hsiang T, Khanna A, Higashi T, Whitmore L, Bargehr J, Davaapil H, Chang J, Smith E, Ong L, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021;16:478–92.CrossRef Marchiano S, Hsiang T, Khanna A, Higashi T, Whitmore L, Bargehr J, Davaapil H, Chang J, Smith E, Ong L, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021;16:478–92.CrossRef
19.
Zurück zum Zitat Liu H, Gai S, Wang X, Zeng J, Sun C, Zhao Y, Zheng Z. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res. 2020;116:1733–41.CrossRef Liu H, Gai S, Wang X, Zeng J, Sun C, Zhao Y, Zheng Z. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res. 2020;116:1733–41.CrossRef
20.
Zurück zum Zitat Tucker N, Chaffin M, Bedi K, Papangeli I, Akkad A, Arduini A, Hayat S, Eraslan G, Muus C, Bhattacharyya R, et al. ACE2Myocyte-specific upregulation of in cardiovascular disease: implications for SARS-CoV-2-mediated myocarditis. Circulation. 2020;142:708–10.CrossRef Tucker N, Chaffin M, Bedi K, Papangeli I, Akkad A, Arduini A, Hayat S, Eraslan G, Muus C, Bhattacharyya R, et al. ACE2Myocyte-specific upregulation of in cardiovascular disease: implications for SARS-CoV-2-mediated myocarditis. Circulation. 2020;142:708–10.CrossRef
21.
Zurück zum Zitat Sakamoto A, Kawakami R, Kawai K, Gianatti A, Pellegrini D, Kutys R, Guo L, Mori M, Cornelissen A, Sato Y, et al. ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) expression and localization of SARS-CoV-2 infection in the human heart. Arterioscler Thromb Vasc Biol. 2021;41:542–4.PubMed Sakamoto A, Kawakami R, Kawai K, Gianatti A, Pellegrini D, Kutys R, Guo L, Mori M, Cornelissen A, Sato Y, et al. ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) expression and localization of SARS-CoV-2 infection in the human heart. Arterioscler Thromb Vasc Biol. 2021;41:542–4.PubMed
22.
Zurück zum Zitat Nicin L, Abplanalp W, Mellentin H, Kattih B, Tombor L, John D, Schmitto J, Heineke J, Emrich F, Arsalan M, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41:1804–6.CrossRef Nicin L, Abplanalp W, Mellentin H, Kattih B, Tombor L, John D, Schmitto J, Heineke J, Emrich F, Arsalan M, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41:1804–6.CrossRef
23.
Zurück zum Zitat Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J. 2020;17:117.CrossRef Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J. 2020;17:117.CrossRef
24.
Zurück zum Zitat Meng B, Abdullahi A, Ferreira I, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–14.CrossRef Meng B, Abdullahi A, Ferreira I, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–14.CrossRef
25.
Zurück zum Zitat Kwon Y, Nukala S, Srivastava S, Miyamoto H, Ismail N, Jousma J, Rehman J, Ong S, Lee W, Ong S. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:514.CrossRef Kwon Y, Nukala S, Srivastava S, Miyamoto H, Ismail N, Jousma J, Rehman J, Ong S, Lee W, Ong S. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:514.CrossRef
26.
Zurück zum Zitat Gauchotte G, Venard V, Segondy M, Cadoz C, Esposito-Fava A, Barraud D, Louis G. SARS-Cov-2 fulminant myocarditis: an autopsy and histopathological case study. Int J Legal Med. 2021;135:577–81.CrossRef Gauchotte G, Venard V, Segondy M, Cadoz C, Esposito-Fava A, Barraud D, Louis G. SARS-Cov-2 fulminant myocarditis: an autopsy and histopathological case study. Int J Legal Med. 2021;135:577–81.CrossRef
27.
Zurück zum Zitat Dolhnikoff M, Ferreira Ferranti J, de Almeida MR, Duarte-Neto A, Soares Gomes-Gouvêa M, Viu Degaspare N, Figueiredo Delgado A, Montanari Fiorita C, Nunes Leal G, Rodrigues R, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4:790–4.CrossRef Dolhnikoff M, Ferreira Ferranti J, de Almeida MR, Duarte-Neto A, Soares Gomes-Gouvêa M, Viu Degaspare N, Figueiredo Delgado A, Montanari Fiorita C, Nunes Leal G, Rodrigues R, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4:790–4.CrossRef
28.
Zurück zum Zitat Albert C, Carmona-Rubio A, Weiss A, Procop G, Starling R, Rodriguez E. The enemy within: sudden-onset reversible cardiogenic shock with biopsy-proven cardiac myocyte infection by severe acute respiratory syndrome coronavirus 2. Circulation. 2020;142:1865–70.CrossRef Albert C, Carmona-Rubio A, Weiss A, Procop G, Starling R, Rodriguez E. The enemy within: sudden-onset reversible cardiogenic shock with biopsy-proven cardiac myocyte infection by severe acute respiratory syndrome coronavirus 2. Circulation. 2020;142:1865–70.CrossRef
29.
Zurück zum Zitat Pérez-Bermejo J, Kang S, Rockwood S, Simoneau C, Joy D, Ramadoss G, Silva A, Flanigan W, Li H, Nakamura K, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv: The Preprint Server for Biology. 2020. https://doi.org/10.1101/2020.08.25.265561.CrossRef Pérez-Bermejo J, Kang S, Rockwood S, Simoneau C, Joy D, Ramadoss G, Silva A, Flanigan W, Li H, Nakamura K, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv: The Preprint Server for Biology. 2020. https://​doi.​org/​10.​1101/​2020.​08.​25.​265561.CrossRef
30.
Zurück zum Zitat Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, et al. Functional effects of cardiomyocyte injury in COVID-19. J Virol. 2022;96: e0106321.CrossRef Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, et al. Functional effects of cardiomyocyte injury in COVID-19. J Virol. 2022;96: e0106321.CrossRef
31.
Zurück zum Zitat Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117:2705–29.CrossRef Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117:2705–29.CrossRef
32.
Zurück zum Zitat Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, Sepe P, Resasco T, Camporotondo R, Bruno R, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911–5.CrossRef Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, Sepe P, Resasco T, Camporotondo R, Bruno R, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911–5.CrossRef
33.
Zurück zum Zitat Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science (New York, NY). 2020;369:1249–55.CrossRef Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science (New York, NY). 2020;369:1249–55.CrossRef
35.
Zurück zum Zitat Alqahtani MS, Abbas M, Alsabaani A, Alqarni A, Almohiy HM, Alsawqaee E, Alshahrani R, Alshahrani S. The potential impact of COVID-19 virus on the heart and the circulatory system. Infect Drug Resist. 2022;15:1175–89.CrossRef Alqahtani MS, Abbas M, Alsabaani A, Alqarni A, Almohiy HM, Alsawqaee E, Alshahrani R, Alshahrani S. The potential impact of COVID-19 virus on the heart and the circulatory system. Infect Drug Resist. 2022;15:1175–89.CrossRef
36.
Zurück zum Zitat Li Y, Renner D, Comar C, Whelan J, Reyes H, Cardenas-Diaz F, Truitt R, Tan L, Dong B, Alysandratos K, et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv: The Preprint Server for Biology. 2020. https://doi.org/10.1101/2020.09.24.312553.CrossRef Li Y, Renner D, Comar C, Whelan J, Reyes H, Cardenas-Diaz F, Truitt R, Tan L, Dong B, Alysandratos K, et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv: The Preprint Server for Biology. 2020. https://​doi.​org/​10.​1101/​2020.​09.​24.​312553.CrossRef
38.
Zurück zum Zitat Lai M, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100.CrossRef Lai M, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100.CrossRef
39.
Zurück zum Zitat Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. Mas receptor mediates cardioprotection of angiotensin-(1–7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J Cell Mol Med. 2016;20:48–57.CrossRef Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. Mas receptor mediates cardioprotection of angiotensin-(1–7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J Cell Mol Med. 2016;20:48–57.CrossRef
40.
Zurück zum Zitat Huang C, Kuo W, Yeh Y, Ho T, Lin J, Lin D, Chu C, Tsai F, Tsai C, Huang C. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014;21:1262–74.CrossRef Huang C, Kuo W, Yeh Y, Ho T, Lin J, Lin D, Chu C, Tsai F, Tsai C, Huang C. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014;21:1262–74.CrossRef
41.
Zurück zum Zitat Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.CrossRef Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.CrossRef
42.
Zurück zum Zitat Martins Lima A, Xavier C, Ferreira A, Raizada M, Wallukat G, Velloso E, dos Santos R, Fontes M. Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol. 2013;305:H1057-1067.CrossRef Martins Lima A, Xavier C, Ferreira A, Raizada M, Wallukat G, Velloso E, dos Santos R, Fontes M. Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol. 2013;305:H1057-1067.CrossRef
43.
Zurück zum Zitat Dias-Peixoto M, Santos R, Gomes E, Alves M, Almeida P, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S. Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension (Dallas, Tex: 1979). 2008;52:542–8.CrossRef Dias-Peixoto M, Santos R, Gomes E, Alves M, Almeida P, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S. Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension (Dallas, Tex: 1979). 2008;52:542–8.CrossRef
Metadaten
Titel
Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update
verfasst von
Yicheng Yang
Zhiyao Wei
Changming Xiong
Haiyan Qian
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Virology Journal / Ausgabe 1/2022
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01833-y

Weitere Artikel der Ausgabe 1/2022

Virology Journal 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.