Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 17.06.2020 | COVID-19 | Research Letter

Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis

verfasst von: Yih-Ting Chen, Shih-Chieh Shao, Cheng-Kai Hsu, I-Wen Wu, Ming-Jui Hung, Yung-Chang Chen

Erschienen in: Critical Care | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
Yih-Ting Chen and Shih-Chieh Shao contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AKI
Acute kidney injury
CI
Confidence interval
COVID-19
Coronavirus disease 2019
Coronavirus disease 2019 (COVID-19), primarily affecting respiratory systems, has become pandemic and spread worldwide. Acute kidney injury (AKI) has been reported as a severe complication of COVID-19 with a higher risk of mortality [1], but the incidence of AKI among those infected with COVID-19 is currently only based on reports from small case series and retrospective studies [2, 3]. Therefore, in this work, we aim to perform a systematic review and meta-analysis of published articles to quantify the incidence of AKI in COVID-19 patients.
We performed a systematic search via PUBMED and EMBASE using the keywords “COVID-19” and “acute kidney injury” to identify relevant observational studies, such as case series and cohort studies published between 2019 and May 11, 2020. We also manually examined the reference lists of included studies and reviewed the AKI reports in epidemiological features and clinical courses of COVID-19 patients in high-profile general medicine journals (e.g., BMJ, JAMA, Lancet, and NEJM). Two independent reviewers (YTC and SCS) assessed articles, including title, abstract, and full text to determine whether studies were eligible for inclusion. In cases of divergences, results were discussed with a third reviewer (YCC). All statistical analyses were performed using MedCalc for Windows, version 15.0 (MedCalc Software, Ostend, Belgium). The incidence of AKI is expressed as proportion and 95% confidence interval (CI) using the random effects model and presented as a forest plot. We used the Cochran Q test to detect heterogeneity among studies, with a p value < 0.10 indicating significant heterogeneity. We calculated I2 statistic to measure the proportion of total variation in study estimates attributed to heterogeneity.
Of 65 articles screened, we excluded 45: 7 studies were duplicates, 8 studies were irrelevant, 9 studies failed to report the number of patients in the study cohort, and 21 studies did not report AKI data. Our final analysis included 20 articles comprising 6945 patients from China, Italy, the UK, and the USA. Demographic data for the included articles are summarized in Table 1. Notably, most of the studies (80%) were reported from China. We found the incidence of AKI was 8.9% (95% CI 4.6–14.5) in COVID-19 patients, but there was evidence of statistical heterogeneity among the studies with I2 = 97.8% and p < 0.001 (Fig. 1).
Table 1
Study characteristics
Author and year
City/country
Male (%)
Age (median)*
Settings
Patients with kidney transplantation (%)
Mechanical ventilation (%)
RRT (%)
ARDS (%)
Overall mortality (%)
Alberici 2020 [4]
Brescia/Italy
80
59
Hospitalization
100
10
5
55
25
Arentz 2020 [5]
Washington/USA
52
70
ICU
NR
71
NR
95
52
Banerjee 2020 [6]
London/UK
57
54
Hospitalization
100
29
43
29
14
Chen 2020 [7]
Wuhan/China
68
56
Hospitalization
NR
4
9
17
11
Chen 2020 [8]
Wuhan/China
62
62
Hospitalization
NR
6
1
72
41
Cheng 2020 [9]
Wuhan/China
52
63
Hospitalization
NR
14
NR
NR
16
Deng 2020 [10]
Wuhan/China
55
54
Hospitalization
NR
9
NR
48
48
Guan 2020 [11]
Wuhan/China
58
47
Hospitalization
NR
2
1
3
1
Guo 2020 [12]
Wuhan/China
49
59
Hospitalization
NR
24
NR
25
23
Huang 2020 [13]
Wuhan/China
73
49
Hospitalization
NR
10
7
29
15
Lei 2020 [14]
Wuhan/China
41
55
Hospitalization
NR
15
3
32
21
Richardson 2020 [15]
New York/USA
60
63
Hospitalization
NR
12
3
NR
21
Shi 2020 [16]
Wuhan/China
49
64
Hospitalization
NR
8
1
23
14
Wang 2020 [17]
Wuhan/China
58
54
Hospitalization
NR
NR
NR
10
6
Wang 2020 [18]
Wuhan/China
54
56
Hospitalization
NR
12
1
20
4
Wang 2020 [19]
Wuhan/China
53
51
Hospitalization
NR
19
NR
26
18
Yang 2020 [20]
Wuhan/China
67
60
ICU
NR
42
17
67
62
Zhang 2020 [21]
Wuhan/China
49
55
Hospitalization
NR
12
2
22
5
Zhang 2020 [22]
Zhejiang/China
51
45
Hospitalization
NR
1
0
2
NR
Zhou 2020 [23]
Wuhan/China
62
56
Hospitalization
NR
17
5
31
28
*In studies not reporting the median, age would be represented by the mean
ARDS acute respiratory distress syndrome, ICU intensive care unit, NR not reported, RRT renal replacement therapy
Previous studies reported the incidence of AKI largely from small case series or cohorts of COVID-19 patients, but our findings indicated that nearly 9 out of 100 developed AKI among a total of 6945 COVID-19 patients. This was close to the incidence rate of AKI in patients with community-acquired pneumonia [24].
Several mechanisms are possible for AKI in COVID-19 patients, including multi-organ dysfunction syndrome, SARS-CoV-2 direct kidney infection [25], AKI following acute respiratory distress syndrome (ARDS), infection-related generalized mitochondrial failure, and cytokine storm syndrome. Early recognition and treatment of AKI may limit associated complications such as long-term chronic kidney disease or end-stage kidney disease [26].
This study has several limitations. First, since the majority of included studies came from China and the USA, the generalizability of our findings into other countries may be limited. Second, clinical heterogeneity between studies should be noted, whereby detailed information on patient characteristics was lacking in the published articles. For example, two studies included patients post kidney transplantation, and the reported incidences of AKI were higher than in other studies which lacked information on how many patients had had kidney transplantation. With the disease burden of COVID-19 still increasing every day, we hope our synthesis can raise clinical awareness, early recognition, and intervention for AKI in patients hospitalized with COVID-19 for first-line healthcare providers.

Acknowledgements

None.
Not applicable.
This original article has not been published and under consideration by another journal.

Competing interests

None.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Ali H, Daoud A, Mohamed MM, Salim SA, Yessayan L, Baharani J, Murtaza A, Rao V, Soliman KM. Survival rate in acute kidney injury superimposed COVID-19 patients: a systematic review and meta-analysis. Ren Fail. 2020;42(1):393–7.CrossRef Ali H, Daoud A, Mohamed MM, Salim SA, Yessayan L, Baharani J, Murtaza A, Rao V, Soliman KM. Survival rate in acute kidney injury superimposed COVID-19 patients: a systematic review and meta-analysis. Ren Fail. 2020;42(1):393–7.CrossRef
2.
Zurück zum Zitat Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308–10.CrossRef Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308–10.CrossRef
3.
Zurück zum Zitat Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 2020;97(5):824–8.CrossRef Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 2020;97(5):824–8.CrossRef
4.
Zurück zum Zitat Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, Maffei C, Possenti S, Zambetti N, Moscato M, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020;97(6):1083–8.CrossRef Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, Maffei C, Possenti S, Zambetti N, Moscato M, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020;97(6):1083–8.CrossRef
5.
Zurück zum Zitat Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020;323(16):1612–4.CrossRef Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020;323(16):1612–4.CrossRef
6.
Zurück zum Zitat Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020;97(6):1076–82.CrossRef Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020;97(6):1076–82.CrossRef
7.
Zurück zum Zitat Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.CrossRef Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.CrossRef
8.
Zurück zum Zitat Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.CrossRef Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.CrossRef
9.
Zurück zum Zitat Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–38.CrossRef Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–38.CrossRef
10.
Zurück zum Zitat Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, Wang K, Leng F, Wei S, Chen L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J. 2020. Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, Wang K, Leng F, Wei S, Chen L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J. 2020.
11.
Zurück zum Zitat Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.CrossRef Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.CrossRef
12.
Zurück zum Zitat Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020.
13.
Zurück zum Zitat Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef
14.
Zurück zum Zitat Lei S, Jiang F, Su W, Chen C, Chen J, Mei W, Zhan LY, Jia Y, Zhang L, Liu D, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020:100331. Lei S, Jiang F, Su W, Chen C, Chen J, Mei W, Zhan LY, Jia Y, Zhang L, Liu D, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020:100331.
15.
Zurück zum Zitat Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, and the Northwell C-RC, Barnaby DP, Becker LB, Chelico JD, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new York City area. JAMA. 2020. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, and the Northwell C-RC, Barnaby DP, Becker LB, Chelico JD, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new York City area. JAMA. 2020.
16.
Zurück zum Zitat Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, et al. Association of Cardiac Injury with Mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, et al. Association of Cardiac Injury with Mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020.
17.
Zurück zum Zitat Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020;51(5):343–8.CrossRef Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020;51(5):343–8.CrossRef
18.
Zurück zum Zitat Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020.
19.
Zurück zum Zitat Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, Jian M, Xu H, Prowle J, Hu B, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24(1):188.CrossRef Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, Jian M, Xu H, Prowle J, Hu B, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24(1):188.CrossRef
20.
Zurück zum Zitat Yang X, Yu Y, Xu J, Shu H, Ja X, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81.CrossRef Yang X, Yu Y, Xu J, Shu H, Ja X, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81.CrossRef
21.
Zurück zum Zitat Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z, Pan H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol. 2020;127:104364.CrossRef Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z, Pan H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol. 2020;127:104364.CrossRef
22.
Zurück zum Zitat Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S, Ye C, Lu Y, Jin C, Yu G, et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int J Infect Dis. 2020;94:81–7.CrossRef Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S, Ye C, Lu Y, Jin C, Yu G, et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int J Infect Dis. 2020;94:81–7.CrossRef
23.
Zurück zum Zitat Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRef Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRef
24.
Zurück zum Zitat Akram AR, Singanayagam A, Choudhury G, Mandal P, Chalmers JD, Hill AT. Incidence and prognostic implications of acute kidney injury on admission in patients with community-acquired pneumonia. Chest. 2010;138(4):825–32.CrossRef Akram AR, Singanayagam A, Choudhury G, Mandal P, Chalmers JD, Hill AT. Incidence and prognostic implications of acute kidney injury on admission in patients with community-acquired pneumonia. Chest. 2010;138(4):825–32.CrossRef
25.
Zurück zum Zitat Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90.CrossRef Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90.CrossRef
26.
Zurück zum Zitat Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25.CrossRef Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25.CrossRef
Metadaten
Titel
Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis
verfasst von
Yih-Ting Chen
Shih-Chieh Shao
Cheng-Kai Hsu
I-Wen Wu
Ming-Jui Hung
Yung-Chang Chen
Publikationsdatum
17.06.2020
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03009-y

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.