Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 01.12.2020 | COVID-19 | Research

Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and meta-analysis

verfasst von: Xiaoming Li, Chao Liu, Zhi Mao, Minglu Xiao, Li Wang, Shuang Qi, Feihu Zhou

Erschienen in: Critical Care | Ausgabe 1/2020

Abstract

Background

Coronavirus disease 2019 (COVID-19), a highly infectious disease, has been rapidly spreading all over the world and remains a great threat to global public health. Patients diagnosed with severe or critical cases have a poor prognosis. Hence, it is crucial for us to identify potentially severe or critical cases early and give timely treatments for targeted patients. In the clinical practice of treating patients with COVID-19, we have observed that the neutrophil-to-lymphocyte ratio (NLR) of severe patients is higher than that in mild patients. We performed this systematic review and meta-analysis to evaluate the predictive values of NLR on disease severity and mortality in patients with COVID-19.

Methods

We searched PubMed, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases to identify eligible studies (up to August 11, 2020). Two authors independently screened studies and extracted data. The methodological quality of the included studies was assessed by Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2).

Results

Thirteen studies involving 1579 patients reported the predictive value of NLR on disease severity. The pooled sensitivity (SEN), specificity (SPE) and area under curve (AUC) were 0.78 (95% CI 0.70–0.84), 0.78 (95% CI 0.73–0.83) and 0.85 (95% CI 0.81–0.88), respectively. Ten studies involving 2967 patients reported the predictive value of NLR on mortality. The pooled SEN, SPE and AUC were 0.83 (95% CI 0.75–0.89), 0.83 (95% CI 0.74–0.89) and 0.90 (95% CI 0.87–0.92), respectively.

Conclusions

NLR has good predictive values on disease severity and mortality in patients with COVID-19 infection. Evaluating NLR can help clinicians identify potentially severe cases early, conduct early triage and initiate effective management in time, which may reduce the overall mortality of COVID-19.

Trial registry

This meta-analysis was prospectively registered on PROSPERO database (Registration number: CRD42020203612).
Hinweise
Xiaoming Li and Chao Liu contributed equally to this work

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03374-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
COVID-19
Coronavirus disease 2019
NLR
Neutrophil-to-lymphocyte ratio
CNKI
China National Knowledge Infrastructure
QUADAS-2
Quality Assessment of Diagnostic Accuracy Studies 2
SEN
Sensitivity
SPE
Specificity
AUC
Area under curve
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
ARDS
Acute respiratory distress syndrome
MODS
Multiple organ dysfunction syndrome
MERS
Middle East respiratory syndrome
SARS
Severe acute respiratory syndrome
COPD
Chronic obstructive pulmonary disease
PRISMA statement
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
TP
True positive
FP
False positive
FN
False negative
TN
True negative
DOR
Diagnostic odds ratio
CI
Credible interval
SROC
Summary receiver operating characteristic
RR
Respiratory rate
ECMO
Extracorporeal membrane oxygenation
CRRT
Continuous renal replacement therapy

Introduction

Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been rapidly spreading all over the world and remains a great threat to global public health [1]. The clinical symptoms of patients with COVID-19 vary widely. A significant proportion of patients with COVID-19 have mild symptoms, such as fever, muscle ache, cough, shortness of breath and fatigue, and about half of patients do not show any obvious symptoms [2, 3]. However, some severe cases with severe pneumonia can develop into acute respiratory distress syndrome (ARDS), pulmonary oedema or multiple organ dysfunction syndrome (MODS), hence leading to a high mortality [46]. Although many patients have mild symptoms, they may suddenly progress to ARDS, septic shock or even MODS [7]. Patients diagnosed with severe or critical illness have a poor prognosis. Hence, it is crucial for us to identify potentially severe or critical cases early and give timely treatments for targeted patients. Therefore, we can prevent the progression of COVID-19, save medical resources and reduce mortality.
Similar to patients with Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), dysregulated inflammation leading to cytokine storms is associated with worsening clinical outcomes in patients with COVID-19 [810]. Emerging evidences suggested that peripheral blood neutrophil-to-lymphocyte ratio (NLR) can be used as a marker of systemic inflammation. Furthermore, NLR has shown good predictive values on progression and clinical outcomes in various disease, such as solid tumours, chronic obstructive pulmonary disease (COPD), cardiovascular disease and pancreatitis [1114]. Recently, several studies have reported that NLR may differentiate between mild/moderate and severe/critical groups and probability of death in patients with COVID-19 infection. In addition, a series of studies have suggested NLR is a reliable predictor of COVID-19 progression and elevated NLR is associated with high mortality [1520].
NLR is a readily available biomarker that can be calculated from components of the differential white cell count (dividing neutrophil by lymphocyte count). We performed this systematic review and meta-analysis to evaluate the predictive values of NLR on disease severity and mortality in patients with COVID-19 and to provide a reliable marker for early identification of potentially severe or critically ill cases.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA statement) guidelines to perform this meta-analysis [21]. It was prospectively registered on PROSPERO database (Registration number: CRD42020203612).

Selection of studies

We reviewed PubMed, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases through August 11, 2020. The search terms were as follows: (“Neutrophil to lymphocyte ratio” or “neutrophil lymphocyte ratio” or “neutrophil-to-lymphocyte ratio” or “neutrophil/lymphocyte ratio” or “NLR”) and (“Coronavirus disease 2019” or “2019 Novel Coronavirus” or “SARS-CoV-2” or “2019-nCoV” or “COVID-19”). The detail of search strategy of PubMed is shown in Additional file 1. No language restrictions were imposed. To find additional citations, the reference lists of the included studies and recent review articles were screened when necessary.
Two authors (X.L and C.L) independently screened all identified citations to find studies for the final analysis. Any disagreement was resolved through discussion. In case of persistent disagreement, we consulted the third reviewer (F.Z) for arbitration. Studies were selected if they met the following criteria: (1) The predictive value of NLR on disease severity or mortality in patients with COVID-19 was evaluated; (2) a 2 × 2 table of results could be constructed [sufficient information to calculate true positive (TP), false positive (FP), false negative (FN) and true negative (TN)]. The exclusion criteria were as follows: (1) case report, review, editorial, conference abstract, comment, letter, animal study; (2) unable to extract a 2 × 2 table of results.

Data extraction and quality assessment

Two authors (X.L and C.L) independently extracted relevant information from individual studies, including first author, publication year, country, publication language, number of patients (male/female), mean age, cut-off value, area under curve (AUC), TP, TN, FP, FN, sensitivity (SEN) and specificity (SPE). The extracted information was checked by a third author (Z.M). We used the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria to evaluate each of the included studies in 4 domains: patient selection; index test; reference standard; and flow and test timing [22].

Statistical analysis

The statistical analyses were conducted by STATA (version 14.0) using MIDAS module [23]. A bivariate random-effects regression model was performed to calculate SEN, SPE, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR) and corresponding 95% credible interval (CI). A summary receiver operating characteristic (SROC) curve was drawn to assess the overall diagnostic accuracy. The higher the AUC value, the better the diagnostic power [24]. We used Deek funnel plot to detect publication bias. If the P value is less than 0.1, publication bias may exist. I2 index was calculated to assess heterogeneity between studies, and I2 values above 50% were regarded as the indicative of substantial heterogeneity [25]. We conducted Fagan nomograph to explore the relationship between the pre-test probability, likelihood ratio and the post-test probability. To investigate potential sources of heterogeneity among included studies, sensitivity and subgroup analyses were conducted. In sensitivity analyses, we only included studies published in English. We did subgroup analyses based on cut-off value.

Results

Selection and characteristics of studies

As a result of the literature search, a total of 298 studies were identified, including 97 from PubMed, 91 from EMBASE, 62 from CNKI and 48 from Wanfang debase. Figure 1 shows the study selection process. In total, 111 duplicate publications were excluded. According to the inclusion and exclusion criteria, we excluded 145 studies by evaluating the titles and abstracts. The remaining 42 studies were further scrutinized by reading the full text. Finally, only 19 studies were included in this meta-analysis, of which 9 reported the predictive value on disease severity [2634], 6 reported the predictive value on mortality [3540], and 4 reported the predictive value on both disease severity and mortality [4144].
The characteristics of the included studies and the predictive value of NLR on disease severity or mortality in each study are presented in Table 1. Most studies were conducted in China. Twelve studies were published in English, six in Chinese and one in Spanish. Except one prospective study [27], all others were retrospective studies. The number of participants across studies ranged from 45 to 1004. Notably, the SEN, SPE, AUC and cut-off value of NLR predicting mortality and disease severity ranged greatly among the included studies. Except two studies [41, 42], all other studies defined severe patients as meeting at least one of the following criterions: shortness of breath, respiratory rate (RR) ≥ 30 times/min or oxygen saturation (resting state) ≤ 93%, or PaO2/FiO2 ≤ 300 mmHg.
Table 1
Characteristics of the included studies and diagnostic test performance of NLR for disease severity and mortality
 
Study
Country
Publication language
No. of
patients
Male/
female
Mean age
Cut-off
AUC
TP
FP
FN
TN
SEN (%)
SPE (%)
Severity
Yang2020 [33]
China
English
93
56/37
46.4 ± 17.6
3.3
0.84
21
25
3
44
88.0
63.6
 
Wang2020 [31]
China
English
45
23/22
39.0 ± 11.5
13.4
0.89
8
6
2
29
83.3
82.4
 
Fesih2020 [44]
Turkey
English
139
62/77
55.5 ± 18.5
3.3
0.87
43
25
11
60
79.0
71.0
 
Jingyuan Liu2020 [27]
China
English
115
64/51
NA
3.1
NA
28
13
9
65
75.7
83.3
 
Asghar2020
Pakistan
English
100
69/31
52.6 ± 15.7
3.7
0.80
29
25
4
42
87.9
62.1
 
Sun2020 [30]
China
English
116
60/56
50.0 ± 4.0
4.5
0.89
20
9
7
80
74.1
89.9
 
Shang2020 [29]
China
English
443
220/223
56.0 ± 17.4
4.3
0.74
78
50
61
254
56.3
83.7
 
Yueping Liu2020 [28]
China
English
84
47/37
53.0 ± 17.8
4.9
0.76
13
8
10
53
56.5
86.9
 
Basbus2020 [42]
Spain
Spanish
131
71/60
52.0 ± 30.4
3.0
NA
17
36
4
74
80.9
67.3
 
Li2020 [43]
China
Chinese
93
55/38
62.1 ± 16.8
11.3
NA
34
4
9
46
79.1
92.0
 
Zha2020 [34]
China
Chinese
85
57/28
54.2 ± 16.0
5.6
0.77
25
10
12
38
68.8
78.4
 
Fei2020 [26]
China
Chinese
72
32/40
58.0 ± 13.8
3.0
0.89
20
14
0
38
100
73.1
 
Xia2020 [32]
China
Chinese
63
33/30
63.4 ± 14.9
4.8
0.83
26
8
5
24
83.9
75.0
Mortality
              
 
Cheng2020 [36]
China
English
456
211/245
55.0 ± 18.6
3.2
0.81
26
107
10
303
78.3
73.9
 
Tatum2020 [38]
America
English
125
57/68
58.7 ± 14.8
10.0
0.71
12
4
11
98
52.4
96.7
 
Chen2020 [35]
China
English
681
362/219
65.0 ± 13.3
6.7
0.86
87
130
17
447
83.7
77.5
 
Fesih2020 [44]
Turkey
English
139
62/77
55.5 ± 18.5
5.7
0.85
11
13
2
113
83.0
90.0
 
Asghar2020 [41]
Pakistan
English
100
69/31
52.6 ± 15.7
4.2
0.81
20
29
2
49
90.9
62.6
 
Yan2020 [39]
China
English
1004
493/511
NA
11.8
0.95
39
211
1
753
97.5
78.1
 
Basbus2020 [42]
Spain
Spanish
131
71/60
52.0 ± 30.4
3
NA
7
46
2
76
77.8
62.3
 
Li2020 [43]
China
Chinese
93
55/38
62.1 ± 16.8
11.3
0.92
28
10
3
52
90.3
83.9
 
Song2020 [37]
China
Chinese
84
56/28
66.5 ± 12.2
6.1
0.87
32
5
10
37
76.2
88.1
 
Zhang2020 [40]
China
Chinese
154
81/73
69.2 ± 7.5
9.4
0.86
21
10
6
117
76.2
92.0
AUC area under curve, TP true positive, FP false positive, FN false negative, TN true negative, SEN sensitivity, SPE specificity, NLR neutrophil-to-lymphocyte ratio, NA not available

Study quality and publication bias

The methodological quality of the included studies is presented in Additional file 2. One study only included patients classified as moderate [36], one included only severe patients [35], and another included only elderly patients [40]. Therefore, these three studies were considered to have a high risk of patient selection bias. One study included 32 moderate cases, and another 31 severe cases were included as a control group [32]. One study included 48 moderate cases, and another 37 severe cases were included as a control group [34]. One study included 50 moderate cases, and another 43 severe cases were included as a control group [43]. One study included 42 dead patients, and another 42 discharged patients were included as a control group [37]. These four studies were also assessed to show high risk of patient selection bias, because they did not avoid a case–control design. One study did not provide sufficient information about patients enrolled and leaded to a high risk of patient selection in our opinion [33]. Most studies were considered to have unclear risk of bias regarding index tests, because they did not report the blindness between index and reference tests. Deek funnel plot is shown in Additional file 3, and publication bias may exist among studies reporting the predictive value of NLR on disease severity (P = 0.04).

Predictive value of NLR on disease severity

Thirteen studies involving 1579 patients reported the predictive value of NLR on disease severity. The pooled SEN and SPE were 0.78 (95% CI 0.70–0.84, I2 = 71.83) and 0.78 (95% CI 0.73–0.83, I2 = 77.80), respectively (Fig. 2a). The positive likelihood ratio was 3.6 (95% CI 2.9–4.4), and the negative likelihood ratio was 0.28 (95% CI 0.21–0.38). The DOR was 13 (95% CI 9–18). The SROC curve is shown in Fig. 3a. The AUC of NLR for predicting disease severity was 0.85 (95% CI 0.81–0.88), indicating high diagnostic value. We can learn from Fagan nomogram (Fig. 4a) that if the pre-test probability was set to 50%, the post-test probability of NLR for the detection of severe cases was 78% when the NLR was above the cut-off value. On the contrary, when the NLR was below the cut-off value, the post-test probability was 26%.

Predictive value of NLR on mortality

Ten studies involving 2967 patients reported the predictive value of NLR on mortality. The pooled SEN and SPE were 0.83 (95% CI 0.75–0.89, I2 = 66.13) and 0.83 (95% CI 0.74–0.89, I2 = 90.34), respectively (Fig. 2b). The positive likelihood ratio was 4.8 (95% CI 3.3–7.0), and the negative likelihood ratio was 0.21 (95% CI 0.15–0.30). The DOR was 23 (95% CI 15–36). The SROC with pooled diagnostic accuracy was 0.90 (95% CI 0.87–0.92), presented in Fig. 3b. The Fagan nomogram showed that the post-test probability of NLR for the detection of mortality was 83% when the NLR was above the cut-off value and the post-test probability was 17% when the NLR was below the cut-off value (Fig. 4b).

Subgroup analyses and sensitivity analyses

We conducted the subgroup analyses based on the cut-off value. In terms of predicting disease severity, the cut-off value in six studies was higher than 4.5 and was termed the “high cut-off value” subgroup. Seven others used a lower cut-off value, which were included in the “low cut-off value” subgroup. The AUC was 0.86 (95% CI 0.83–0.89) and 0.82 (95% CI 0.78–0.85), respectively. Similarly, ten studies reporting the predictive value of NLR on mortality were divided into “high cut-off value” (cut-off ≥ 6.5) and “low cut-off value” (< 6.5) subgroups, and the AUC was 0.92 (95% CI 0.89–0.94) and 0.84 (95% CI 0.80–0.87), respectively. In the sensitivity analyses, we only included studies published in English. The pooled AUC for predicting disease severity and mortality was 0.83 (95% CI 0.80–0.86) and 0.90 (95% CI 0.87–0.92), respectively. Detailed results about subgroup analyses and sensitivity analyses are presented in Table 2.
Table 2
Results of sensitivity analysis and subgroup analysis
Categories
No. of
studies
Sensitivity
(95% CI)/I2
Specificity
(95% CI) /I2
AUC
(95% CI)
DOR
(95% CI)
PLR/NLR
Disease severity
      
Cut-off ≥ 4.5
6
0.74(0.66,0.80)/25.56
0.86(0.81,0.89)/36.40
0.86(0.83,0.89)
17(10,28)
5.1/0.31
Cut-off < 4.5
7
0.82(0.71,0.89)/82.74
0.72(0.66,0.78)/79.70
0.82(0.78,0.85)
12(7,19)
3.0/0.25
Published in English
8
0.74(0.63,0.83)/73.82
0.78(0.71,0.84)/81.99
0.83(0.80,0.86)
10(7,16)
3.4/0.33
Mortality
      
Cut-off ≥ 6.5
5
0.83(0.66,0.92)/84.97
0.87(0.77,0.93)/92.60
0.92(0.89,0.94)
32(17,61)
6.3/0.20
Cut-off < 6.5
5
0.81(0.72,0.87)/0
0.77(0.64,0.86)/89.07
0.84(0.80,0.87)
14(7,27)
3.5/0.25
Published in English
6
0.83(0.69,0.91)/79.98
0.82(0.71,0.90)/89.87
0.90(0.87,0.92)
23(12,41)
4.7/0.21
AUC area under curve, PLR positive likelihood ratio, NLR negative likelihood ratio, DOR diagnostic odds ratio, CI credible interval

Discussion

Although in the clinical practice of treating patients with COVID-19, we have observed that the NLR of severe patients is higher than that in mild patients, there is no systematic review and meta-analysis to evaluate the predictive values of NLR on disease severity and mortality in patients with COVID-19. Studies have reported various thresholds to NLR. Clinicians are therefore unclear regarding the thresholds of NLR that should be applied in order to categorize severity of disease and predict prognosis. Our study suggested that NLR can not only be a good biomarker predicting disease severity in patients with COVID-19 (AUC = 0.85, SEN = 0.78 and SPE = 0.78), but also have value in predicting mortality (AUC = 0.90, SEN = 0.83 and SPE = 0.83).
COVID-19 spread rapidly and is an ongoing global pandemic. Medical workers from different countries make efforts to explore the best diagnostic method and the most effective treatment for COVID-19. More and more studies have focused on COVID-19 and published in different languages. To find enough studies that reported the predictive values of NLR on disease severity and mortality in patients with COVID-19, we did not impose any language restrictions. In our final analyses, twelve studies were published in English, six in Chinese and one in Spanish. To our knowledge, English is the most widely used language in the world. Studies published in English may have a wider readership and receive peer review from different countries, while studies published in other languages may be available only to native speakers. Therefore, we performed sensitivity analyses by omitting studies not published in English. The results of the sensitivity analyses were in accordance with the main analyses, indicating that the publish language was not a confounding factor.
To our knowledge, the treatments for mild cases and severe cases are greatly different. For mild cases, there is no need to intervene too much. Some patients can even recover without any treatments. However, for severe cases, even we take many kinds of measures, such as mechanical ventilation, extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), the mortality is still high [45, 46]. Therefore, if the potentially severe cases were identified early and effective treatments were taken to prevent the progression of those patients, more patients’ lives may be saved.
The current criteria for classifying mild cases and severe cases are mainly based on RR, oxygen saturation and PaO2/FiO2. These indicators are important but lack specificity for COVID-19. In laboratory examination of patients with COVID-19, the absolute value of peripheral white blood cells is usually normal or low, and lymphopenia is common [47]. However, in severe or non-survival patients with COVID-19, the lymphocytes count decreases progressively, while the neutrophils count gradually increases. This may be due to excessive inflammation and immune suppression caused by SARS-CoV-2 infection. On the one hand, neutrophils are generally regarded as pro-inflammatory cells with a range of antimicrobial activities, which can be triggered by virus-related inflammatory factors, such as interleukin-6 and interleukin-8 [9]. On the other hand, systematic inflammation triggered by SARS-CoV-2 significantly depresses cellular immunity, leading to a decrease in CD3 + T cells, CD4 + T cells and CD8 + T cells. In addition, SARS-CoV-2-infected T cells may also cause cytopathic effects on T cells [10, 4850]. Therefore, NLR, a cost-effective marker, can be easily calculated from peripheral blood routine tests and may be associated with the progression and prognosis of COVID-19. To date, four meta-analyses have reported that patients with severe COVID-19 infection had a higher NLR than those with non-severe COVID-19 infection [5154]. However, none of them evaluated the predictive values of NLR on disease severity and mortality.
There are several limitations in this meta-analysis. First, all but one of the studies were retrospective, meaning the data were prone to confounding factors. Second, the progression and prognosis of disease were influenced by many factors, such as age, sex and comorbidities, while we did not evaluate other factors. Finally, there was considerable heterogeneity among the included studies. Although we conducted sensitivity and subgroup analyses, the heterogeneity was not significantly decreased. That may be caused by different cut-off values, different conditions of patients or different comorbidities among the included studies. Additional high-quality studies are required to shed light on the role of NLR in the progression and prognosis of COVID-19 and find the optimal cut-off value.

Conclusions

NLR has good predictive values on disease severity and mortality in patients with COVID-19 infection. Evaluating NLR can help clinicians identify potentially severe cases early, conduct early triage and initiate effective management in time, which may reduce the overall mortality of COVID-19.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03374-8.

Acknowledgements

We thank all researchers and clinicians involved in the individual trials.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK. Rodriguez-Morales AJ Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020;33:4. CrossRef Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK. Rodriguez-Morales AJ Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020;33:4. CrossRef
3.
Zurück zum Zitat Tabata S, Imai K, Kawano S, Ikeda M, Kodama T, Miyoshi K, Obinata H, Mimura S, Kodera T, Kitagaki M, et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis. Lancet Infect Dis. 2020;20:1043. PubMedPubMedCentralCrossRef Tabata S, Imai K, Kawano S, Ikeda M, Kodama T, Miyoshi K, Obinata H, Mimura S, Kodera T, Kitagaki M, et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis. Lancet Infect Dis. 2020;20:1043. PubMedPubMedCentralCrossRef
4.
5.
Zurück zum Zitat Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. JAMA Intern Med: China; 2020. CrossRef Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. JAMA Intern Med: China; 2020. CrossRef
6.
Zurück zum Zitat Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernandez M, Gea A, Arruti E, Aldecoa C, Martinez-Palli G, Martinez-Gonzalez MA, Slutsky AS et al: Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernandez M, Gea A, Arruti E, Aldecoa C, Martinez-Palli G, Martinez-Gonzalez MA, Slutsky AS et al: Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med 2020.
7.
Zurück zum Zitat Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. PubMedPubMedCentralCrossRef Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an acute inflammatory disease. J Immunol. 2020;205(1):12–9. PubMedCrossRef Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an acute inflammatory disease. J Immunol. 2020;205(1):12–9. PubMedCrossRef
10.
Zurück zum Zitat Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Bruggen MC, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–81. PubMedCrossRef Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Bruggen MC, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–81. PubMedCrossRef
11.
Zurück zum Zitat Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):124. CrossRef Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):124. CrossRef
12.
Zurück zum Zitat Kim S, Eliot M, Koestler DC, Wu WC, Kelsey KT. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the Jackson heart study and modification by the duffy antigen variant. JAMA Cardiol. 2018;3(6):455–62. PubMedPubMedCentralCrossRef Kim S, Eliot M, Koestler DC, Wu WC, Kelsey KT. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the Jackson heart study and modification by the duffy antigen variant. JAMA Cardiol. 2018;3(6):455–62. PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Paliogiannis P, Fois AG, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Negri S, Carru C, Zinellu A. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur Respir Rev. 2018;27:147. CrossRef Paliogiannis P, Fois AG, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Negri S, Carru C, Zinellu A. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur Respir Rev. 2018;27:147. CrossRef
14.
Zurück zum Zitat Kong W, He Y, Bao H, Zhang W, Wang X. Diagnostic value of neutrophil-lymphocyte ratio for predicting the severity of acute pancreatitis: a meta-analysis. Dis Markers. 2020;2020:9731854. PubMedPubMedCentralCrossRef Kong W, He Y, Bao H, Zhang W, Wang X. Diagnostic value of neutrophil-lymphocyte ratio for predicting the severity of acute pancreatitis: a meta-analysis. Dis Markers. 2020;2020:9731854. PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Lian J, Jin C, Hao S, Zhang X, Yang M, Jin X, Lu Y, Hu J, Zhang S, Zheng L, et al. High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: a multicenter retrospective study. Aging (Albany NY). 2020;12(14):13849–59. CrossRef Lian J, Jin C, Hao S, Zhang X, Yang M, Jin X, Lu Y, Hu J, Zhang S, Zheng L, et al. High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: a multicenter retrospective study. Aging (Albany NY). 2020;12(14):13849–59. CrossRef
16.
Zurück zum Zitat Zhang JJ, Cao YY, Tan G, Dong X, Wang BC, Lin J, Yan YQ, Liu GH, Akdis M, Akdis CA et al: Clinical, radiological and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2020. Zhang JJ, Cao YY, Tan G, Dong X, Wang BC, Lin J, Yan YQ, Liu GH, Akdis M, Akdis CA et al: Clinical, radiological and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2020.
17.
Zurück zum Zitat Fu J, Kong J, Wang W, Wu M, Yao L, Wang Z, Jin J, Wu D, Yu X. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb Res. 2020;192:3–8. PubMedPubMedCentralCrossRef Fu J, Kong J, Wang W, Wu M, Yao L, Wang Z, Jin J, Wu D, Yu X. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb Res. 2020;192:3–8. PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Liao D, Zhou F, Luo L, Xu M, Wang H, Xia J, Gao Y, Cai L, Wang Z, Yin P et al: Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol 2020. Liao D, Zhou F, Luo L, Xu M, Wang H, Xia J, Gao Y, Cai L, Wang Z, Yin P et al: Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol 2020.
19.
Zurück zum Zitat Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A. Cinemre H (2020) Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. 1992;66(6):746–51. CrossRef Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A. Cinemre H (2020) Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. 1992;66(6):746–51. CrossRef
20.
Zurück zum Zitat Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020;24(1):288. PubMedPubMedCentralCrossRef Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020;24(1):288. PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41. CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41. CrossRef
22.
Zurück zum Zitat Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. Group Q-: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. PubMedCrossRef Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. Group Q-: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. PubMedCrossRef
23.
Zurück zum Zitat Dwamena BJSSC: MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. 2007. Dwamena BJSSC: MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. 2007.
24.
Zurück zum Zitat Jones CM, Athanasiou T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann Thorac Surg. 2005;79(1):16–20. PubMedCrossRef Jones CM, Athanasiou T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann Thorac Surg. 2005;79(1):16–20. PubMedCrossRef
26.
Zurück zum Zitat Fei M, Tong F, Tao X, Wang J. Value of neutrophil-to-lymphocyte ratio in the classification diagnosis of coronavirus disease 2019. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020;32(5):554–8. PubMed Fei M, Tong F, Tao X, Wang J. Value of neutrophil-to-lymphocyte ratio in the classification diagnosis of coronavirus disease 2019. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020;32(5):554–8. PubMed
27.
Zurück zum Zitat Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18(1):206. PubMedPubMedCentralCrossRef Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18(1):206. PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Liu YP, Li GM, He J, Liu Y, Li M, Zhang R, Li YL, Wu YZ, Diao B. Combined use of the neutrophil-to-lymphocyte ratio and CRP to predict 7-day disease severity in 84 hospitalized patients with COVID-19 pneumonia: a retrospective cohort study. Ann Transl Med. 2020;8(10):635. PubMedPubMedCentralCrossRef Liu YP, Li GM, He J, Liu Y, Li M, Zhang R, Li YL, Wu YZ, Diao B. Combined use of the neutrophil-to-lymphocyte ratio and CRP to predict 7-day disease severity in 84 hospitalized patients with COVID-19 pneumonia: a retrospective cohort study. Ann Transl Med. 2020;8(10):635. PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, Li Y: The value of clinical parameters in predicting the severity of COVID-19. J Med Virol 2020. Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, Li Y: The value of clinical parameters in predicting the severity of COVID-19. J Med Virol 2020.
30.
Zurück zum Zitat Sun S, Cai X, Wang H, He G, Lin Y, Lu B, Chen C, Pan Y, Hu X. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020;507:174–80. PubMedPubMedCentralCrossRef Sun S, Cai X, Wang H, He G, Lin Y, Lu B, Chen C, Pan Y, Hu X. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020;507:174–80. PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Wang C, Deng R, Gou L, Fu Z, Zhang X, Shao F, Wang G, Fu W, Xiao J, Ding X, et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Ann Transl Med. 2020;8(9):593. PubMedPubMedCentralCrossRef Wang C, Deng R, Gou L, Fu Z, Zhang X, Shao F, Wang G, Fu W, Xiao J, Ding X, et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Ann Transl Med. 2020;8(9):593. PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Xia X, Wen M, Zhan S, He J, Chen W. An increased neutrophil/lymphocyte ratio is an early warning signal of severe COVID-19. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(3):333–6. PubMed Xia X, Wen M, Zhan S, He J, Chen W. An increased neutrophil/lymphocyte ratio is an early warning signal of severe COVID-19. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(3):333–6. PubMed
33.
Zurück zum Zitat Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504. PubMedPubMedCentralCrossRef Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504. PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Zha Q, Feng B, Li X, Zhou D, Kang Y, Qin H. Study on early laboratory warning of severe COVID-19. Laboratory Medicine. 2020;35(06):557–60. Zha Q, Feng B, Li X, Zhou D, Kang Y, Qin H. Study on early laboratory warning of severe COVID-19. Laboratory Medicine. 2020;35(06):557–60.
35.
Zurück zum Zitat Chen FF, Zhong M, Liu Y, Zhang Y, Zhang K, Su DZ, Meng X, Zhang Y. The characteristics and outcomes of 681 severe cases with COVID-19 in China. J Crit Care. 2020;60:32–7. PubMedPubMedCentralCrossRef Chen FF, Zhong M, Liu Y, Zhang Y, Zhang K, Su DZ, Meng X, Zhang Y. The characteristics and outcomes of 681 severe cases with COVID-19 in China. J Crit Care. 2020;60:32–7. PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Cheng B, Hu J, Zuo X, Chen J, Li X, Chen Y, Yang G, Shi X, Deng A. Predictors of progression from moderate to severe coronavirus disease 2019: a retrospective cohort. Clin Microbiol Infect. 2020;26:1400. PubMedPubMedCentralCrossRef Cheng B, Hu J, Zuo X, Chen J, Li X, Chen Y, Yang G, Shi X, Deng A. Predictors of progression from moderate to severe coronavirus disease 2019: a retrospective cohort. Clin Microbiol Infect. 2020;26:1400. PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Song H, Bai T, Shi J, Yang J. Predictive value of multiple inflammatory indexes on the prognosis of patients with corona virus disease 2019. Pract J Cardiac Cerebr Pneumal Vasc Dis. 2020;28(06):13–6. Song H, Bai T, Shi J, Yang J. Predictive value of multiple inflammatory indexes on the prognosis of patients with corona virus disease 2019. Pract J Cardiac Cerebr Pneumal Vasc Dis. 2020;28(06):13–6.
38.
Zurück zum Zitat Tatum D, Taghavi S, Houghton A, Stover J, Toraih E, Duchesne J: Neutrophil-to-lymphocyte ratio and outcomes in Louisiana Covid-19 patients. Shock 2020. Tatum D, Taghavi S, Houghton A, Stover J, Toraih E, Duchesne J: Neutrophil-to-lymphocyte ratio and outcomes in Louisiana Covid-19 patients. Shock 2020.
39.
Zurück zum Zitat Yan X, Li F, Wang X, Yan J, Zhu F, Tang S, Deng Y, Wang H, Chen R, Yu Z et al: Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. J Med Virol 2020. Yan X, Li F, Wang X, Yan J, Zhu F, Tang S, Deng Y, Wang H, Chen R, Yu Z et al: Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. J Med Virol 2020.
40.
Zurück zum Zitat Zhang W, Li S, Xie X, Wang J, Guo W, Lei Y, Wang X, Xu C, Li Z, Chen Y, et al. Clinical characteristics and risk factors of mortality in elderly patients with novel coronavirus pneumonia. Pract Geriatr. 2020;34(7):745–9. Zhang W, Li S, Xie X, Wang J, Guo W, Lei Y, Wang X, Xu C, Li Z, Chen Y, et al. Clinical characteristics and risk factors of mortality in elderly patients with novel coronavirus pneumonia. Pract Geriatr. 2020;34(7):745–9.
41.
Zurück zum Zitat Asghar MS, Haider Kazmi SJ, Ahmed Khan N, Akram M, Ahmed Khan S, Rasheed U, Hassan M, Memon GM. Clinical profiles, characteristics, and outcomes of the first 100 admitted COVID-19 patients in Pakistan: a single-center retrospective study in a tertiary care Hospital of Karachi. Cureus. 2020;12(6):e8712. PubMedPubMedCentral Asghar MS, Haider Kazmi SJ, Ahmed Khan N, Akram M, Ahmed Khan S, Rasheed U, Hassan M, Memon GM. Clinical profiles, characteristics, and outcomes of the first 100 admitted COVID-19 patients in Pakistan: a single-center retrospective study in a tertiary care Hospital of Karachi. Cureus. 2020;12(6):e8712. PubMedPubMedCentral
42.
Zurück zum Zitat Basbus L, Lapidus MI, Martingano I, Puga MC, Pollan J. Neutrophil to lymphocyte ratio as a prognostic marker in COVID-19. Medicina (B Aires). 2020;80(Suppl 3):31–6. Basbus L, Lapidus MI, Martingano I, Puga MC, Pollan J. Neutrophil to lymphocyte ratio as a prognostic marker in COVID-19. Medicina (B Aires). 2020;80(Suppl 3):31–6.
43.
Zurück zum Zitat Li H, Zhao M, Xu Y. Biochemical analysis between common type and critical type of COVID-19 and clinical value of neutrophil/lymphocyte ratio. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;40(7):965–71. Li H, Zhao M, Xu Y. Biochemical analysis between common type and critical type of COVID-19 and clinical value of neutrophil/lymphocyte ratio. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;40(7):965–71.
44.
Zurück zum Zitat Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients. J Med Virol. 2020;22:10. Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients. J Med Virol. 2020;22:10.
45.
Zurück zum Zitat Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, Baron E, Beurton A, Chommeloux J, Meng P, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8:1123. CrossRef Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, Baron E, Beurton A, Chommeloux J, Meng P, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8:1123. CrossRef
46.
Zurück zum Zitat Xie J, Wu W, Li S, Hu Y, Hu M, Li J, Yang Y, Huang T, Zheng K, Wang Y, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. 2020;20:1. Xie J, Wu W, Li S, Hu Y, Hu M, Li J, Yang Y, Huang T, Zheng K, Wang Y, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. 2020;20:1.
48.
Zurück zum Zitat Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. RETRACTED ARTICLE: SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020;7:1. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. RETRACTED ARTICLE: SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020;7:1.
49.
Zurück zum Zitat van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20. PubMedCrossRef van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20. PubMedCrossRef
50.
Zurück zum Zitat Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X, Wu M, Shi B, Xu S, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437–40. PubMedCrossRef Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X, Wu M, Shi B, Xu S, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437–40. PubMedCrossRef
51.
52.
Zurück zum Zitat Zeng F, Li L, Zeng J, Deng Y, Huang H, Chen B, Deng G. Can we predict the severity of coronavirus disease 2019 with a routine blood test? Pol Arch Intern Med. 2020;130(5):400–6. PubMed Zeng F, Li L, Zeng J, Deng Y, Huang H, Chen B, Deng G. Can we predict the severity of coronavirus disease 2019 with a routine blood test? Pol Arch Intern Med. 2020;130(5):400–6. PubMed
53.
Zurück zum Zitat Ghahramani S, Tabrizi R, Lankarani KB, Kashani SMA, Rezaei S, Zeidi N, Akbari M, Heydari ST, Akbari H, Nowrouzi-Sohrabi P, et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: a systematic review and meta-analysis. Eur J Med Res. 2020;25(1):30. PubMedPubMedCentralCrossRef Ghahramani S, Tabrizi R, Lankarani KB, Kashani SMA, Rezaei S, Zeidi N, Akbari M, Heydari ST, Akbari H, Nowrouzi-Sohrabi P, et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: a systematic review and meta-analysis. Eur J Med Res. 2020;25(1):30. PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92:10. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92:10.
Metadaten
Titel
Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and meta-analysis
verfasst von
Xiaoming Li
Chao Liu
Zhi Mao
Minglu Xiao
Li Wang
Shuang Qi
Feihu Zhou
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03374-8

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.