Skip to main content
Erschienen in: Virology Journal 1/2022

Open Access 01.12.2022 | COVID-19 | Review

SARS-CoV-2 infection in pediatric population before and during the Delta (B.1.617.2) and Omicron (B.1.1.529) variants era

verfasst von: Haifa Khemiri, Kaouther Ayouni, Henda Triki, Sondes Haddad-Boubaker

Erschienen in: Virology Journal | Ausgabe 1/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

COVID-19, the coronavirus disease that emerged in December 2019, caused drastic damage worldwide. At the beginning of the pandemic, available data suggested that the infection occurs more frequently in adults than in infants. In this review, we aim to provide an overview of SARS-CoV-2 infection in children before and after B.1.617.2 Delta and B.1.1.529 Omicron variants emergence in terms of prevalence, transmission dynamics, clinical manifestations, complications and risk factors.

Methods

Our method is based on the literature search on PubMed, Science Direct and Google Scholar. From January 2020 to July 2022, a total of 229 references, relevant for the purpose of this review, were considered.

Results

The incidence of SARS-CoV-2 infection in infants was underestimated. Up to the first half of May, most of the infected children presented asymptomatic or mild manifestations. The prevalence of COVID-19 varied from country to another: the highest was reported in the United States (22.5%). COVID-19 can progress and become more severe, especially with the presence of underlying health conditions. It can also progress into Kawasaki or Multisystem Inflammatory Syndrome (MIS) manifestations, as a consequence of exacerbating immune response. With the emergence of the B.1.617.2 Delta and B.1.1.529 Omicron variants, it seems that these variants affect a large proportion of the younger population with the appearance of clinical manifestations similar to those presented by adults with important hospitalization rates.

Conclusion

The pediatric population constitutes a vulnerable group that requires particular attention, especially with the emergence of more virulent variants. The increase of symptomatic SARS-CoV-2 infection and hospitalization rate among children highlights the need to extend vaccination to the pediatric population.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12985-022-01873-4.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACE2
Angiotensin-converting enzyme 2
COVID-19
Coronavirus disease 2019
WHO
World Health Organization
ICU
Intensive Care Unit
KD
Kawasaki Disease
KDSS
Kawasaki Disease Shock Syndrome RNA: Ribonucleic Acid
MAS
Macrophage Activation Syndrome
MIS-C
Multisystem Inflammatory Syndrome in Children
NSP12
Non Structural Protein 12
NSP14
Non Structural Protein 14
HBV
Hepatitis B Virus
PICU
Pediatric Intensive Care Unit
PID
Primary Immunodeficiency
SAD
Specific Antibody Deficiency
SID
Secondary Immunodeficiency
VOC
Variants of Concern
USA
United States of America

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has spread rapidly around the world since its emergence in Wuhan, China, late 2019 [1, 2]. By January 2020, the virus has been isolated and sequenced [3, 4], revealing close relationships to coronaviruses such as SARS-CoV [5] and MERS-CoV [6]. On March 11, 2020, the World Health Organization (WHO) announced COVID-19 as a pandemic [7] causing 430,257,564 confirmed cases of COVID-19, including 5,922,047 deaths up to 25 February 2022 [8].
SARS-CoV-2 is an enveloped, positive RNA virus [9]. It belongs to the family of Coronaviridae, the subfamily of Orthocoronavirinae, the genera of Betacoronavirus and subgenus of Sarbecovirus [10, 11]. It is responsible for severe lower respiratory tract infections in humans [12].
SARS-CoV-2 causes pneumonia, characterized by fever, cough, shortness of breath, and bilateral infiltration on chest imaging [2, 12]. It can also induce fatal lung damage, multiple organ failure and death [9, 13]. The clinical manifestations can be classified into four severity of illness categories: asymptomatic, mild, moderate and severe clinical [14]. In contrast with adults who can develop the four types of clinical manifestations, children are mainly asymptomatic or present mild infection and, in some cases, they can develop severe post-COVID-19 manifestations such as Kawasaki-like symptoms [1518]. After a year into the COVID-19 pandemic, new variants emerged and spread rapidly across the continents [19]. In the United Kingdom, the B.1.617.2 Delta variant, initially identified in India in October 2020, spreads rapidly through schools [20]. Children seem to be the most affected category [19, 21, 22]. The B.1.1.529 Omicron variant first detected in South Africa, in 2021, appeared to be more contagious than the Delta variant, associated with a significant increase in the number of pediatric and adults SARS-CoV-2 infections [2328].
This review gives an overview of SARS-CoV-2 infection in children before and after B.1.617.2 Delta and B.1.1.529 Omicron variants emergence. We analyzed current knowledge on the prevalence, clinical manifestations and complications among immunocompetent and immunodepressive children as well as risk factors for the severity of COVID-19.

Methods

Original research studies published on COVID-19/SARS-CoV-2 among children in English, between January 2020 and July 2022, were identified using PubMed, Science Direct and Google Scholar. The search used combinations of the keywords “COVID-19,” “SARS-CoV-2,” “clinical manifestations” “prevalence”, “Transmission”, “pediatric population,” “child”, “SARS-CoV-2 variants”, “Delta variant”, ”B.1.617.2”, “Omicron variant”, “B.1.1.529”, “Risk factors” and “COVID-19 vaccines” (Fig. 1). In addition, the reference lists of the retrieved articles were checked for other relevant articles. Moreover, 229 references were considered relevant to the aim of this review. An additional table file shows more details about these references (see Additional file 1: Table S1).

Epidemiology of COVID-19 in infants and children

Epidemiology of COVID-19 in infants before the Delta and Omicron era

At the beginning of the COVID-19 epidemic, the available data during the period February 26, 2020, to June 10, 2020, suggested that the infection occurs more frequently in adults and seems to be unusual in infants (1.7–2% of the diagnosed cases of COVID-19) [29, 30]. On February 11, 2020, the Chinese Center for Disease Control and Prevention (China CDC) showed that among 72,314 cases less than 1% and 1% of the cases were in children younger than 10 years and 10 to 19 years, respectively [31]. In the United States, data concerning 149,760 laboratory-confirmed COVID-19 cases obtained between February 12 and April 2, 2020, showed that 1.7% were in children aged less than 18 years [32]. From March 5 to April 8, 2020, the Chicago Department of Public Health reported that among 6369 laboratory-confirmed cases, 1.0% were children aged 0–17 years [30].
Afterward, it appeared that the true incidence of infection in infants was underestimated [33]. A retrospective study based on Nationwide case series of 2135 COVID-19 pediatric patients (< 18 years) with COVID-19 reported to the China CDC, from January 16, 2020, to February 8, 2020, indicated that children of all ages appeared to be susceptible to COVID-19 [33]. In this study, 731 (34.1%) children had laboratory-confirmed COVID-19. The Center for Disease Control and Prevention (CDC) showed an increase in the rate of COVID-19 pediatric cases, from March to July 2020, in the USA: 7.3% of all COVID-19 cases compared to 1.7% of COVID-19 pediatric cases obtained during the period 12 February to 2 April [34, 35]. It seems that children and adults acquired infection at similar rates but develop different clinical manifestations [33]. In China, several studies including population varied from 731 to 1391 children showed only a few numbers of infants (1–2%) developed symptomatic forms [3136]. Also, a systematic review conducted by Bhuiyan et al. [37] showed that among 1214 confirmed COVID-19 pediatric cases younger than five years nearly half of the cases were asymptomatic.
Globally, the prevalence of COVID-19-positive infants was underreported. The number of COVID-19-positive infants was reported only in a few studies in which, it is indicated among other positive cases [38, 39]. Figure 2 shows the prevalence of COVID-19-positive infants in different regions of the world based on the reported data before the emergence of the delta and omicron variants. The prevalence of COVID-19 in infants varied from country to country (1.1–22.5%) (Fig. 2). The highest percentages of COVID-19 positive infants were from United States (22.5%), Saudi Arabia (13.2%), Spain (12.6%) and Nigeria (11.7%) [4043]. Lower percentages were found in Brazil (8.4%), Canada (7.3%), Korea (6.5%), India (5.9%), Norway (5.0%), Congo (4.5%), Germany (2.7%), Australia (2.6%), United Kingdom (2.2%), China (1.6–2.2%), Iran (1.7%), Italy (1.5%) and Netherland (1.1%) [37, 39, 4448]. These differences may be explained by the possible country-level influence on COVID-19 such as the testing strategy of suspected cases, the original population structure of each country, and whether the control measures (social distance, wearing masks, washing hands, etc.) were strictly followed by the public or not and also by the period of the state of the epidemic. However, it is necessary to point out that the true prevalence of COVID-19 in infants remains underestimated due to the lack of stated data and the high frequency of asymptomatic forms [49].

Epidemiology of COVID-19 in infants during the Delta and Omicron era

During Delta era

Since its emergence in December 2020, the delta variant (B.1.617.2) seems to affect a large proportion of the younger population with the appearance of clinical signs similar to those presented by adults [21, 22, 50]. Main data was obtained from the UK, after April 2021, where this variant became a dominant strain and was spread rapidly through schools [20]. Public Health England confirmed an increased number of outbreaks and clusters at primary and secondary schools from May to June 2, 2021 [20]. Reports from different areas such as Bolton indicated that cases were growing fastest among school-age children, with an increased number of cases at any point during the pandemic [51]. Also, data from the Office for National Statistics of UK for the weeks of 29th May and 1st June, showed an increase in the numbers of cases in school children aged 7–11 years [20, 52]. In the United States, it was suggested that the delta variant was highly transmissible in indoor sports settings and households, which might lead to higher attack rates among exposed persons especially children aged 5–19 years [53]. Overall, in the epidemiological analysis of COVID-19 in infants during the Delta variant era, there was a significant increase in pediatric cases and hospitalizations [5456]. Data suggested that these increases are related to increased Delta COVID-19 incidence rather than increased Delta virulence in infants [54, 55, 57].

During Omicron era

The emergence of the Omicron variant was also linked to an increasing number of SARS-CoV-2 infections and hospital admissions of infants and adults. Available data showed rising in pediatric SARS-CoV-2 hospitalizations in many countries [2328]. In the UK, according to the data from the COVID-19 Clinical Information Network study, the proportion of infants aged less than 1 year admitted to hospital was 42.2% (period from 14 December 2021 to 12 January 2022), much higher than earlier in the pandemic (Fig. 3) [23, 24]. However, reports from Scotland, the US, South Africa, and England showed lower rates of hospitalization following Omicron infection compared with the Delta variant infection [5861]. The national data from a Scotland cohort analysis suggested that Omicron is associated with a two-thirds reduction in the risk of COVID-19 hospitalization when compared to Delta [59]. In the US, a retrospective cohort study conducted on 577,938 patients during the period when Delta and Omicron variants predominate showed that the outcomes in children under 5 years old are mildest after the emergence of the Omicron variant [61]. The risk for hospitalization and the risk for emergency department admission that occurred after the emergence of the Omicron variant was one-third (Fig. 3) and less than one-fifth of that during the Delta variant period, respectively [61]. These findings were also observed for children aged 5–11 and 12–17 years old (Fig. 3) [61]. The increased rate of infections and hospitalizations caused by the Omicron variant compared with the Delta variant seems to be attributed to differences in the prevalence of the virus variants.

Transmission dynamic among infants and adults

Transmission dynamic Before Delta and Omicron era

The need to understand the impact of children in the SARS-CoV-2 pandemic sighted researchers to study the transmission dynamics of SARS-CoV-2 between infant-infant and infant-adult. From February 2020 to January 2021, the obtained data were controversial. Many studies reported low transmissibility of SARS-CoV2 among children and also from children to adults [36, 38, 62, 63]. For instance, when investigating SARS-CoV-2 transmissibility in 23 clusters, Maltezou et al. showed that the transmission of infection within families including children occurs more frequently from adult to child [63]. Low transmissibility in children was also reported by other studies conducted in China and United States, which it has shown that young children often acquired infections through community sources [35, 37]. Bhuiyan et al. [37], found that among 1214 children younger than five years, the majority (> 95%) had a community source of infection. However, in the same period, other studies suggested an important role of children in the transmission dynamics of SARS-CoV-2 [30, 64]. A household transmission pattern study, in the United States, demonstrated that children were the potential source of further transmission in approximately 20% of households, with possible child-to-adult transmission in 20% and possible child-to-child transmission in 17% [64]. Also, Mannheim et al. suggested both child-to-child and child-to-adult transmission is estimated at 13% [30]. In India, based on the contact-tracing data from the Indian states of Tamil Nadu and Andhra Pradesh by 1 August 2020, Laxminarayan et al. [1] showed that the transmission occurs more frequently among children who contact cases from their own age. The enhanced infection risk among individuals exposed to similar-age cases was also apparent among adults [1]. The authors concluded that children may play a key role in the transmission dynamics of SARS-CoV-2 in middle and low incomes countries where social, cultural, and economic conditions favor close contact between children and also with adults [1, 65].

Transmission dynamic during the Delta and Omicron era

During Delta era

The emergence of novel variants much more transmissible raised questions about the change in the relative risk of SARS-CoV-2 child–adult transmissibility [66]. Loenenbach et al. [67] 2021 showed that the susceptibility and infectiousness of children having the SARS-CoV-2 B.1.1.7 variant are substantially higher compared with the pre-variants of concern (VOC) period (39% vs. 7.9%). The SARS-CoV-2 B.1.617.2 variant seems to be around 60% more transmissible than the SARS-CoV-2 B.1.1.7 variant [68, 69]. It is spreading rapidly, particularly through primary and secondary schools as well as indoor sports settings and households, which might lead to higher attack rates among children [20, 21, 53].

During Omicron era

A rapid increase in COVID-19 cases was reported from the beginning of December 2021, as a result of the Omicron variant spreading. The transmission dynamics of this new variant was assessed by an in-silico analysis. Data from this study showed that the infectivity of Omicron might be more than tenfold higher than that of the original virus and approximately twice as high as that of Delta [70]. According to reported data, it is estimated that the Omicron variant infects six times as many people as Delta over the same time and that the Rt of Omicron is 1.4- to 3.1-fold higher than that of Delta [25, 26, 71]. In Gauteng South Africa, Viana et al. [28] estimated that Omicron had a growth advantage of 0.24 per day over Delta, corresponding to a 5.4-fold weekly increase in cases compared to Delta. Data on the rate in children in the US showed that the rate of infected children admitted to hospital from 26 December 2021 to 1 January 2022 was nearly double the rate reported in early December before the Omicron variant began to take hold [27]. Current data shows that the Omicron variant is more contagious than the Delta variant. However, evidences from other international studies are needed to highlight the role of SARS-CoV-2 variants in increasing outbreak size.

Incubation period

The incubation period is the duration from the exposure of the pathogen to the onset of symptoms. Studies report a median incubation period of 5 to 7.5 days, before the emergence of the B.1.617.2 variant. Shen et al. [72] showed that the median incubation period was 7.5 days in six children ranging from 1 to 16 days. In another study, the median incubation period of children was 5 days (ranging from 3 to 12 days) [73]. It was shown that the incubation period of SARS-CoV-2 differs from variant to another (Table 1). The incubation period for the Delta variant, to the best of our knowledge, was only reported in four studies from China and Japan [7477]. It was significantly shorter (3.7, 4.0 and 4.4 days) than for non-Delta strains (4.9–6.0 days) [7476]. However, in another study, a longer incubation period was reported (6.0 days) [77]. After the emergence of the Omicron variant, preliminary information suggests that the median incubation period may be shorter at around 2–3 days in children and adults [78].
Table 1
Incubation period, rates of emergency department visit and intensive care unit admission compared during the period before and after Delta and omicron emergence
 
Before Delta and omicron emergence
After Delta emergence
After Omicron emergence
References
Median Incubation period
5–7.5 days
3.7–6 days
2–3 days
[77, 78]
Emergency department visit
0–4 years
NI
21.01%
3.89%
[61]
5–11 years
NI
12.62%
3.60%
[61]
Intensive care unit admission rate
Under 1 year
NI
14.00%
9.90%
[23]
< 18 years
26.5%
0.10%
23.2%
1.40%
NI
NI
[120]
[54]

Common clinical manifestations

Before the Delta and Omicron era

At the onset of the SARS-CoV-2 pandemic up to May 2021, compared to adults, children get less COVID-19 and had less severe cases [33, 48, 6264]. Unlike adults, infants develop more likely asymptomatic [33, 36, 72, 7983] or mild forms [16, 31, 33, 36, 64, 84, 85]. Symptomatic children reported fever and dry cough as the most common symptoms. They were reported at 36–73% and 19–54% of pediatric cases, respectively [32, 35, 48, 66, 67, 79, 8693]. The body temperature varied mainly between 37.5 and 38.5 [86]. These symptoms can be accompanied by headache, fatigue, myalgia, nasal congestion, sneezing, [28, 48, 64, 68, 69, 79, 86, 88, 89, 94]. Headache was reported in almost 25–79% of cases [48, 64, 70, 71].
Regarding nasal congestion, some studies, in the USA and China reported an important proportion of 50–68% of pediatric cases with rhinorrhea [64, 94]. In contrast, other studies based on a limited number of cases, reported fewer proportions ranging from 2.8 to 16% of cases with rhinorrhea and nose congestion [86, 87, 89, 91, 95].
While adult patients rarely developed intestinal signs, symptoms such as nausea, vomiting, abdominal pain, constipation, and diarrhea are frequent among pediatric populations [96, 97]. A wide variety of manifestations can appear before, with, or after the development of respiratory symptoms [6769, 79, 96, 98100]. Anorexia or poor appetite was frequent (34–67%), followed by diarrhea (2–32.5%), vomiting (1–28.3%), abdominal pain and discomfort (1–11.9%) and nausea (1–11.1%). [9, 79, 96, 99, 101110].
Compared with symptomatic adults, children were less likely to report loss of taste and loss of smell [48, 64] and more likely to report sore throat [64, 83, 86, 88, 89]. In Taiwan, up to April, 7, among 24 children, 12.5% had a loss of smell and/or taste [48]. Other studies reported also the development of sore throat. According to Laws RL and colleagues in a series of 19 children, 68% had presented sore throat [64]. However sore throat seems low in other studies: 1 case in a total of 20 [88], 2 cases of sore throat among 31 [89].

Clinical manifestations during the Delta and Omicron era

During Delta era

The Delta variant infection appeared to cause a similar common outcome [56, 111]. A retrospective study in China investigated the clinical features of delta-infected patients and non-delta ones and showed that cough and fever are still predominant signs, but gastrointestinal symptoms have become much less frequent [111]. In South Korea, a retrospective study showed that there was no significant difference in COVID-19 symptoms in delta and non-delta patients except for the lower frequencies of rhinorrhea (25% vs. 10.5%, P = 0.003), nasal stuffiness (34.8% vs. 15.4%, P = 0.001) and sore throat (23.9% vs. 12.6%, P = 0.02) [56]. Additionally, it was shown that there was no statistically significant difference between the two groups in the frequency of pneumonia (2.2% vs. 0.7%, P = 0.56) and hospital transfer (5.4% vs. 2.1%, P = 0.27) [56].

During Omicron era

The same common manifestations were observed with Delta and Omicron variants. A study comparing the outcome of COVID-19 infection in pediatrics and adults before and after the emergence of the Omicron variant showed that both Delta and Omicron variants induce relatively stable outcomes [61]. However, higher manifestations rates were associated with the Omicron variant due to its higher infectivity compared to the other variants [61].

Complications of COVID-19

Complications before the Delta and Omicron era

Before the emergence of the Delta variant, complications among positive COVID-19 children cases were less frequent. They were especially reported among patients with underlying medical conditions. Required hospitalization was in 11% to 60% of cases and admission to the Intensive Care Unit (ICU) in almost 10% of cases, the majority presented medical underlying conditions [32, 93, 112, 113].
Severe cases presented hypoxia, tachypnea and oxygen saturation less than 92% [33, 93]. Critical cases can rapidly progress into acute respiratory distress syndrome or respiratory failure and present shock, encephalopathy, myocardial injury, heart failure, coagulation dysfunction, acute kidney injury and Organ dysfunction [33, 87, 94].

Complications during the Delta and Omicron era

During Delta era

After the emergence of the Delta and Omicron variants of SARS-CoV-2, available information reported high hospitalization rates among children [19, 114116]. Furthermore, a study conducted in Scotland and England showed that the risk of COVID-19 hospitalization was approximately double in those with Delta VOC compared with Alpha VOC and that, particularly in those with comorbidities [117, 118]. However, other studies showed that the increased rate of hospitalization during the Delta emergence was not associated with a severe outcome with a similar rate of Intensive Care Unit admission (Table 1) [69, 119, 120]. In Japan, the intensive care unit admission rate was higher during the Delta VOC era than in the pre-Delta VOC era (1.4% [n = 5] vs. 0.1% [n = 1], P = 0.006), among pediatric patients with COVID-19 (Table 1), but no patient in either group died or required mechanical ventilation or extracorporeal membrane oxygenation [54]. According to these data, it appears that the Delta variant does not cause worse clinical outcomes compared to prior lineages. Furthermore, a retrospective study investigating imaging characteristics of children infected with the Delta variant, showed that the imaging-based severity was significantly milder than that in cases in 2020 [121].

During Omicron era

For the Omicron variant, based on a multicenter nationwide database in the US, no major changes in hospitalization were observed during the two-week that immediately preceded the emergence of the Omicron variant (11/16/2021–11/30/2021) and the 10-week Delta variant period before it (9/1/2021–11/15/2021) [61]. A lower rate of emergency department visits was found among children and adults compared to the Delta variant period (Table 1) [61]. In the UK, it was shown that the rate of admission to intensive care was less than that detected during the delta period (Table 1) [23].

Immunodepressive children

Immunodepressive children before the Delta and Omicron era

As COVID-19 can trigger complications of an underlying disease, patients with immune deficits need to be monitored carefully during the COVID-19 pandemic [122]. Nevertheless, at the beginning of the pandemic, studies about COVID-19 among Primary Immunodeficiency (PID) patients were controversial. According to the Joint Forces of International Societies for Immunodeficiencies, most patients present a mild disease [122, 123]. For instance, In Iran, a case report of an eight-year-old boy who had Specific Antibody Deficiency (SAD), presented wet cough and rhinorrhea [124]. In general, patients with severe disease evolution, additionally, have comorbidities or complications of their immunodeficiency [122, 123].
Other studies considered that patients with immunodeficiency are at increased risk of developing severe COVID-19 [125127]. PID patients presented: shortness of breath, a drop in oxygen saturation, respiratory distress, tachypnea, seizure, cardiomegaly, cardiac, and pulmonary arrest, requiring hospitalization and admission to intensive care units [128130]. For instance, among an international series of 94 COVID-19 PID patients, 18 were admitted to intensive care units, and nine patients died [129]. Another study reported up to 50% hospitalization rate among PID requiring mechanical ventilation [130132]. Fatal outcomes were also reported among PID and Secondary Immunodeficiency (SID) patients. It was estimated up to 35.3% and 44% respectively [130].
It was expected that prolonged carriage of SARS-CoV-2 is possible such as in the case of viruses belonging to the family of Picornaviridae: poliovirus [133], non-polio enteroviruses [134, 135] and cosavirus [136]. Data reported shedding of infectious SARS-CoV-2 and genomic RNA by PID occurred for many months [137]. They excreted the virus up to 120 days after initial detection (70–120 days) [138]. In these cases, Primary Immunodeficient (PIDs) and Secondary Immunodeficient (SIDs) patients, may constitute an increased risk of transmission to the community with the persistence of a reservoir for the virus and the potential emergence of mutated strains.

Immunodepressive children during the Delta and Omicron era

The available data on immunocompromised patients infected with the delta variant is limited. According to the study of Hadjadj and colleagues, the emergence of SARS-CoV-2 strains like the Delta variant (B.1.617.2) with increased viral form and immune escape potential, raises concerns among immunocompromised patients [139, 140]. Recently, a new variant of concern (VOC) called Omicron was first identified on November 24, 2021, in an immunocompromised patient from Johannesburg, South Africa as a consequence of prolonged replication among PID patients [141145]. However, no more data has been published on the behavior of omicron in severely immunocompromised individuals [146].

Kawasaki-like and Multisystem Inflammatory Syndrome COVID-19 manifestations

SARS-CoV-2 can induce a systemic inflammatory response affecting multiple organs, with severely affected lungs. The extrapulmonary manifestations can include systemic vasculature, similar to Kawasaki disease (KD) or Multisystem Inflammatory Syndrome [18, 147]. KD is an acute systemic inflammatory disease of medium- and small-sized vessels that mostly involve children under 5 years old [148152]. In the acute phase of the disease, patients might have haemo-dynamic instability, a condition known as Kawasaki Disease Shock Syndrome (KDSS) [153]. The cause of KD is unknown, but it is generally accepted that viral agents can trigger the disease [18]. The diagnosis is clinical and based on a combination of fever for at least five days and generalized inflammation involving lymph nodes, skin, and mucous membranes [147, 154, 155]. It can also induce conjunctivitis, coronary artery dilation/aneurysms and bilateral bulbar, [18, 156, 157]. Several cases have shown that SARS-CoV-2 stimulates an immune reaction mimicking KD [87, 156, 158166, 185]. Association to COVID-19 was mainly confirmed by serology test since clinical manifestations occur during the post-COVID-19 period in Children [87, 147, 156, 159166]. Children can present classical form of the Kawasaki disease or incomplete (atypical) form [156, 158160, 162, 167175].
Multisystem Inflammatory Syndrome in Children (MIS-C) is a pediatric hyperinflammation disease (cytokine storm) that was associated with SARS-CoV-2 infection [18, 158]. In general, it manifests 2–4 weeks following their initial COVID-19 infection as a consequence of an excessive immune response [167]. The clinical presentation of MIS-C includes high fever, inflammation and multi-organ dysfunction including gastrointestinal, cardiovascular (high frequency of myocarditis up to 80%), hematological, mucocutaneous, and respiratory [18, 168173]. MIS-C appears to share clinical features with KD, toxic shock syndrome and macrophage activation syndrome (MAS) [18, 170]. Despite this, MIS-C differs from KD in the involvement of greater age, gastrointestinal, myocarditis and/or cardiogenic shock, heart failure requiring inotropic support and circulatory assistance [18, 170]. On the other hand, comorbidity was associated with MIS-C manifestation including asthma and overweight. [175].

Outcomes

In the pediatric population, disease duration is relative to the severity of the disease. Indeed, the duration is over 10 days across all patients and over 20 days in critically ill patients [13, 88, 89, 91, 94].
The length of hospital stay has varied between different studies: the minimum and maximum averages reported have been 8.3 and 15.3 days respectively [72, 91]. In the case of hospitalization, the mean time was 14 days [72, 86]. Qiu et al. [86] concluded that patients with the moderate clinical type spent more days in hospital compared with those with a mild clinical type. Delta variant patients seem to have a significantly longer median (5.7) hospital length of stay [176]. In general, children who are admitted to PICU recovered without any adverse outcomes [87]. Fatal outcomes were also reported, generally in patients with underlying health conditions [32, 92, 177].

Factors impacting lower susceptibility of children to COVID-19 infection

There are several hypotheses on the mechanisms underlying the lower susceptibility of children to COVID-19 infection than adults [178, 179]. First, there is a lower expression of the Angiotensin-Converting Enzyme 2 (ACE2) receptor to which the virus would bind to enter cells [180]. ACE2 is a receptor for SARS-CoV-2 and the key region responsible for the interaction [106, 181]. Differences in the distribution of ACE2 in the developing phase of childhood are a possible reason for milder SARS-CoV-2 infection [29]. Second, an “immaturity” and consequently loss of functioning of the ACE2 receptors, makes it difficult, for the virus to enter the body [182]. Third, kids present a great expression of the innate immune response, which is more effective against this virus than adults [179, 183]. Children seem also to present a more efficient immune response due to the stimulation given by typical age and vaccinations [184]. According to the literature, some vaccines such as HBV, Tetanus, Measles, Mumps, Rubella and BCG may have a protective effect against COVID-19 [185187].

Factors impacting the severity of COVID-19 in children

Before the Delta and Omicron era

There are many risk factors associated with the progression and severity of COVID19 in children such as age, male gender, ethnicity, comorbidity, coinfection and virus type [29].
In the United States, Bandi S and colleagues reported that the mean age of COVID-19–positive children was significantly higher than those testing negative (9.72 vs. 4.85 years) [188]. In another study, severe and critical cases were reported mainly in children aged less than 1 year [36]. However, DeBiasi RL and colleagues showed that adolescents and young adults were more commonly critically ill than younger children [189].
Ethnicity was examined in the study of Bandi et al. [188]. African American children had a significantly higher rate of positive tests for COVID-19: 6.8% versus 1.7% of white children. Among 58 children, in the United Kingdom, race (black or Asian) was described as a risk factor for COVID-19 [190].
Male gender is a risk factor for severe coronavirus disease in adults [191]. A predominance of boys was reported in all age subgroups among 2490 pediatric cases of COVID-19 in a series in the United States [32]. In a cross-sectional study of 48 children with COVID-19 admitted in the USA and Canadian intensive care units (ICUs), 52% were boys [192].
Underlying medical comorbidity may be a risk factor for severe disease in childhood [32, 80, 88, 92, 177, 192, 193].
The rate of patients with preexisting morbidity, developing severe COVID-19 manifestations, varied between 23 and 83% [193]. Among underlying diseases, chronic lung disease was the most common followed by cardiovascular disorder and immunosuppressive disease [32]. Malnutrition, cancers and kidney diseases were also implicated [178]. Respiratory syncytial virus and Enterobacter aerogenes were implicated [87, 194].

During the Delta and Omicron era

During Delta era

The emergence of the delta variant B.1.617.2 confirmed the impact of virus strains on the severity of the disease. B.1.617.2 was considered as the most dominant SARS-CoV-2 variant before the appearance of the Omicron variant and it was rapidly spread around the world [195, 196]. The Delta variant harbors different mutations in the Spike gene that helped the virus to be more transmissible, escape immune response, easily break into cells and efficiently replicate (T19R, L452R, T478K, D614G, P681R, and d960N, G142D, R158G with deletions at positions 157 and 158) [195, 197, 198].
For instance, D614G interrupts certain molecular interactions in the spike protein facilitating virus propagation. L452R can enhance the interaction between ACE2 and the spike protein, which makes the virus more susceptible to infect cells. T478K is unique to the delta variant. Its role has not yet been described and like L452R, it may help enhance the maintenance of spike proteins on ACE2 [197, 199, 200].

During Omicron era

After this wave, a new variant B.1.1.529 was first reported to the WHO in South Africa on November 24, 2021, called Omicron [141]. This variant contains a large number of mutations. It included more than 30 mutations in the spike protein alone compared to delta variant mutations in addition to others in proteins such as NSP12 and NSP14 which enhanced the viral replication [145, 195, 201203]. If vaccine coverage is still insufficient in any region of the world, it will be possible in the future that other varieties will emerge with significant changes in transmissibility, infectivity and pathogenicity.

SARS-COV-2 vaccines in children

After the emergence of the Delta variants, children of all ages seem to be more vulnerable to develop severe cases. Thus, they should benefit from vaccination to protect themselves from severe and long-term consequences and, also, to restrain virus circulation among the population. Two types of mRNA vaccines, Pfizer-BioNTech (BNT162b2) and Moderna, were allowed for children [204209]. The Pfizer vaccine was authorized, in May 2021, for children aged more than 12 years, and in December 2021, for children aged 5–11 years [205]. In July 2021, the European Medicines Agency (EMA) authorized the Moderna vaccine for those aged 12–17 years, while vaccination of kids aged 5–11 years is still under-investigation [210]. Both vaccines have been applied, in children over the age of 12, in American, European, African and Asian countries [211222]. While only Pfizer has been implemented for those aged 5–11 years, in Italy, the United States, Israel, United Kingdom, Germany, Ireland, Poland, France, Spain and Denmark. [210213, 218, 223225]. Several studies have shown that vaccines were safe and effective in reducing virus transmission and protecting them against re-infection with SARS-CoV-2 [205, 226228]. However, they may cause mild to moderate adverse reactions, such as fever, fatigue and irritability, with a low risk of myocarditis, especially for children aged 5–11 years [205, 225227].

Conclusion

The pediatric population constitutes a vulnerable group that requires particular attention during the SARS-CoV2 pandemics and especially with the emergence of more transmissible and virulent SARS-CoV-2 variants. Although children are less susceptible to COVID-19, and the clinical picture in childhood is often distinct from that in adults, in both age groups chronic underlying medical problems, immunodeficiency and virus virulence can predispose to severe disease. In contrast with adults, in whom older age is an independent risk factor for severity and mortality, very young age is considered a risk factor for severity in children, The care of children with allergies or immune conditions is being adapted to the current situation, with more remote working and guiding children to reduce the likelihood of infection in children who would be deemed at higher risk of severe COVID-19 disease [122]. The current COVID-19 pandemic might also pose a risk to pediatric patients with secondary immunodeficiencies, such as patients on immunosuppressive therapy for autoimmune or severe allergic diseases [122]. With the emergence of the Delta and Omicron variants, infection in children seems to be more frequent and severe. The increase of symptomatic and severe SARS-CoV-2 infections highlights the need to extend vaccination to the pediatric population. The Pfizer and Moderna vaccines were authorized for children since they were found to be safe, immunogenic, and efficacious.

Acknowledgements

This study was conducted in the Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia (LR 20 IPT 02), funded by the Tunisian Ministry of High education and research.

Declarations

As the data came from publicly available published articles, this study did not require ethical approval.
All authors have read and agreed to the submitted version of the manuscript.

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Rathore JS, Ghosh C. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a newly emerged pathogen: an overview. Pathog Dis. 2020;78(6):ftaa042.PubMedCrossRef Rathore JS, Ghosh C. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a newly emerged pathogen: an overview. Pathog Dis. 2020;78(6):ftaa042.PubMedCrossRef
3.
5.
Zurück zum Zitat Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–76.PubMedCrossRef Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–76.PubMedCrossRef
6.
Zurück zum Zitat Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20.PubMedCrossRef Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20.PubMedCrossRef
9.
Zurück zum Zitat Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China The Lancet févr. 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China The Lancet févr. 2020;395(10223):497–506.CrossRef
11.
Zurück zum Zitat Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol. 2020;70(5):342–8.PubMedPubMedCentralCrossRef Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol. 2020;70(5):342–8.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Lotfi M, Rezaei N. SARS-CoV-2: a comprehensive review from pathogenicity of the virus to clinical consequences. J Med Virol. 2020;92(10):1864–74.PubMedPubMedCentralCrossRef Lotfi M, Rezaei N. SARS-CoV-2: a comprehensive review from pathogenicity of the virus to clinical consequences. J Med Virol. 2020;92(10):1864–74.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, et al. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J Med Virol. 2020;92(7):909–14.PubMedPubMedCentralCrossRef Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, et al. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J Med Virol. 2020;92(7):909–14.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Rezaei N. COVID-19 affects healthy pediatricians more than pediatric patients. Infect Control Hosp Epidemiol sept. 2020;41(9):1106–7.CrossRef Rezaei N. COVID-19 affects healthy pediatricians more than pediatric patients. Infect Control Hosp Epidemiol sept. 2020;41(9):1106–7.CrossRef
17.
Zurück zum Zitat Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3):223–31.PubMedPubMedCentralCrossRef Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3):223–31.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Torjesen I. Covid-19: Delta variant is now UK’s most dominant strain and spreading through schools. BMJ. 2021;373:n1445.PubMedCrossRef Torjesen I. Covid-19: Delta variant is now UK’s most dominant strain and spreading through schools. BMJ. 2021;373:n1445.PubMedCrossRef
21.
Zurück zum Zitat Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet Lond Engl. 2021;397(10293):2461–2.CrossRef Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet Lond Engl. 2021;397(10293):2461–2.CrossRef
32.
Zurück zum Zitat CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children-United States, February 12–April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):422–6.PubMedCentralCrossRef CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children-United States, February 12–April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):422–6.PubMedCentralCrossRef
33.
Zurück zum Zitat Dong Y, Mo X, Hu Y. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702.PubMedCrossRef Dong Y, Mo X, Hu Y. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702.PubMedCrossRef
35.
36.
Zurück zum Zitat Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020;145:e20200702.PubMedCrossRef Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020;145:e20200702.PubMedCrossRef
39.
45.
50.
Zurück zum Zitat World Health Organization. (2021). COVID-19 weekly epidemiological update, edition 76, 25 January 2022. World Health Organization. (2021). COVID-19 weekly epidemiological update, edition 76, 25 January 2022.
54.
Zurück zum Zitat Shoji K, Akiyama T, Tsuzuki S, Matsunaga N, Asai Y, Suzuki S, Iwamoto N, Funaki T, Ohmagari N. Comparison of the clinical characteristics and outcomes of COVID-19 in children before and after the emergence of Delta variant of concern in Japan. J Infect Chemother. 2022;S1341–321X(22):00022–8. https://doi.org/10.1016/j.jiac.2022.01.009.CrossRef Shoji K, Akiyama T, Tsuzuki S, Matsunaga N, Asai Y, Suzuki S, Iwamoto N, Funaki T, Ohmagari N. Comparison of the clinical characteristics and outcomes of COVID-19 in children before and after the emergence of Delta variant of concern in Japan. J Infect Chemother. 2022;S1341–321X(22):00022–8. https://​doi.​org/​10.​1016/​j.​jiac.​2022.​01.​009.CrossRef
55.
Zurück zum Zitat Edward PR, Lorenzo-Redondo R, Reyna ME, Simons LM, Hultquist JF, Patel AB, Ozer EA, Muller WJ, Heald-Sargent T, McHugh M, Dean TJ, Dalal RM, John J, Manz SC, Kociolek LK. Severity of Illness Caused by Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern in Children: A Single-Center Retrospective Cohort Study. medRxiv [Preprint]. 2021 Oct 26:2021.10.23.21265402. doi: https://doi.org/10.1101/2021.10.23.21265402 Edward PR, Lorenzo-Redondo R, Reyna ME, Simons LM, Hultquist JF, Patel AB, Ozer EA, Muller WJ, Heald-Sargent T, McHugh M, Dean TJ, Dalal RM, John J, Manz SC, Kociolek LK. Severity of Illness Caused by Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern in Children: A Single-Center Retrospective Cohort Study. medRxiv [Preprint]. 2021 Oct 26:2021.10.23.21265402. doi: https://​doi.​org/​10.​1101/​2021.​10.​23.​21265402
57.
Zurück zum Zitat Siegel DA, Reses HE, Cool AJ, et al. MAPW1. Trends in COVID-19 cases, emergency department visits, and hospital admissions among children and adolescents aged 0–17 years–United States, August 2020–August 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1249–54.PubMedPubMedCentralCrossRef Siegel DA, Reses HE, Cool AJ, et al. MAPW1. Trends in COVID-19 cases, emergency department visits, and hospital admissions among children and adolescents aged 0–17 years–United States, August 2020–August 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1249–54.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv [Preprint]. 2022 Jan 2:2021.12.30.21268495. doi: https://doi.org/10.1101/2021.12.30.21268495. PMID: 35018384; PMCID: PMC8750707. Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv [Preprint]. 2022 Jan 2:2021.12.30.21268495. doi: https://​doi.​org/​10.​1101/​2021.​12.​30.​21268495. PMID: 35018384; PMCID: PMC8750707.
70.
Zurück zum Zitat Schmidt F, Weisblum Y, Rutkowska M, et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature. 2021;600(7889):512–6.PubMedPubMedCentralCrossRef Schmidt F, Weisblum Y, Rutkowska M, et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature. 2021;600(7889):512–6.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Shen Q, Guo W, Guo T, Li J, He W, Ni S, et al. Novel coronavirus infection in children outside of Wuhan, China. Pediatr Pulmonol. 2020;55(6):1424–9.PubMedPubMedCentralCrossRef Shen Q, Guo W, Guo T, Li J, He W, Ni S, et al. Novel coronavirus infection in children outside of Wuhan, China. Pediatr Pulmonol. 2020;55(6):1424–9.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Han Y, Feng Z, Sun L, Ren X, Wang H, Xue Y, et al. A comparative-descriptive analysis of clinical characteristics in 2019-coronavirus-infected children and adults. J Med Virol. 2020;92(9):1596–602.PubMedCrossRef Han Y, Feng Z, Sun L, Ren X, Wang H, Xue Y, et al. A comparative-descriptive analysis of clinical characteristics in 2019-coronavirus-infected children and adults. J Med Virol. 2020;92(9):1596–602.PubMedCrossRef
76.
Zurück zum Zitat Zhang M, Xiao J, Deng A, Zhang Y, Zhuang Y, Hu T, Li J, Tu H, Li B, Zhou Y, Yuan J, Luo L, Liang Z, Huang Y, Ye G, Cai M, Li G, Yang B, Xu B, Huang X, Cui Y, Ren D, Zhang Y, Kang M, Li Y. Transmission dynamics of an outbreak of the COVID-19 Delta variant B.1.617.2-Guangdong Province, China, May–June 2021. China CDC Wkly. 2021;3(27):584–6. https://doi.org/10.46234/ccdcw2021.148.CrossRefPubMedPubMedCentral Zhang M, Xiao J, Deng A, Zhang Y, Zhuang Y, Hu T, Li J, Tu H, Li B, Zhou Y, Yuan J, Luo L, Liang Z, Huang Y, Ye G, Cai M, Li G, Yang B, Xu B, Huang X, Cui Y, Ren D, Zhang Y, Kang M, Li Y. Transmission dynamics of an outbreak of the COVID-19 Delta variant B.1.617.2-Guangdong Province, China, May–June 2021. China CDC Wkly. 2021;3(27):584–6. https://​doi.​org/​10.​46234/​ccdcw2021.​148.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Jansen L, Tegomoh B, Lange K, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) variant cluster–Nebraska, November–December 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1782–4.PubMedPubMedCentralCrossRef Jansen L, Tegomoh B, Lange K, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) variant cluster–Nebraska, November–December 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1782–4.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Su L, Ma X, Yu H, et al. The different clinical characteristics of corona virus disease cases between children and their families in China—the character of children with COVID-19. Emerg Microbes Infect. 2020;9:707–13.PubMedCrossRef Su L, Ma X, Yu H, et al. The different clinical characteristics of corona virus disease cases between children and their families in China—the character of children with COVID-19. Emerg Microbes Infect. 2020;9:707–13.PubMedCrossRef
80.
Zurück zum Zitat Feng K, Yun YX, Wang XF, et al. Analysis of CT features of 15 children with 2019 novel coronavirus infection [in Chinese]. Zhonghua Er Ke Za Zhi. 2020;58:E007.PubMed Feng K, Yun YX, Wang XF, et al. Analysis of CT features of 15 children with 2019 novel coronavirus infection [in Chinese]. Zhonghua Er Ke Za Zhi. 2020;58:E007.PubMed
81.
Zurück zum Zitat Ma X, Su L, Zhang Y, Zhang X, Gai Z, Zhang Z. Do children need a longer time to shed SARS-CoV-2 in stool than adults? J Microbiol Immunol Infect. 2020;53:373–6.PubMedPubMedCentralCrossRef Ma X, Su L, Zhang Y, Zhang X, Gai Z, Zhang Z. Do children need a longer time to shed SARS-CoV-2 in stool than adults? J Microbiol Immunol Infect. 2020;53:373–6.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63:706–11.PubMedPubMedCentralCrossRef Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63:706–11.PubMedPubMedCentralCrossRef
83.
85.
Zurück zum Zitat Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20:559–64.PubMedPubMedCentralCrossRef Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20:559–64.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20:689–96.PubMedPubMedCentralCrossRef Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20:689–96.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Zheng F, Liao C, Fan QH, et al. Clinical characteristics of children with Coronavirus Disease 2019 in Hubei. China Curr Med Sci. 2020;40(2):275–80.PubMedCrossRef Zheng F, Liao C, Fan QH, et al. Clinical characteristics of children with Coronavirus Disease 2019 in Hubei. China Curr Med Sci. 2020;40(2):275–80.PubMedCrossRef
88.
Zurück zum Zitat Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020;55:1169–74.PubMedPubMedCentralCrossRef Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020;55:1169–74.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Wang D, Ju XL, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China [in Chinese]. Zhonghua Er Ke Za Zhi. 2020;58:269–74.PubMed Wang D, Ju XL, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China [in Chinese]. Zhonghua Er Ke Za Zhi. 2020;58:269–74.PubMed
90.
Zurück zum Zitat Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA. 2020;323:1313–4.PubMedPubMedCentralCrossRef Wei M, Yuan J, Liu Y, Fu T, Yu X, Zhang ZJ. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA. 2020;323:1313–4.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Liu W, Zhang Q, Chen J, et al. Detection of COVID-19 in children in early January 2020 Wuhan. China N Engl J Med. 2020;382:1370–1.PubMedCrossRef Liu W, Zhang Q, Chen J, et al. Detection of COVID-19 in children in early January 2020 Wuhan. China N Engl J Med. 2020;382:1370–1.PubMedCrossRef
92.
Zurück zum Zitat Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663–5.PubMedCrossRef Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663–5.PubMedCrossRef
93.
Zurück zum Zitat Parri N, Lenge M. Children with Covid-19 in Pediatric Emergency Departments in Italy. N Engl J Med. 2020;383(2):187.PubMedCrossRef Parri N, Lenge M. Children with Covid-19 in Pediatric Emergency Departments in Italy. N Engl J Med. 2020;383(2):187.PubMedCrossRef
94.
Zurück zum Zitat Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;16(3):251–9.PubMedPubMedCentralCrossRef Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;16(3):251–9.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Zhou Y, Yang GD, Feng K, et al. Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children [in Chinese]. Zhongguo Dang Dai Er Ke ZaZhi. 2020;22:215–20. Zhou Y, Yang GD, Feng K, et al. Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children [in Chinese]. Zhongguo Dang Dai Er Ke ZaZhi. 2020;22:215–20.
96.
Zurück zum Zitat Al-Beltagi M, Saeed NK, Bediwy AS, El-Sawaf Y. Paediatric gastrointestinal disorders in SARS-CoV-2 infection: epidemiological and clinical implications. World J Gastroenterol. 2021;27(16):1716–27.PubMedPubMedCentralCrossRef Al-Beltagi M, Saeed NK, Bediwy AS, El-Sawaf Y. Paediatric gastrointestinal disorders in SARS-CoV-2 infection: epidemiological and clinical implications. World J Gastroenterol. 2021;27(16):1716–27.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Han YN, Feng ZW, Sun LN, et al. A comparative-descriptive analysis of clinical characteristics in 2019-coronavirus infected children and adults. J Med Virol 2020;Apr 6. Epub ahead of print. Han YN, Feng ZW, Sun LN, et al. A comparative-descriptive analysis of clinical characteristics in 2019-coronavirus infected children and adults. J Med Virol 2020;Apr 6. Epub ahead of print.
102.
Zurück zum Zitat Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in Fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020;S0016–5085(20):30448. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in Fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020;S0016–5085(20):30448.
103.
Zurück zum Zitat Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered, retrospective, observational study. Lancet Gastroenterol Hepatol. 2020;8:475–81. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered, retrospective, observational study. Lancet Gastroenterol Hepatol. 2020;8:475–81.
104.
Zurück zum Zitat Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Gastroenterol Hepatol. 2020;395:507–13. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Gastroenterol Hepatol. 2020;395:507–13.
106.
Zurück zum Zitat Xu X, Wu X, Jiang X, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606.PubMedPubMedCentralCrossRef Xu X, Wu X, Jiang X, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Eng J Med. 2020;382:1708–20.CrossRef Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Eng J Med. 2020;382:1708–20.CrossRef
108.
Zurück zum Zitat Young B, Ong S, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323:1488.PubMedPubMedCentralCrossRef Young B, Ong S, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323:1488.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Han C, Duam C, Zhang S et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. 2020 Epub ahead of print: 1. Han C, Duam C, Zhang S et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. 2020 Epub ahead of print: 1.
114.
Zurück zum Zitat Mahase E. Delta variant: What is happening with transmission, hospital admissions, and restrictions? BMJ. 2021;373:n1513.PubMedCrossRef Mahase E. Delta variant: What is happening with transmission, hospital admissions, and restrictions? BMJ. 2021;373:n1513.PubMedCrossRef
116.
120.
Zurück zum Zitat Delahoy MJ, Ujamaa D, Whitaker M, et al. Hospitalizations associated with COVID-19 among children and adolescents-COVID-NET, 14 states, March 1, 2020-August 14, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1255–60.PubMedPubMedCentralCrossRef Delahoy MJ, Ujamaa D, Whitaker M, et al. Hospitalizations associated with COVID-19 among children and adolescents-COVID-NET, 14 states, March 1, 2020-August 14, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1255–60.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Brough HA, Kalayci O, Sediva A, Untersmayr E, Munblit D, Rodriquez Del Rio P, et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics-the 2020 COVID-19 pandemic. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2020. Epub 2020/04/23. Brough HA, Kalayci O, Sediva A, Untersmayr E, Munblit D, Rodriquez Del Rio P, et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics-the 2020 COVID-19 pandemic. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2020. Epub 2020/04/23.
123.
Zurück zum Zitat Al Yazidi LS, Al Rawahi H, Al Busaidi I, Al TS. COVID-19 and primary immunodeficiency: one-year experience. J Paediatr Child Health. 2021;57(4):594.PubMedPubMedCentralCrossRef Al Yazidi LS, Al Rawahi H, Al Busaidi I, Al TS. COVID-19 and primary immunodeficiency: one-year experience. J Paediatr Child Health. 2021;57(4):594.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Liu BM, Hill HR. Role of host immune and inflammatory responses in COVID-19 cases with underlying primary immunodeficiency: a review. J Interferon Cytokine Res. 2020;40(12):549–54.PubMedPubMedCentralCrossRef Liu BM, Hill HR. Role of host immune and inflammatory responses in COVID-19 cases with underlying primary immunodeficiency: a review. J Interferon Cytokine Res. 2020;40(12):549–54.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Babaha F, Rezaei N. Primary immunodeficiency diseases in COVID-19 pandemic: a predisposing or protective factor? Am J Med Sci. 2020;360(6):740–1.PubMedPubMedCentralCrossRef Babaha F, Rezaei N. Primary immunodeficiency diseases in COVID-19 pandemic: a predisposing or protective factor? Am J Med Sci. 2020;360(6):740–1.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Delavari S, Abolhassani H, Abolnezhadian F, Babaha F, Iranparast S, Ahanchian H, et al. Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J Clin Immunol. 2021;41(2):345–55.PubMedCrossRef Delavari S, Abolhassani H, Abolnezhadian F, Babaha F, Iranparast S, Ahanchian H, et al. Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J Clin Immunol. 2021;41(2):345–55.PubMedCrossRef
129.
Zurück zum Zitat Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol. 2021;147(2):520–31.PubMedCrossRef Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol. 2021;147(2):520–31.PubMedCrossRef
130.
Zurück zum Zitat Shields AM, Burns SO, Savic S, Richter AG, Anantharachagan A, Arumugakani G, et al. COVID-19 in patients with primary and secondary immunodeficiency: the United Kingdom experience. J Allergy Clin Immunol. 2021;147(3):870-875.e1.PubMedCrossRef Shields AM, Burns SO, Savic S, Richter AG, Anantharachagan A, Arumugakani G, et al. COVID-19 in patients with primary and secondary immunodeficiency: the United Kingdom experience. J Allergy Clin Immunol. 2021;147(3):870-875.e1.PubMedCrossRef
131.
Zurück zum Zitat Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146(1):211–3.PubMedPubMedCentralCrossRef Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146(1):211–3.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Foca E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2020. Epub 2020/04/23. Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Foca E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2020. Epub 2020/04/23.
133.
Zurück zum Zitat Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59:587–635.PubMedCrossRef Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59:587–635.PubMedCrossRef
134.
Zurück zum Zitat Driss N, Ben-Mustapha I, Mellouli F, Ben Yahia A, Touzi H, Bejaoui M, et al. High susceptibility for enterovirus infection and virus excretion features in Tunisian patients with primary immunodeficiencies. Clin Vaccine Immunol CVI. 2012;19(10):1684–9.PubMedCrossRef Driss N, Ben-Mustapha I, Mellouli F, Ben Yahia A, Touzi H, Bejaoui M, et al. High susceptibility for enterovirus infection and virus excretion features in Tunisian patients with primary immunodeficiencies. Clin Vaccine Immunol CVI. 2012;19(10):1684–9.PubMedCrossRef
135.
Zurück zum Zitat Driss N, Mellouli F, Ben Yahia A, Touzi H, Barbouche MR, Triki H, et al. Sequential asymptomatic enterovirus infections in a patient with major histocompatibility complex class II primary immunodeficiency. J Clin Microbiol. 2014;52(9):3486–9.PubMedPubMedCentralCrossRef Driss N, Mellouli F, Ben Yahia A, Touzi H, Barbouche MR, Triki H, et al. Sequential asymptomatic enterovirus infections in a patient with major histocompatibility complex class II primary immunodeficiency. J Clin Microbiol. 2014;52(9):3486–9.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Lamari A, Triki H, Driss N, Touzi H, Meddeb Z, Ben Yahia A, et al. Iterative excretion of human Cosaviruses from different genotypes associated with combined immunodeficiency disorder. Intervirology. 2018;61(5):247–54.PubMedCrossRef Lamari A, Triki H, Driss N, Touzi H, Meddeb Z, Ben Yahia A, et al. Iterative excretion of human Cosaviruses from different genotypes associated with combined immunodeficiency disorder. Intervirology. 2018;61(5):247–54.PubMedCrossRef
137.
Zurück zum Zitat Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN, Anzick SL, et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell. 2020;183(7):1901-1912.e9.PubMedPubMedCentralCrossRef Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN, Anzick SL, et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell. 2020;183(7):1901-1912.e9.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Tarhini H, Recoing A, Bridier-Nahmias A, Rahi M, Lambert C, Martres P, et al. Long term SARS-CoV-2 infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J Infect Dis. 2021;223:1522.PubMedCrossRef Tarhini H, Recoing A, Bridier-Nahmias A, Rahi M, Lambert C, Martres P, et al. Long term SARS-CoV-2 infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J Infect Dis. 2021;223:1522.PubMedCrossRef
139.
Zurück zum Zitat Hadjadj J, Planas D, Ouedrani A, Buffier S, Delage L, Nguyen Y, et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann Rheum Dis. January 2022; annrheumdis-2021-221508. Hadjadj J, Planas D, Ouedrani A, Buffier S, Delage L, Nguyen Y, et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann Rheum Dis. January 2022; annrheumdis-2021-221508.
140.
Zurück zum Zitat Chappell H, Patel R, Driessens C, Tarr AW, Irving WL, Tighe PJ, et al. Immunocompromised children and young people are at no increased risk of severe COVID-19. J Infect. 2022;84(1):31–9.PubMedCrossRef Chappell H, Patel R, Driessens C, Tarr AW, Irving WL, Tighe PJ, et al. Immunocompromised children and young people are at no increased risk of severe COVID-19. J Infect. 2022;84(1):31–9.PubMedCrossRef
143.
Zurück zum Zitat Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728–33.PubMedCrossRef Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728–33.PubMedCrossRef
144.
Zurück zum Zitat Bansal N, Raturi M, Bansal Y. SARS-CoV-2 variants in immunocompromised COVID-19 patients: The underlying causes and the way forward. Transfus Clin Biol. December 2021; S1246782021005322. Bansal N, Raturi M, Bansal Y. SARS-CoV-2 variants in immunocompromised COVID-19 patients: The underlying causes and the way forward. Transfus Clin Biol. December 2021; S1246782021005322.
145.
Zurück zum Zitat Gao S-J, Guo H, Luo G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol. 2022;94(4):1255–6.PubMedCrossRef Gao S-J, Guo H, Luo G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol. 2022;94(4):1255–6.PubMedCrossRef
149.
Zurück zum Zitat McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, Baker AL, Jackson MA, Takahashi M, Shah PB, Kobayashi T, Wu MH. Diagnosis, Treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association. Circulation. 2017;135(17):e927–99.PubMedCrossRef McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, Baker AL, Jackson MA, Takahashi M, Shah PB, Kobayashi T, Wu MH. Diagnosis, Treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association. Circulation. 2017;135(17):e927–99.PubMedCrossRef
150.
Zurück zum Zitat Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54:271–6.PubMedCrossRef Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54:271–6.PubMedCrossRef
151.
Zurück zum Zitat Kato H, Sugimura T, Akagi T, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94:1379–85.PubMedCrossRef Kato H, Sugimura T, Akagi T, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94:1379–85.PubMedCrossRef
153.
Zurück zum Zitat Kanegaye JT, Wilder MS, Molkara D, et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics. 2009;123:e783–9.PubMedCrossRef Kanegaye JT, Wilder MS, Molkara D, et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics. 2009;123:e783–9.PubMedCrossRef
154.
155.
Zurück zum Zitat McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135:e927–99.PubMedCrossRef McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135:e927–99.PubMedCrossRef
157.
Zurück zum Zitat Saguil A, Fargo M, Grogan S. Diagnosis and management of kawasaki disease. Am Fam Physician. 2015;91:365–71.PubMed Saguil A, Fargo M, Grogan S. Diagnosis and management of kawasaki disease. Am Fam Physician. 2015;91:365–71.PubMed
158.
Zurück zum Zitat Kabeerdoss J, Pilania RK, Karkhele R, Kumar TS, Danda D, Singh S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management. Rheumatol Int. 2020;21:1–14. Kabeerdoss J, Pilania RK, Karkhele R, Kumar TS, Danda D, Singh S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management. Rheumatol Int. 2020;21:1–14.
163.
164.
Zurück zum Zitat Ouldali N, Pouletty M, Lokmer J et al (2020) Response to: ‘Correspondence on ‘Paediatric multisystem infammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort’by Pouletty et al’by Pino et al. Ann Rheum Dis. DOI: https://doi.org/10.1136/annrheumdis-2020-218614 Ouldali N, Pouletty M, Lokmer J et al (2020) Response to: ‘Correspondence on ‘Paediatric multisystem infammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort’by Pouletty et al’by Pino et al. Ann Rheum Dis. DOI: https://​doi.​org/​10.​1136/​annrheumdis-2020-218614
167.
Zurück zum Zitat Thompson LA, Kelly MN. Return to play after COVID-19 infection in children. JAMA Pediatr. 2021;175(8):875–875.PubMedCrossRef Thompson LA, Kelly MN. Return to play after COVID-19 infection in children. JAMA Pediatr. 2021;175(8):875–875.PubMedCrossRef
169.
Zurück zum Zitat Nakra N, Blumberg D, Herrera-Guerra A, Lakshminrusimha S. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management. Children. 2020;7(7):69.PubMedCentralCrossRef Nakra N, Blumberg D, Herrera-Guerra A, Lakshminrusimha S. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management. Children. 2020;7(7):69.PubMedCentralCrossRef
171.
Zurück zum Zitat Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334–46.PubMedCrossRef Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334–46.PubMedCrossRef
173.
Zurück zum Zitat Chiotos K, Bassiri H, Behrens EM, Blatz AM, Chang J, Diorio C, et al. Multisystem inflammatory syndrome in children during the Coronavirus 2019 pandemic: a case series. J Pediatr Infect Dis Soc. 2020;9(3):393–8.CrossRef Chiotos K, Bassiri H, Behrens EM, Blatz AM, Chang J, Diorio C, et al. Multisystem inflammatory syndrome in children during the Coronavirus 2019 pandemic: a case series. J Pediatr Infect Dis Soc. 2020;9(3):393–8.CrossRef
174.
Zurück zum Zitat Grimaud M, Starck J, Levy M, Marais C, Chareyre J, Khraiche D, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):69.PubMedPubMedCentralCrossRef Grimaud M, Starck J, Levy M, Marais C, Chareyre J, Khraiche D, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):69.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat De Jacobis IT, Vona R, Cittadini C, Marchesi A, Cursi L, Gambardella L, et al. Clinical characteristics of children infected with SARS-CoV-2 in Italy. Ital J Pediatr. 2021;47(1):90.PubMedPubMedCentralCrossRef De Jacobis IT, Vona R, Cittadini C, Marchesi A, Cursi L, Gambardella L, et al. Clinical characteristics of children infected with SARS-CoV-2 in Italy. Ital J Pediatr. 2021;47(1):90.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Pecoraro L, Carbonare LD, Franceschi LD, Piacentini G, Pietrobelli A. The psychophysical impact that COVID-19 has on children must not be underestimated. Acta Paediatr. 2020;109(8):1679–80.PubMedPubMedCentralCrossRef Pecoraro L, Carbonare LD, Franceschi LD, Piacentini G, Pietrobelli A. The psychophysical impact that COVID-19 has on children must not be underestimated. Acta Paediatr. 2020;109(8):1679–80.PubMedPubMedCentralCrossRef
181.
183.
Zurück zum Zitat Be’ne’teau-Burnat B, Baudin B, Morgant G, et al. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin Chem. 1990;36(2):344–6.CrossRef Be’ne’teau-Burnat B, Baudin B, Morgant G, et al. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin Chem. 1990;36(2):344–6.CrossRef
184.
Zurück zum Zitat Shen K, Yang Y, Wang T, Zhao D, Jiang Yi, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3):223–31.PubMedPubMedCentralCrossRef Shen K, Yang Y, Wang T, Zhao D, Jiang Yi, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3):223–31.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Gold JE, Baumgartl WH, Okyay RA, Licht WE, Fidel PL, Noverr MC, et al. Analysis of Measles-Mumps-Rubella (MMR) titers of recovered COVID-19 patients. MBio. 2020;11(6):e02628-e2720.PubMedPubMedCentralCrossRef Gold JE, Baumgartl WH, Okyay RA, Licht WE, Fidel PL, Noverr MC, et al. Analysis of Measles-Mumps-Rubella (MMR) titers of recovered COVID-19 patients. MBio. 2020;11(6):e02628-e2720.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A. 2020;117(30):17720–6.PubMedPubMedCentralCrossRef Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A. 2020;117(30):17720–6.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Haddad-Boubaker S, Othman H, Touati R, Ayouni K, Lakhal M, Ben Mustapha I, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinform. 2021;22:163.CrossRef Haddad-Boubaker S, Othman H, Touati R, Ayouni K, Lakhal M, Ben Mustapha I, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinform. 2021;22:163.CrossRef
189.
Zurück zum Zitat DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington. DC Metropolitan Region J Pediatr. 2020;223:199-203.e1.PubMed DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington. DC Metropolitan Region J Pediatr. 2020;223:199-203.e1.PubMed
193.
Zurück zum Zitat Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Shi B, Xia Z, Xiao S, et al. Severe pneumonia due to SARS-CoV-2 and respiratory syncytial virus infection: a case report. Clin Pediatr (Phila). 2020;59(8):823–6.CrossRef Shi B, Xia Z, Xiao S, et al. Severe pneumonia due to SARS-CoV-2 and respiratory syncytial virus infection: a case report. Clin Pediatr (Phila). 2020;59(8):823–6.CrossRef
196.
Zurück zum Zitat Galloway SE, Paul P, MacCannell DR, et al. (2021) Emergence of SARS-CoV-2 B.1.1.7 lineage—United States, December 29, 2020–January 12. MMWR Morb Mortal Wkly Rep. 2021;70(3):95–9.PubMedPubMedCentralCrossRef Galloway SE, Paul P, MacCannell DR, et al. (2021) Emergence of SARS-CoV-2 B.1.1.7 lineage—United States, December 29, 2020–January 12. MMWR Morb Mortal Wkly Rep. 2021;70(3):95–9.PubMedPubMedCentralCrossRef
197.
198.
Zurück zum Zitat Sanches PRS, Charlie-Silva I, Braz HLB, Bittar C, Freitas Calmon M, Rahal P, et al. Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad. 2021;7(3):100054.PubMedPubMedCentralCrossRef Sanches PRS, Charlie-Silva I, Braz HLB, Bittar C, Freitas Calmon M, Rahal P, et al. Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad. 2021;7(3):100054.PubMedPubMedCentralCrossRef
199.
203.
Zurück zum Zitat Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecurity. 2022;4(1):33–7.CrossRef Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecurity. 2022;4(1):33–7.CrossRef
211.
Zurück zum Zitat Woodworth KR, Moulia D, Collins JP, Hadler SC, Jones JM, Reddy SC, et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in children aged 5–11 years—United States, November 2021. Morb Mortal Wkly Rep. 2021;70(45):1579–83.CrossRef Woodworth KR, Moulia D, Collins JP, Hadler SC, Jones JM, Reddy SC, et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in children aged 5–11 years—United States, November 2021. Morb Mortal Wkly Rep. 2021;70(45):1579–83.CrossRef
213.
Zurück zum Zitat Sacco C, Del Manso M, Mateo-Urdiales A, Rota MC, Petrone D, Riccardo F, et al. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection and severe COVID-19 in children aged 5–11 years in Italy: a retrospective analysis of January–April, 2022. Lancet Lond Engl. 2022;400(10346):97–103.CrossRef Sacco C, Del Manso M, Mateo-Urdiales A, Rota MC, Petrone D, Riccardo F, et al. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection and severe COVID-19 in children aged 5–11 years in Italy: a retrospective analysis of January–April, 2022. Lancet Lond Engl. 2022;400(10346):97–103.CrossRef
214.
Zurück zum Zitat Zimmermann P, Pittet LF, Finn A, Pollard AJ, Curtis N. Should children be vaccinated against COVID-19? Arch Dis Child. 2022;107(3):e1.3-e8.CrossRef Zimmermann P, Pittet LF, Finn A, Pollard AJ, Curtis N. Should children be vaccinated against COVID-19? Arch Dis Child. 2022;107(3):e1.3-e8.CrossRef
216.
Zurück zum Zitat Thompson LA, Rasmussen SA. Children and COVID-19 Vaccines. JAMA Pediatr. 2021;175(8):876.CrossRef Thompson LA, Rasmussen SA. Children and COVID-19 Vaccines. JAMA Pediatr. 2021;175(8):876.CrossRef
220.
Zurück zum Zitat Mallapaty S, Callaway E, Kozlov M, Ledford H, Pickrell J, Van Noorden R. How COVID vaccines shaped 2021 in eight powerful charts. Nature. 2021;600(7890):580–3.PubMedCrossRef Mallapaty S, Callaway E, Kozlov M, Ledford H, Pickrell J, Van Noorden R. How COVID vaccines shaped 2021 in eight powerful charts. Nature. 2021;600(7890):580–3.PubMedCrossRef
224.
Zurück zum Zitat Sam-Agudu NA, Quakyi NK, Masekela R, Zumla A, Nachega JB. Children and adolescents in African countries should also be vaccinated for COVID-19. BMJ Glob Health. 2022;7(2):e008315.PubMedCrossRef Sam-Agudu NA, Quakyi NK, Masekela R, Zumla A, Nachega JB. Children and adolescents in African countries should also be vaccinated for COVID-19. BMJ Glob Health. 2022;7(2):e008315.PubMedCrossRef
225.
226.
Zurück zum Zitat Hause AM, Shay DK, Klein NP, Abara WE, Baggs J, Cortese MM, Fireman B, Gee J, Glanz JM, Goddard K, Hanson KE. Safety of COVID-19 vaccination in United States children ages 5 to 11 years. Pediatrics. 2022;150(2):11.CrossRef Hause AM, Shay DK, Klein NP, Abara WE, Baggs J, Cortese MM, Fireman B, Gee J, Glanz JM, Goddard K, Hanson KE. Safety of COVID-19 vaccination in United States children ages 5 to 11 years. Pediatrics. 2022;150(2):11.CrossRef
227.
Zurück zum Zitat Kamidani S, Rostad CA, Anderson EJ. COVID-19 vaccine development: a pediatric perspective. Curr Opin Pediatr. 2021;33(1):144–51.PubMedCrossRef Kamidani S, Rostad CA, Anderson EJ. COVID-19 vaccine development: a pediatric perspective. Curr Opin Pediatr. 2021;33(1):144–51.PubMedCrossRef
Metadaten
Titel
SARS-CoV-2 infection in pediatric population before and during the Delta (B.1.617.2) and Omicron (B.1.1.529) variants era
verfasst von
Haifa Khemiri
Kaouther Ayouni
Henda Triki
Sondes Haddad-Boubaker
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Virology Journal / Ausgabe 1/2022
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01873-4

Weitere Artikel der Ausgabe 1/2022

Virology Journal 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.