Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 19.06.2020 | COVID-19 | Research Letter

Single ventilator for multiple patients during COVID19 surge: matching and balancing patients

verfasst von: Lonnie G. Petersen, James Friend, Sidney Merritt

Erschienen in: Critical Care | Ausgabe 1/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
To the editor
With a potential COVID19-induced ventilator shortage, supporting multiple patients on a single ventilator seems a simple solution to maximize resources. Described by Neyman et al. [1], this practice has anecdotally been used in the 2017 Las Vegas mass shooting and more recently in Italy and New York during the COVID-19 pandemic. However, a recent consensus statement from relevant medical associations discouraged the practice based on safety concerns [2]. Beyond cross-contamination and increased dead space, matching patients to ensure appropriate individual ventilation peak pressures (Ppeak), tidal volumes (Vtidal), and positive end-expiratory pressures (PEEP) is a concern, especially given the dynamic clinical presentation of the COVID19 patients with complicated acute respiratory distress syndrome (ARDS). The central question remains: What does it mean to match patients? How much can they differ before we are no longer saving two lives but risking both?
To illustrate the effect of progressive mismatching, we ventilated two mechanical lungs (TTL3, Michigan Instruments) on a ventilator (840, Puritan Bennett™) using pressure control mode and ARDS-compatible settings (Ppeak = 20–30 cmH2O; R = 20 bpm; Ftotal = 24 l/min; I = 1.5 s; PEEP = 8 cmH2O) [3]. While keeping patient B at constant pulmonary compliance (0.03 l/cmH2O), we let patient A progressively deteriorate in compliance from 0.06 to 0.01 l/cmH2O, finally creating a maximum mismatch between patients (see Fig. 1). One-way valves on both inspiratory and expiratory limbs ensured unidirectional flow, which both reduces functional dead space and the risk of cross-contamination between patient A and B, and seemingly also facilitated stable ventilation of B as A deteriorated. Importantly though, simultaneous and opposite changes in compliance made it possible to fatally hypo-ventilate one patient and hyper-ventilate the other without triggering alarms. As ventilator alarms are triggered only by changes in the sum of the pressure/volume of both patients on the circuit, we recommend a narrow alarm range (e.g., Vtidal ± 200 ml; Ftotal ± 1 L; Ppeak ± 5 cmH2O). The one-way valves on each expiratory limb prevent backflow but introduce a risk of competing exhalation: a slightly earlier or more forceful expiration from A can (partly) impair B and worsen breath staggering, particularly at higher respiration rates.
Frequent or constant monitoring of patients and shuffling when a mismatch arises is recommended. Asthma or COPD may increase the rate of fatal mismatch, making the method even more unpredictable. Finally, each class of ventilators requires a specific set up; if the method is considered, use the calm before the patient surge to familiarize, and ameliorate the many risks associated with sharing a ventilator.

Acknowledgements

The authors acknowledge UCSD from deans, chairs, and staff for allowing work directed to meet the medical emergency.
N/A
N/A

Competing interests

The authors declare that they have no competing interests financial or otherwise.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Neyman G, Irvin CB. A single ventilator for multiple simulated patients to meet disaster surge. Acad Emerg Med. 2006;13(11):1246–9.CrossRef Neyman G, Irvin CB. A single ventilator for multiple simulated patients to meet disaster surge. Acad Emerg Med. 2006;13(11):1246–9.CrossRef
3.
Zurück zum Zitat Beitler JR, Kallet R, Kacmarek R, Branson R, Brodie D, Mittel AM, Olson M, Hill LL, Hess D, Thompson BT. Ventilator sharing protocol: dual-patient ventilation with a single mechanical ventilator for use during critical ventilator shortages. Columbia University College of Physicians & Surgeons, New York-Presbyterian Hospital. Version 3: March 24, 2020. Beitler JR, Kallet R, Kacmarek R, Branson R, Brodie D, Mittel AM, Olson M, Hill LL, Hess D, Thompson BT. Ventilator sharing protocol: dual-patient ventilation with a single mechanical ventilator for use during critical ventilator shortages. Columbia University College of Physicians & Surgeons, New York-Presbyterian Hospital. Version 3: March 24, 2020.
Metadaten
Titel
Single ventilator for multiple patients during COVID19 surge: matching and balancing patients
verfasst von
Lonnie G. Petersen
James Friend
Sidney Merritt
Publikationsdatum
19.06.2020
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03041-y

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.