Skip to main content
Erschienen in: Tumor Biology 4/2016

06.11.2015 | Original Article

CPEB4 interacts with Vimentin and involves in progressive features and poor prognosis of patients with astrocytic tumors

verfasst von: Wei Chen, Zhen Hu, Xi-zhao Li, Jun-liang Li, Xin-Ke Xu, Hai-gang Li, Yeqing Liu, Bai-hui Liu, Wei-hua Jia, Fang-cheng Li

Erschienen in: Tumor Biology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Cytoplasmic polyadenylation element binding protein 4 (CPEB4) is a regulator of gene transcription and has been reported to be associated with biological malignancy in cancers. However, it is unclear whether CPEB4 has any clinical significance in patients with astrocytic tumors, and mechanisms that CPEB4 contribute to progression of astrocytic tumors remain largely unknown. Here, correlation between CPEB4 expression and prognosis of patients with astrocytic tumors were explored by using qPCR, WB and IHC, and X-tile, SPSS software. Cell lines U251 MG and A172 were used to study CPEB4’s function and mechanisms. Co-immunoprecipitation, mass spectrometry, immunofluorescent assay, and western blot were performed to observe the interaction between CPEB4 and Vimentin. CPEB4 mRNA and protein levels were markedly elevated in 12/12 astrocytic tumors in comparison to paratumor. High expression of CPEB4 was significantly correlated with clinical progressive futures and work as an independent adverse prognostic factor for overall survival of patients with astrocytic tumors (relative risk 4.5, 95 % CI 2.1–11.2, p = 0.001). Moreover, knockdown of CPEB4 in astrocytic tumor cells inhibited their proliferation ability, clonogenicity, and invasiveness. Five candidate proteins, GRP78, Mortalin, Keratin, Vimentin, and β-actin, were identified, and the interaction between CPEB4 and Vimentin was finally confirmed. Downregulation of CPEB4 could reduce the protein expression of Vimentin. Our studies first validated that CPEB4 interacts with Vimentin and indicated that high CPEB4 expression in astrocytic tumors correlates closely with a clinically aggressive future, and that CPEB4 might represent a valuable prognostic marker for patients with astrocytic tumors.
Literatur
1.
Zurück zum Zitat Gandini NA, Fermento ME, Salomon DG, Obiol DJ, Andres NC, Zenklusen JC, et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumor Biol. 2014;35(3):2803–15.CrossRef Gandini NA, Fermento ME, Salomon DG, Obiol DJ, Andres NC, Zenklusen JC, et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumor Biol. 2014;35(3):2803–15.CrossRef
2.
Zurück zum Zitat Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:v1–49.CrossRefPubMedPubMedCentral Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:v1–49.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Smoll NR, Schaller K, Gautschi OP. Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci. 2013;20(5):670–5.CrossRefPubMed Smoll NR, Schaller K, Gautschi OP. Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci. 2013;20(5):670–5.CrossRefPubMed
4.
Zurück zum Zitat Towia A, Libermann HRN, Nissim R, Richard K, Irit L, Hermona S, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985;313:144–7.CrossRef Towia A, Libermann HRN, Nissim R, Richard K, Irit L, Hermona S, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985;313:144–7.CrossRef
5.
Zurück zum Zitat Yin SMEV, Gliomas Á, Apoptosis ÁSÁ, Cell Á. p53 Pathway alteration in brain tumors. Humana Press. 2009. Yin SMEV, Gliomas Á, Apoptosis ÁSÁ, Cell Á. p53 Pathway alteration in brain tumors. Humana Press. 2009.
6.
Zurück zum Zitat Koul D, Shen R, Shishodia S, Takada Y, Bhat KP, Reddy SA. PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway. Mol Cell Biochem. 2007;300(1–2):77–87.CrossRefPubMed Koul D, Shen R, Shishodia S, Takada Y, Bhat KP, Reddy SA. PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway. Mol Cell Biochem. 2007;300(1–2):77–87.CrossRefPubMed
7.
Zurück zum Zitat Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5.CrossRefPubMedPubMedCentral Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Yang M, Yuan Y, Zhang H, Yan M, Wang S, Feng F, et al. Prognostic significance of CD147 in patients with glioblastoma. J Neurooncol. 2013;115(1):19–26.CrossRefPubMed Yang M, Yuan Y, Zhang H, Yan M, Wang S, Feng F, et al. Prognostic significance of CD147 in patients with glioblastoma. J Neurooncol. 2013;115(1):19–26.CrossRefPubMed
9.
Zurück zum Zitat Lin W, Li XM, Zhang J, Huang Y, Wang J, Jiang XF, et al. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients. Med Oncol. 2013;30(4):677.CrossRefPubMed Lin W, Li XM, Zhang J, Huang Y, Wang J, Jiang XF, et al. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients. Med Oncol. 2013;30(4):677.CrossRefPubMed
10.
Zurück zum Zitat Nuno M, Birch K, Mukherjee D, Sarmiento JM, Black KL, Patil CG. Survival and prognostic factors of anaplastic gliomas. Neurosurgery. 2013;73(3):458–65.CrossRefPubMed Nuno M, Birch K, Mukherjee D, Sarmiento JM, Black KL, Patil CG. Survival and prognostic factors of anaplastic gliomas. Neurosurgery. 2013;73(3):458–65.CrossRefPubMed
11.
Zurück zum Zitat Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, et al. The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro Oncol. 2013;15(9):1151–9.CrossRefPubMedPubMedCentral Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, et al. The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro Oncol. 2013;15(9):1151–9.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2(7):521–9.CrossRefPubMed Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2(7):521–9.CrossRefPubMed
13.
14.
Zurück zum Zitat Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008;2 2(24): 3449–3460. Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008;2 2(24): 3449–3460.
15.
Zurück zum Zitat Eliscovich C, Peset I, Vernos I, Mendez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol. 2008;10(7):858–65.CrossRefPubMed Eliscovich C, Peset I, Vernos I, Mendez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol. 2008;10(7):858–65.CrossRefPubMed
16.
Zurück zum Zitat Livingstone M, Atas E, Meller A, Sonenberg N. Mechanisms governing the control of mRNA translation. Phys Biol. 2010;7(2):021001.CrossRefPubMed Livingstone M, Atas E, Meller A, Sonenberg N. Mechanisms governing the control of mRNA translation. Phys Biol. 2010;7(2):021001.CrossRefPubMed
17.
Zurück zum Zitat Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132(3):434–48.CrossRefPubMed Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132(3):434–48.CrossRefPubMed
18.
Zurück zum Zitat Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844–7.CrossRefPubMed Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844–7.CrossRefPubMed
19.
Zurück zum Zitat Kan MC, Oruganty-Das A, Cooper-Morgan A, Jin G, Swanger SA, Bassell GJ, et al. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol Cell Biol. 2010;30(24):5658–71.CrossRefPubMedPubMedCentral Kan MC, Oruganty-Das A, Cooper-Morgan A, Jin G, Swanger SA, Bassell GJ, et al. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol Cell Biol. 2010;30(24):5658–71.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Novoa I, Gallego J, Ferreira PG, Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol. 2010;12(5):447–56.CrossRefPubMed Novoa I, Gallego J, Ferreira PG, Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol. 2010;12(5):447–56.CrossRefPubMed
21.
Zurück zum Zitat Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Fernandez-Miranda G, Iglesias M, Alameda F, et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med. 2012;18(1):83–90.CrossRef Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Fernandez-Miranda G, Iglesias M, Alameda F, et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med. 2012;18(1):83–90.CrossRef
22.
Zurück zum Zitat Xu H, Liu B. CPEB4 is a candidate biomarker for defining metastatic cancers and directing personalized therapies. Med Hypotheses. 2013;81(5):875–7.CrossRefPubMed Xu H, Liu B. CPEB4 is a candidate biomarker for defining metastatic cancers and directing personalized therapies. Med Hypotheses. 2013;81(5):875–7.CrossRefPubMed
23.
Zurück zum Zitat Robert L. Camp MD-FaDLR. X-Tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Re 10: 7252–7259. Robert L. Camp MD-FaDLR. X-Tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Re 10: 7252–7259.
24.
Zurück zum Zitat Paciucci R, Tora M, Diaz VM, Real FX. The plasminogen activator system in pancreas cancer: role of t-PA in the invasive potential in vitro. Oncogene. 1998;16(5):625–33.CrossRefPubMed Paciucci R, Tora M, Diaz VM, Real FX. The plasminogen activator system in pancreas cancer: role of t-PA in the invasive potential in vitro. Oncogene. 1998;16(5):625–33.CrossRefPubMed
25.
Zurück zum Zitat Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.CrossRefPubMed Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.CrossRefPubMed
26.
Zurück zum Zitat Saaf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, et al. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell. 2007;18(11):4245–60.CrossRefPubMedPubMedCentral Saaf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, et al. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell. 2007;18(11):4245–60.CrossRefPubMedPubMedCentral
27.
28.
Zurück zum Zitat Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature. 2008;455(7213):684–8.CrossRefPubMedPubMedCentral Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature. 2008;455(7213):684–8.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Tsai LY, Chang YW, Lin PY, Chou HJ, Liu TJ, Lee PT, et al. CPEB4 knockout mice exhibit normal hippocampus-related synaptic plasticity and memory. PLoS one. 2013;8(12):e84978.CrossRefPubMedPubMedCentral Tsai LY, Chang YW, Lin PY, Chou HJ, Liu TJ, Lee PT, et al. CPEB4 knockout mice exhibit normal hippocampus-related synaptic plasticity and memory. PLoS one. 2013;8(12):e84978.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Theis M, Si K, Kandel ER. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc Natl Acad Sci U S A. 2003;100(16):9602–7.CrossRefPubMedPubMedCentral Theis M, Si K, Kandel ER. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc Natl Acad Sci U S A. 2003;100(16):9602–7.CrossRefPubMedPubMedCentral
Metadaten
Titel
CPEB4 interacts with Vimentin and involves in progressive features and poor prognosis of patients with astrocytic tumors
verfasst von
Wei Chen
Zhen Hu
Xi-zhao Li
Jun-liang Li
Xin-Ke Xu
Hai-gang Li
Yeqing Liu
Bai-hui Liu
Wei-hua Jia
Fang-cheng Li
Publikationsdatum
06.11.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 4/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3975-0

Weitere Artikel der Ausgabe 4/2016

Tumor Biology 4/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.