Skip to main content
Erschienen in:

02.05.2023 | Review Article

Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 2). Chapter 2. Biophysical model, treatment planning system and image guided radiotherapy

verfasst von: Masahiro Endo

Erschienen in: Radiological Physics and Technology | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

When an ion beam penetrates deeply into the body, its kinetic energy decreases, and its biological effect increases due to the change of the beam quality. To give a uniform biological effect to the target, it is necessary to reduce the absorbed dose with the depth. A bio-physical model estimating the relationship between ion beam quality and biological effect is necessary to determine the relative biological effectiveness (RBE) of the ion beam that changes with depth. For this reason, Lawrence Berkeley Laboratory, National Institute of Radiological Sciences (NIRS) and GSI have each developed their own model at the starting of the ion beam therapy. Also, NIRS developed a new model at the starting of the scanning irradiation. Although the Local Effect Model (LEM) at the GSI and the modified Microdosimetric Kinetic Model (MKM) at the NIRS, the both are currently used, can similarly predict radiation quality-induced changes in surviving fraction of cultured cell, the clinical RBE-weighted doses for the same absorbed dose are different. This is because the LEM uses X-rays as a reference for clinical RBE, whereas the modified MKM uses carbon ion beam as a reference and multiplies it by a clinical factor of 2.41. Therefore, both are converted through the absorbed dose. In PART 2, I will describe the development of such a bio-physical model, as well as the birth and evolution of a treatment planning system and image guided radiotherapy.
Literatur
1.
Zurück zum Zitat Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: Part 1. Period until treatment start (1975–1994). Jpn J Med Phys. 2020;40:61–7 (in Japanese). Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: Part 1. Period until treatment start (1975–1994). Jpn J Med Phys. 2020;40:61–7 (in Japanese).
2.
Zurück zum Zitat Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—From medical physics viewpoint: Part 2. Advancement of broad beam irradiation and development of a new compact-sized therapy accelerator (1994–2010). Jpn J Med Phys. 2020;40:97–105 (in Japanese). Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—From medical physics viewpoint: Part 2. Advancement of broad beam irradiation and development of a new compact-sized therapy accelerator (1994–2010). Jpn J Med Phys. 2020;40:97–105 (in Japanese).
3.
Zurück zum Zitat Endo M. Construction of heavy ion accelerator in Chiba (HIMAC) and its consequences- From medical physics viewpoint: Part 3. Development of scanning irradiation and construction of new facility (2006–). Jpn J Med Phys. 2020;40:126–38 (in Japanese). Endo M. Construction of heavy ion accelerator in Chiba (HIMAC) and its consequences- From medical physics viewpoint: Part 3. Development of scanning irradiation and construction of new facility (2006–). Jpn J Med Phys. 2020;40:126–38 (in Japanese).
4.
Zurück zum Zitat Endo M. Construction of heavy ion accelerator in Chiba (HIMAC) and its consequences—From medical physics viewpoint: Part 4. Outline of clinical research and future prospects. Jpn J Med Phys. 2021;41:10–21 (in Japanese). Endo M. Construction of heavy ion accelerator in Chiba (HIMAC) and its consequences—From medical physics viewpoint: Part 4. Outline of clinical research and future prospects. Jpn J Med Phys. 2021;41:10–21 (in Japanese).
5.
Zurück zum Zitat Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (part 1). Introduction and Chapter 1. Accelerator and beam delivery system. Radiol Phys Technol. 2022;15:271–90.PubMedCrossRef Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (part 1). Introduction and Chapter 1. Accelerator and beam delivery system. Radiol Phys Technol. 2022;15:271–90.PubMedCrossRef
7.
Zurück zum Zitat Lawrence Berkeley Laboratory. Biological and medical research with accelerated heavy Ions at the Bevalac, 1974–1977. Lawrence Berkeley Laboratory Report LBL-5610, 1977. Lawrence Berkeley Laboratory. Biological and medical research with accelerated heavy Ions at the Bevalac, 1974–1977. Lawrence Berkeley Laboratory Report LBL-5610, 1977.
8.
Zurück zum Zitat Lawrence Berkeley Laboratory. Biological and medical research with accelerated heavy Ions at the Bevalac, 1977–1980. Lawrence Berkeley Laboratory Report LBL-11220, 1980. Lawrence Berkeley Laboratory. Biological and medical research with accelerated heavy Ions at the Bevalac, 1977–1980. Lawrence Berkeley Laboratory Report LBL-11220, 1980.
9.
Zurück zum Zitat Furusawa Y, Fukutsu K, Aoki M. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res. 2000;154:485–96.PubMedCrossRef Furusawa Y, Fukutsu K, Aoki M. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res. 2000;154:485–96.PubMedCrossRef
10.
Zurück zum Zitat Lyman JT, Howard J, Kanstein L, et al.: Radiological physics of heavy charged-particle beams used for therapy. In: Biological and medical research with accelerated heavy Ions at the Bevalac, 1977–1980, pp. 319–324. Lawrence Berkeley Laboratory Report LBL-11220, 1980. Lyman JT, Howard J, Kanstein L, et al.: Radiological physics of heavy charged-particle beams used for therapy. In: Biological and medical research with accelerated heavy Ions at the Bevalac, 1977–1980, pp. 319–324. Lawrence Berkeley Laboratory Report LBL-11220, 1980.
11.
Zurück zum Zitat Petti PL, Lyman JT, Renner TT, et al. Design of beam-modulating devices for charged particle therapy. Med Phys. 1991;18:513–8.PubMedCrossRef Petti PL, Lyman JT, Renner TT, et al. Design of beam-modulating devices for charged particle therapy. Med Phys. 1991;18:513–8.PubMedCrossRef
12.
Zurück zum Zitat Kanai T, Furusawa Y, Fukutsu K, et al. Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion. Radiat Res. 1997;147:78–85.PubMedCrossRef Kanai T, Furusawa Y, Fukutsu K, et al. Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion. Radiat Res. 1997;147:78–85.PubMedCrossRef
13.
Zurück zum Zitat Zaider M, Rossi H. The synergistic effects of different radiations. Rad Res. 1980;83:732–9.CrossRef Zaider M, Rossi H. The synergistic effects of different radiations. Rad Res. 1980;83:732–9.CrossRef
14.
Zurück zum Zitat Kanai T, Endo M, Minohara S, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.PubMedCrossRef Kanai T, Endo M, Minohara S, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.PubMedCrossRef
15.
Zurück zum Zitat Kanai T, Matsufuji N, Miyamoto T, et al. Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys. 2006;64:650–6.PubMedCrossRef Kanai T, Matsufuji N, Miyamoto T, et al. Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys. 2006;64:650–6.PubMedCrossRef
16.
Zurück zum Zitat Boone ML, Lawrence JH, Connor WG, et al. Introduction to the use of protons and heavy ions in radiation therapy: historical perspective. Int J Radiat Oncol Biol Phys. 1977;3:65–9.PubMedCrossRef Boone ML, Lawrence JH, Connor WG, et al. Introduction to the use of protons and heavy ions in radiation therapy: historical perspective. Int J Radiat Oncol Biol Phys. 1977;3:65–9.PubMedCrossRef
17.
Zurück zum Zitat Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRef Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRef
18.
Zurück zum Zitat Endo M, Koyama H, Minohara S, et al. HIPLAN-A heavy ion treatment planning system at HIMAC. J JASTRO. 1996;8:231–8. Endo M, Koyama H, Minohara S, et al. HIPLAN-A heavy ion treatment planning system at HIMAC. J JASTRO. 1996;8:231–8.
19.
Zurück zum Zitat Goitein M, Abrams M, Rowell D, et al. Multi–dimensional treatment planning: II. Beam’s eye–view, back projection and projection through CT sections. Int J Radiat Oncol Biol Phys. 1983;9:789–97.PubMedCrossRef Goitein M, Abrams M, Rowell D, et al. Multi–dimensional treatment planning: II. Beam’s eye–view, back projection and projection through CT sections. Int J Radiat Oncol Biol Phys. 1983;9:789–97.PubMedCrossRef
20.
Zurück zum Zitat Endo M, Mori S. Michael Goitein (1939–2016): inventor of three-dimensional planning systems with image-guided beam delivery for radiation therapy. Radiol Phys Technol. 2021;14:1–5.PubMedCrossRef Endo M, Mori S. Michael Goitein (1939–2016): inventor of three-dimensional planning systems with image-guided beam delivery for radiation therapy. Radiol Phys Technol. 2021;14:1–5.PubMedCrossRef
21.
Zurück zum Zitat Chen GTY, Castro JR, Quivey JM. Heavy charged particle therapy. Ann Rev Biophys Bioeng. 1981;10:499–520.CrossRef Chen GTY, Castro JR, Quivey JM. Heavy charged particle therapy. Ann Rev Biophys Bioeng. 1981;10:499–520.CrossRef
22.
Zurück zum Zitat Koyama H, Endo M. Development of digitally reconstructed radiograph. Jpn J Med Phys. 1994;14:198–200. Koyama H, Endo M. Development of digitally reconstructed radiograph. Jpn J Med Phys. 1994;14:198–200.
23.
Zurück zum Zitat Miyahara N, Endo M, Nakamura Y. Automatic fabrication of compensator/patient collimator in heavy ion radiotherapy. Jpn J Med Phys. 1995;15:9–13 (in Japanese). Miyahara N, Endo M, Nakamura Y. Automatic fabrication of compensator/patient collimator in heavy ion radiotherapy. Jpn J Med Phys. 1995;15:9–13 (in Japanese).
24.
Zurück zum Zitat Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41:111–24.PubMedCrossRef Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41:111–24.PubMedCrossRef
25.
Zurück zum Zitat Kanematsu N, Matsufuji N, Kohno R, et al. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys Med Biol. 2003;48:1053–64.PubMedCrossRef Kanematsu N, Matsufuji N, Kohno R, et al. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys Med Biol. 2003;48:1053–64.PubMedCrossRef
26.
Zurück zum Zitat Kanematsu N, Inaniwa T, Nakao M. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional X-ray CT systems. Phys Med Biol. 2016;61:5037–50.PubMedCrossRef Kanematsu N, Inaniwa T, Nakao M. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional X-ray CT systems. Phys Med Biol. 2016;61:5037–50.PubMedCrossRef
27.
Zurück zum Zitat Yang M, Zhu XR, Park PC, et al. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012;57:4095–115.PubMedPubMedCentralCrossRef Yang M, Zhu XR, Park PC, et al. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012;57:4095–115.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 2012;39:2021–30.PubMedCrossRef Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 2012;39:2021–30.PubMedCrossRef
29.
Zurück zum Zitat Petti P. Differential-pencil-beam dose calculations for charged particles. Med Phys. 1992;19:137–49.PubMedCrossRef Petti P. Differential-pencil-beam dose calculations for charged particles. Med Phys. 1992;19:137–49.PubMedCrossRef
30.
Zurück zum Zitat Hong L, Goitein M, Bucciolini M, et al. A pencil beam algorism for proton dose calculations. Phys Med Biol. 1996;41:1305–30.PubMedCrossRef Hong L, Goitein M, Bucciolini M, et al. A pencil beam algorism for proton dose calculations. Phys Med Biol. 1996;41:1305–30.PubMedCrossRef
31.
Zurück zum Zitat Kanematsu N, Akagi T, Futami Y, et al. A proton dose calculation code for treatment planning based on the pencil beam algorithm. Jpn J Med Phys. 1998;18:88–103. Kanematsu N, Akagi T, Futami Y, et al. A proton dose calculation code for treatment planning based on the pencil beam algorithm. Jpn J Med Phys. 1998;18:88–103.
32.
Zurück zum Zitat Kanematsu N, Yonai S, Ishizaki A. The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy. Med Phys. 2008;35:602–7.PubMedCrossRef Kanematsu N, Yonai S, Ishizaki A. The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy. Med Phys. 2008;35:602–7.PubMedCrossRef
33.
Zurück zum Zitat Kanematsu N. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy. Phys Med. 2011;27:97–102.PubMedCrossRef Kanematsu N. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy. Phys Med. 2011;27:97–102.PubMedCrossRef
34.
Zurück zum Zitat Scholz M, Kellerer AM, Kraft-Weyrather W, et al. Computation of cell survival in heavy ion beams for therapy-the model and its approximation. Radiat Environ Biophys. 1997;36:59–66.PubMedCrossRef Scholz M, Kellerer AM, Kraft-Weyrather W, et al. Computation of cell survival in heavy ion beams for therapy-the model and its approximation. Radiat Environ Biophys. 1997;36:59–66.PubMedCrossRef
35.
Zurück zum Zitat Krämer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319–30.PubMedCrossRef Krämer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319–30.PubMedCrossRef
36.
Zurück zum Zitat Krämer M, Scholz M. Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol. 2006;51:1959–70.PubMedCrossRef Krämer M, Scholz M. Rapid calculation of biological effects in ion radiotherapy. Phys Med Biol. 2006;51:1959–70.PubMedCrossRef
38.
Zurück zum Zitat Krämer M, Jäkel O, Haberer T, et al. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000;45:3299–317.PubMedCrossRef Krämer M, Jäkel O, Haberer T, et al. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000;45:3299–317.PubMedCrossRef
40.
Zurück zum Zitat Jäkel O, Krämer M, Karger CP, et al. Treatment planning for heavy ion radiotherapy: clinical implementation and application. Phys Med Biol. 2001;46:1101–16.PubMedCrossRef Jäkel O, Krämer M, Karger CP, et al. Treatment planning for heavy ion radiotherapy: clinical implementation and application. Phys Med Biol. 2001;46:1101–16.PubMedCrossRef
41.
Zurück zum Zitat Gademann G, Schlegel W, Bükelbach J, et al. Dreidimensionale bestrahlungsplanung. Untersuchungen zur klinischen integration. Strahlenther Onkol. 1993;169:159–67 (in German).PubMed Gademann G, Schlegel W, Bükelbach J, et al. Dreidimensionale bestrahlungsplanung. Untersuchungen zur klinischen integration. Strahlenther Onkol. 1993;169:159–67 (in German).PubMed
42.
Zurück zum Zitat Stewart RD, Butkus MP, Hawkins RB, et al. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys. 2018;45:e925–52.PubMedCrossRef Stewart RD, Butkus MP, Hawkins RB, et al. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys. 2018;45:e925–52.PubMedCrossRef
44.
Zurück zum Zitat Liermann J, Naumann P, Weykamp F, et al. Effectiveness of carbon ion radiation in locally advanced pancreatic cancer. Front Oncol. 2021;11:708884.PubMedPubMedCentralCrossRef Liermann J, Naumann P, Weykamp F, et al. Effectiveness of carbon ion radiation in locally advanced pancreatic cancer. Front Oncol. 2021;11:708884.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Elsässer T, Scholz M. Cluster effects within the local effect model. Radiat Res. 2007;167:319–29.PubMedCrossRef Elsässer T, Scholz M. Cluster effects within the local effect model. Radiat Res. 2007;167:319–29.PubMedCrossRef
47.
Zurück zum Zitat Elsässer T, Krämer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys. 2008;71:866–72.PubMedCrossRef Elsässer T, Krämer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys. 2008;71:866–72.PubMedCrossRef
48.
Zurück zum Zitat Elsässer T, Weyrather WK, Friedrich T, et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78:1177–83.PubMedCrossRef Elsässer T, Weyrather WK, Friedrich T, et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 2010;78:1177–83.PubMedCrossRef
49.
Zurück zum Zitat Hawkins RB. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 1994;140:366–74.PubMedCrossRef Hawkins RB. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 1994;140:366–74.PubMedCrossRef
50.
Zurück zum Zitat Hawkins RB. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys. 1998;25:1157–70.PubMedCrossRef Hawkins RB. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys. 1998;25:1157–70.PubMedCrossRef
51.
Zurück zum Zitat Hawkins RB. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat Res. 2003;160:61–9.PubMedCrossRef Hawkins RB. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat Res. 2003;160:61–9.PubMedCrossRef
52.
Zurück zum Zitat Kellerer A, Rossi H. The theory of dual radiation action. In: Ebert M, Howard A, editors. Current topics in radiation research, vol. 8. Amsterdam: North-Holland Publishing Company; 1974. p. 85–158. Kellerer A, Rossi H. The theory of dual radiation action. In: Ebert M, Howard A, editors. Current topics in radiation research, vol. 8. Amsterdam: North-Holland Publishing Company; 1974. p. 85–158.
53.
Zurück zum Zitat Kellerer A, Rossi H. A generalized formulation of dual radiation action. Rad Res. 1978;75:471–88.CrossRef Kellerer A, Rossi H. A generalized formulation of dual radiation action. Rad Res. 1978;75:471–88.CrossRef
54.
Zurück zum Zitat Kase Y, Kanai T, Matsumoto Y, et al. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 2006;166:629–38.PubMedCrossRef Kase Y, Kanai T, Matsumoto Y, et al. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 2006;166:629–38.PubMedCrossRef
56.
Zurück zum Zitat Inaniwa T, Furukawa T, Kase Y, et al. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55:6721–37.PubMedCrossRef Inaniwa T, Furukawa T, Kase Y, et al. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55:6721–37.PubMedCrossRef
57.
Zurück zum Zitat Inaniwa T, Kanematsu N. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning. Phys Med Biol. 2015;60:437–51.PubMedCrossRef Inaniwa T, Kanematsu N. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning. Phys Med Biol. 2015;60:437–51.PubMedCrossRef
58.
Zurück zum Zitat Goitein M. A technique for calculating the influence of thin inhomogeneities on charged particle beams. Med Phys. 1978;5:258–64.PubMedCrossRef Goitein M. A technique for calculating the influence of thin inhomogeneities on charged particle beams. Med Phys. 1978;5:258–64.PubMedCrossRef
59.
Zurück zum Zitat Schaffner B. Pedroni E and Lomax A 1999 Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol. 1999;44:27–41.PubMedCrossRef Schaffner B. Pedroni E and Lomax A 1999 Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol. 1999;44:27–41.PubMedCrossRef
60.
Zurück zum Zitat Kanematsu N, Komori M, Yonai S, et al. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles. Phys Med Biol. 2009;54:2015–27.PubMedCrossRef Kanematsu N, Komori M, Yonai S, et al. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles. Phys Med Biol. 2009;54:2015–27.PubMedCrossRef
61.
Zurück zum Zitat Inaniwa T, Furukawa T, Nagano A, et al. Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med Phys. 2009;36:2889–97.PubMedCrossRef Inaniwa T, Furukawa T, Nagano A, et al. Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med Phys. 2009;36:2889–97.PubMedCrossRef
62.
Zurück zum Zitat Inaniwa T, Kanematsu N, Hara Y, et al. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy. Phys Med Biol. 2014;59:5361–86.PubMedCrossRef Inaniwa T, Kanematsu N, Hara Y, et al. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy. Phys Med Biol. 2014;59:5361–86.PubMedCrossRef
63.
Zurück zum Zitat Inaniwa T, Kanematsu N, Hara Y, et al. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning. Phys Med Biol. 2015;60:421–35.PubMedCrossRef Inaniwa T, Kanematsu N, Hara Y, et al. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning. Phys Med Biol. 2015;60:421–35.PubMedCrossRef
64.
Zurück zum Zitat Inaniwa T, Kanematsu N, Tsuji H, et al. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy. Med Phys. 2015;42:7132.PubMedCrossRef Inaniwa T, Kanematsu N, Tsuji H, et al. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy. Med Phys. 2015;42:7132.PubMedCrossRef
65.
Zurück zum Zitat Inaniwa T, Kanematsu N, Matsufuji N, et al. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol. 2015;60:3271–86.PubMedCrossRef Inaniwa T, Kanematsu N, Matsufuji N, et al. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol. 2015;60:3271–86.PubMedCrossRef
66.
Zurück zum Zitat Kase Y, Kanai T, Matsufuji N, et al. Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol. 2008;53:37–59.PubMedCrossRef Kase Y, Kanai T, Matsufuji N, et al. Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol. 2008;53:37–59.PubMedCrossRef
67.
Zurück zum Zitat Fossati P, Molinelli S, Matsufuji N, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;7:7543–54.CrossRef Fossati P, Molinelli S, Matsufuji N, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;7:7543–54.CrossRef
68.
Zurück zum Zitat Steinsträter O, Grün R, Scholz U, et al. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012;84:854–60.PubMedCrossRef Steinsträter O, Grün R, Scholz U, et al. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012;84:854–60.PubMedCrossRef
69.
Zurück zum Zitat Endo M. History of medical physics. Radio Phys Technol. 2021;14:345–57.CrossRef Endo M. History of medical physics. Radio Phys Technol. 2021;14:345–57.CrossRef
70.
Zurück zum Zitat Mori S, Kumagai M, Miki K, et al. Development of fast patient position verification software using 2D–3D image registration and its clinical experience. J Radiat Res. 2015;56:1–12.CrossRef Mori S, Kumagai M, Miki K, et al. Development of fast patient position verification software using 2D–3D image registration and its clinical experience. J Radiat Res. 2015;56:1–12.CrossRef
71.
Zurück zum Zitat Mori S, Kobayashi M, Kumagai M, et al. Development of a GPU based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radio Phys Technol. 2009;2:40–5.CrossRef Mori S, Kobayashi M, Kumagai M, et al. Development of a GPU based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radio Phys Technol. 2009;2:40–5.CrossRef
72.
Zurück zum Zitat Kamada T, Tsujii H, Mizoe J, et al. A horizontal CT system dedicated to heavy-ion beam treatment. Radiother Oncol. 1999;50:235–7.PubMedCrossRef Kamada T, Tsujii H, Mizoe J, et al. A horizontal CT system dedicated to heavy-ion beam treatment. Radiother Oncol. 1999;50:235–7.PubMedCrossRef
73.
Zurück zum Zitat Yokoyama A, Kubota Y, Kawamura H, et al. Impact of inter-fractional anatomical changes on dose distributions in passive carbon-ion radiotherapy for prostate cancer: comparison of vertical and horizontal fields. Front Oncol. 2020;10:1264.PubMedPubMedCentralCrossRef Yokoyama A, Kubota Y, Kawamura H, et al. Impact of inter-fractional anatomical changes on dose distributions in passive carbon-ion radiotherapy for prostate cancer: comparison of vertical and horizontal fields. Front Oncol. 2020;10:1264.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Tsuchida K, Minohara S, Kusano Y, et al. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: an analysis based on dose distribution from daily in-room CT images. J Appl Clin Med Phys. 2021;22:130–8.PubMedPubMedCentralCrossRef Tsuchida K, Minohara S, Kusano Y, et al. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: an analysis based on dose distribution from daily in-room CT images. J Appl Clin Med Phys. 2021;22:130–8.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Shirato H, Shimizu S, Kunieda T, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48:1187–95.PubMedCrossRef Shirato H, Shimizu S, Kunieda T, et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48:1187–95.PubMedCrossRef
76.
Zurück zum Zitat Shimizu S, Miyamoto N, Matsuura T, et al. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS ONE. 2014;9: e94971.PubMedPubMedCentralCrossRef Shimizu S, Miyamoto N, Matsuura T, et al. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS ONE. 2014;9: e94971.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Mori S, Karube M, Shirai T, et al. Carbon-ion pencil beam scanning treatment with gated markerless tumor tracking: an analysis of positional accuracy. Int J Radiat Oncol Biol Phys. 2016;95:258–66.PubMedCrossRef Mori S, Karube M, Shirai T, et al. Carbon-ion pencil beam scanning treatment with gated markerless tumor tracking: an analysis of positional accuracy. Int J Radiat Oncol Biol Phys. 2016;95:258–66.PubMedCrossRef
78.
Zurück zum Zitat Hirai R, Sakata Y, Tanizawa A, et al. Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Phys Med. 2019;59:22–9.PubMedCrossRef Hirai R, Sakata Y, Tanizawa A, et al. Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Phys Med. 2019;59:22–9.PubMedCrossRef
79.
Zurück zum Zitat Furukawa T, Hara Y, Mizushima K, et al. Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Method. 2017;B404:361–7.CrossRef Furukawa T, Hara Y, Mizushima K, et al. Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Method. 2017;B404:361–7.CrossRef
Metadaten
Titel
Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 2). Chapter 2. Biophysical model, treatment planning system and image guided radiotherapy
verfasst von
Masahiro Endo
Publikationsdatum
02.05.2023
Verlag
Springer Nature Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 2/2023
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-023-00722-5

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.