Skip to main content
main-content

01.12.2016 | Research article | Ausgabe 1/2016 Open Access

BMC Nephrology 1/2016

Crucial genes associated with diabetic nephropathy explored by microarray analysis

Zeitschrift:
BMC Nephrology > Ausgabe 1/2016
Autoren:
Zhikui Wang, Zhaoxia Wang, Zhongqi Zhou, Yueqin Ren
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12882-016-0343-2) contains supplementary material, which is available to authorized users.

Abstract

Background

This study sought to investigate crucial genes correlated with diabetic nephropathy (DN), and their potential functions, which might contribute to a better understanding of DN pathogenesis.

Methods

The microarray dataset GSE1009 was downloaded from Gene Expression Omnibus, including 3 diabetic glomeruli samples and 3 healthy glomeruli samples. The differentially expressed genes (DEGs) were identified by LIMMA package. Their potential functions were then analyzed by the GO and KEGG pathway enrichment analyses using the DAVID database. Furthermore, miRNAs and transcription factors (TFs) regulating DEGs were predicted by the GeneCoDis tool, and miRNA-DEG-TF regulatory network was visualized by Cytoscape. Additionally, the expression of DEGs was validated using another microarray dataset GSE30528.

Results

Totally, 14 up-regulated DEGs and 430 down-regulated ones were identified. Some DEGs (e.g. MTSS1, CALD1 and ACTN4) were markedly relative to cytoskeleton organization. Besides, some other ones were correlated with arrhythmogenic right ventricular cardiomyopathy (e.g. ACTN4, CTNNA1 and ITGB5), as well as complement and coagulation cascades (e.g. C1R and C1S). Furthermore, a series of miRNAs and TFs modulating DEGs were identified. The transcription factor LEF1 regulated the majority of DEGs, such as ITGB5, CALD1 and C1S. Hsa-miR-33a modulated 28 genes, such as C1S. Additionally, 143 DEGs (one upregulated gene and 142 downregulated genes) were also differentially expressed in another dataset GSE30528.

Conclusions

The genes involved in cytoskeleton organization, cardiomyopathy, as well as complement and coagulation cascades may be closely implicated in the progression of DN, via the regulation of miRNAs and TFs.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2016

BMC Nephrology 1/2016 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise