Skip to main content
Erschienen in: Inflammation 1/2020

13.11.2019 | Original Article

Curcumin Ameliorates Ovalbumin-Induced Atopic Dermatitis and Blocks the Progression of Atopic March in Mice

verfasst von: Sukriti Sharma, Gurupreet S. Sethi, Amarjit S. Naura

Erschienen in: Inflammation | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Curcumin, extracted from the roots of Curcuma longa, has been used as an anti-inflammatory agent since the time of Ayurveda. The present work was designed to evaluate the potential of curcumin in amelioration of ovalbumin (OVA) induced AD in mice. Female BALB/c mice were subjected to skin OVA-patch application for a period of 1 week followed by resting period of 2 weeks, and the same protocol was repeated thrice. Curcumin was administered daily at dose of 20 mg/kg (i.p.) for 7 consecutive days during last sensitization phase. The phytochemical ameliorated the OVA-induced skin pathology as evident by normalization of epidermal thickness and suppressed infiltration of inflammatory cells in dermal region. The expression of Th2 promoting cytokines (TSLP/IL-33) and Th2 cytokines (IL-4/IL-5/IL-13/IL-31) was suppressed markedly along with reduced STAT-6 phosphorylation and GATA-3 expression. Curcumin administration also restored the redox balance and phosphorylation status of P65-NF-κB. Additionally, the epicutaneously sensitized mice challenged with aerosolized OVA developed asthmatic features which were effectively thwarted back upon curcumin treatment as reflected by data on total/differential cells in BALF and mRNA expression of Th2 cytokines in lungs. Overall, our findings demonstrate that curcumin treatment blunts the development of AD as well as associated atopic march in experimental mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Leung, D.Y. 1995. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. The Journal of Allergy and Clinical Immunology 96: 302–318.PubMed Leung, D.Y. 1995. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. The Journal of Allergy and Clinical Immunology 96: 302–318.PubMed
2.
Zurück zum Zitat Zheng, T., J. Yu, M.H. Oh, and Z. Zhu. 2011. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy, Asthma & Immunology Research 3: 67–73. Zheng, T., J. Yu, M.H. Oh, and Z. Zhu. 2011. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy, Asthma & Immunology Research 3: 67–73.
3.
Zurück zum Zitat Brunner, P.M., E. Guttman-Yassky, and D.Y. Leung. 2017. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. The Journal of Allergy and Clinical Immunology 139: S65–s76.PubMedPubMedCentral Brunner, P.M., E. Guttman-Yassky, and D.Y. Leung. 2017. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. The Journal of Allergy and Clinical Immunology 139: S65–s76.PubMedPubMedCentral
4.
Zurück zum Zitat Salazar-Espinosa, J.F. 2014. The atopic march. A literature review. International Journal of Medical Students 2: 119–123. Salazar-Espinosa, J.F. 2014. The atopic march. A literature review. International Journal of Medical Students 2: 119–123.
5.
Zurück zum Zitat Leung, D.Y., and T. Bieber. 2003. Atopic dermatitis. Lancet 361: 151–160.PubMed Leung, D.Y., and T. Bieber. 2003. Atopic dermatitis. Lancet 361: 151–160.PubMed
6.
Zurück zum Zitat Allakhverdi, Z., D.E. Smith, M.R. Comeau, and G. Delespesse. 2007. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of Immunology 179: 2051–2054. Allakhverdi, Z., D.E. Smith, M.R. Comeau, and G. Delespesse. 2007. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of Immunology 179: 2051–2054.
7.
Zurück zum Zitat Wilson, S.R., The L, L.M. Batia, K. Beattie, G.E. Katibah, S.P. McClain, et al. 2013. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155: 285–295.PubMedPubMedCentral Wilson, S.R., The L, L.M. Batia, K. Beattie, G.E. Katibah, S.P. McClain, et al. 2013. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155: 285–295.PubMedPubMedCentral
8.
Zurück zum Zitat Jin, H., R. He, M. Oyoshi, and R.S. Geha. 2009. Animal models of atopic dermatitis. The Journal of Investigative Dermatology 129: 31–40.PubMedPubMedCentral Jin, H., R. He, M. Oyoshi, and R.S. Geha. 2009. Animal models of atopic dermatitis. The Journal of Investigative Dermatology 129: 31–40.PubMedPubMedCentral
9.
Zurück zum Zitat Peng, W., and N. Novak. 2015. Pathogenesis of atopic dermatitis. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 45: 566–574. Peng, W., and N. Novak. 2015. Pathogenesis of atopic dermatitis. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 45: 566–574.
10.
Zurück zum Zitat Furue, M., T. Chiba, G. Tsuji, D. Ulzii, M. Kido-Nakahara, T. Nakahara, and T. Kadono. 2017. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergology International 66: 398–403.PubMed Furue, M., T. Chiba, G. Tsuji, D. Ulzii, M. Kido-Nakahara, T. Nakahara, and T. Kadono. 2017. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergology International 66: 398–403.PubMed
11.
Zurück zum Zitat Spergel, J.M., and A.S. Paller. 2003. Atopic dermatitis and the atopic march. The Journal of Allergy and Clinical Immunology 112: S118–S127.PubMed Spergel, J.M., and A.S. Paller. 2003. Atopic dermatitis and the atopic march. The Journal of Allergy and Clinical Immunology 112: S118–S127.PubMed
12.
Zurück zum Zitat Tran, M.M., D.L. Lefebvre, C. Dharma, D. Dai, W.Y.W. Lou, P. Subbarao, et al. 2017. Predicting the atopic march: results from the Canadian Healthy Infant Longitudinal Development Study. The Journal of Allergy and Clinical Immunology 141: 601–607 e8.PubMed Tran, M.M., D.L. Lefebvre, C. Dharma, D. Dai, W.Y.W. Lou, P. Subbarao, et al. 2017. Predicting the atopic march: results from the Canadian Healthy Infant Longitudinal Development Study. The Journal of Allergy and Clinical Immunology 141: 601–607 e8.PubMed
13.
Zurück zum Zitat Hill, D.A., and J.M. Spergel. 2018. The atopic march: critical evidence and clinical relevance. Annals of Allergy, Asthma & Immunology 120: 131–137. Hill, D.A., and J.M. Spergel. 2018. The atopic march: critical evidence and clinical relevance. Annals of Allergy, Asthma & Immunology 120: 131–137.
14.
Zurück zum Zitat Spergel, J.M., E. Mizoguchi, J.P. Brewer, T.R. Martin, A.K. Bhan, and R.S. Geha. 1998. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. The Journal of Clinical Investigation 101: 1614–1622.PubMedPubMedCentral Spergel, J.M., E. Mizoguchi, J.P. Brewer, T.R. Martin, A.K. Bhan, and R.S. Geha. 1998. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. The Journal of Clinical Investigation 101: 1614–1622.PubMedPubMedCentral
15.
Zurück zum Zitat Silverberg, J.I., D.B. Nelson, and G. Yosipovitch. 2016. Addressing treatment challenges in atopic dermatitis with novel topical therapies. The Journal of Dermatological Treatment 27: 568–576.PubMed Silverberg, J.I., D.B. Nelson, and G. Yosipovitch. 2016. Addressing treatment challenges in atopic dermatitis with novel topical therapies. The Journal of Dermatological Treatment 27: 568–576.PubMed
16.
Zurück zum Zitat Nygaard, U., M. Deleuran, and C. Vestergaard. 2017. Emerging Treatment Options in Atopic Dermatitis: Topical Therapies. Dermatology 233: 333–343.PubMed Nygaard, U., M. Deleuran, and C. Vestergaard. 2017. Emerging Treatment Options in Atopic Dermatitis: Topical Therapies. Dermatology 233: 333–343.PubMed
17.
Zurück zum Zitat Huang, A., C. Cho, D.Y.M. Leung, and K. Brar. 2018. Atopic dermatitis: early treatment in children. Current Treatment Options in Allergy 4: 355–369. Huang, A., C. Cho, D.Y.M. Leung, and K. Brar. 2018. Atopic dermatitis: early treatment in children. Current Treatment Options in Allergy 4: 355–369.
18.
Zurück zum Zitat Thakare, V.N., M.M. Osama, and S.R. Naik. 2013. Therapeutic potential of curcumin in experimentally induced allergic rhinitis in guinea pigs. International Immunopharmacology 17: 18–25.PubMed Thakare, V.N., M.M. Osama, and S.R. Naik. 2013. Therapeutic potential of curcumin in experimentally induced allergic rhinitis in guinea pigs. International Immunopharmacology 17: 18–25.PubMed
19.
Zurück zum Zitat Ammon, H.P., and M.A. Wahl. 1991. Pharmacology of Curcuma longa. Planta Medica 57: 1–7.PubMed Ammon, H.P., and M.A. Wahl. 1991. Pharmacology of Curcuma longa. Planta Medica 57: 1–7.PubMed
20.
Zurück zum Zitat Karaman, M., F. Firinci, S. Cilaker, P. Uysal, K. Tugyan, O. Yilmaz, N. Uzuner, and O. Karaman. 2012. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergologia et Immunopathologia 40: 210–214.PubMed Karaman, M., F. Firinci, S. Cilaker, P. Uysal, K. Tugyan, O. Yilmaz, N. Uzuner, and O. Karaman. 2012. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergologia et Immunopathologia 40: 210–214.PubMed
21.
Zurück zum Zitat Oh, S.W., J.Y. Cha, J.E. Jung, B.C. Chang, H.J. Kwon, B.R. Lee, et al. 2011. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-kappaB inhibition. Journal of Ethnopharmacology 136: 414–421.PubMed Oh, S.W., J.Y. Cha, J.E. Jung, B.C. Chang, H.J. Kwon, B.R. Lee, et al. 2011. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-kappaB inhibition. Journal of Ethnopharmacology 136: 414–421.PubMed
22.
Zurück zum Zitat Sakai, H., K. Sato, F. Sato, Y. Kai, K. Mandokoro, K. Matsumoto, S. Kato, T. Yumoto, M. Narita, and Y. Chiba. 2017. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling. Inflammation Research 66: 663–678.PubMed Sakai, H., K. Sato, F. Sato, Y. Kai, K. Mandokoro, K. Matsumoto, S. Kato, T. Yumoto, M. Narita, and Y. Chiba. 2017. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling. Inflammation Research 66: 663–678.PubMed
23.
Zurück zum Zitat Moon, P.D., H.J. Jeong, and H.M. Kim. 2013. Down-regulation of thymic stromal lymphopoietin by curcumin. Pharmacological Reports 65: 525–531.PubMed Moon, P.D., H.J. Jeong, and H.M. Kim. 2013. Down-regulation of thymic stromal lymphopoietin by curcumin. Pharmacological Reports 65: 525–531.PubMed
24.
Zurück zum Zitat Sethi, G.S., and A.S. Naura. 2018. Progressive increase in allergen concentration abrogates immune tolerance in ovalbumin-induced murine model of chronic asthma. International Immunopharmacology 60: 121–131.PubMed Sethi, G.S., and A.S. Naura. 2018. Progressive increase in allergen concentration abrogates immune tolerance in ovalbumin-induced murine model of chronic asthma. International Immunopharmacology 60: 121–131.PubMed
25.
Zurück zum Zitat Sahu, B., R. Sandhir, and A.S. Naura. 2018. Two hit induced acute lung injury impairs cognitive function in mice: a potential model to study cross talk between lung and brain. Brain, Behavior, and Immunity 73: 633–642.PubMed Sahu, B., R. Sandhir, and A.S. Naura. 2018. Two hit induced acute lung injury impairs cognitive function in mice: a potential model to study cross talk between lung and brain. Brain, Behavior, and Immunity 73: 633–642.PubMed
26.
Zurück zum Zitat Dharwal, V., and A.S. Naura. 2018. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochemical Pharmacology 150: 24–34.PubMed Dharwal, V., and A.S. Naura. 2018. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochemical Pharmacology 150: 24–34.PubMed
27.
Zurück zum Zitat Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.PubMed Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.PubMed
28.
Zurück zum Zitat Wang, H., and J.A. Joseph. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology & Medicine 27: 612–616. Wang, H., and J.A. Joseph. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology & Medicine 27: 612–616.
29.
Zurück zum Zitat Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.PubMed Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.PubMed
30.
Zurück zum Zitat Levine, R.L., D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, and E.R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464–478.PubMed Levine, R.L., D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, and E.R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464–478.PubMed
31.
Zurück zum Zitat Kono, Y. 1978. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics 186: 189–195.PubMed Kono, Y. 1978. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics 186: 189–195.PubMed
32.
Zurück zum Zitat Luck, H. 1965. Catalase. methods of enzymatic anaylsis, 885–894. New York: Academic Press. Luck, H. 1965. Catalase. methods of enzymatic anaylsis, 885–894. New York: Academic Press.
33.
Zurück zum Zitat Moron, M.S., J.W. Depierre, and B. Mannervik. 1979. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta 582: 67–78.PubMed Moron, M.S., J.W. Depierre, and B. Mannervik. 1979. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta 582: 67–78.PubMed
34.
Zurück zum Zitat Wang, G., T. Savinko, H. Wolff, M.C. Dieu-Nosjean, L. Kemeny, B. Homey, A.I. Lauerma, and H. Alenius. 2007. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 37: 151–161. Wang, G., T. Savinko, H. Wolff, M.C. Dieu-Nosjean, L. Kemeny, B. Homey, A.I. Lauerma, and H. Alenius. 2007. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 37: 151–161.
35.
Zurück zum Zitat Wang, Y.H., and Y.J. Liu. 2009. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 39: 798–806. Wang, Y.H., and Y.J. Liu. 2009. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 39: 798–806.
36.
Zurück zum Zitat Nygaard, U., M. Hvid, C. Johansen, M. Buchner, R. Folster-Holst, M. Deleuran, et al. 2016. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. Journal of the European Academy of Dermatology and Venereology 30: 1930–1938.PubMed Nygaard, U., M. Hvid, C. Johansen, M. Buchner, R. Folster-Holst, M. Deleuran, et al. 2016. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. Journal of the European Academy of Dermatology and Venereology 30: 1930–1938.PubMed
37.
Zurück zum Zitat Ji, H., and X.K. Li. 2016. Oxidative Stress in Atopic Dermatitis. Oxidative Medicine and Cellular Longevity 2016: 2721469.PubMedPubMedCentral Ji, H., and X.K. Li. 2016. Oxidative Stress in Atopic Dermatitis. Oxidative Medicine and Cellular Longevity 2016: 2721469.PubMedPubMedCentral
38.
Zurück zum Zitat Shakeri, F., M. Soukhtanloo, and M.H. Boskabady. 2017. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iranian Journal of Basic Medical Sciences 20: 155–165.PubMedPubMedCentral Shakeri, F., M. Soukhtanloo, and M.H. Boskabady. 2017. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iranian Journal of Basic Medical Sciences 20: 155–165.PubMedPubMedCentral
39.
Zurück zum Zitat Leung, D.Y. 1999. Pathogenesis of atopic dermatitis. The Journal of Allergy and Clinical Immunology 104: S99–S108.PubMed Leung, D.Y. 1999. Pathogenesis of atopic dermatitis. The Journal of Allergy and Clinical Immunology 104: S99–S108.PubMed
40.
Zurück zum Zitat Bantz, S.K., Z. Zhu, and T. Zheng. 2014. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. J Clin Cell Immunol 5: 202.PubMedPubMedCentral Bantz, S.K., Z. Zhu, and T. Zheng. 2014. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. J Clin Cell Immunol 5: 202.PubMedPubMedCentral
41.
Zurück zum Zitat Lowe, A.J., D.Y.M. Leung, M.L.K. Tang, J.C. Su, and K.J. Allen. 2018. The skin as a target for prevention of the atopic march. Annals of Allergy, Asthma & Immunology 120: 145–151. Lowe, A.J., D.Y.M. Leung, M.L.K. Tang, J.C. Su, and K.J. Allen. 2018. The skin as a target for prevention of the atopic march. Annals of Allergy, Asthma & Immunology 120: 145–151.
42.
Zurück zum Zitat Shakeri, A., A.F.G. Cicero, Y. Panahi, M. Mohajeri, and A. Sahebkar. 2019. Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology 234: 5643–5654.PubMed Shakeri, A., A.F.G. Cicero, Y. Panahi, M. Mohajeri, and A. Sahebkar. 2019. Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology 234: 5643–5654.PubMed
43.
Zurück zum Zitat Zheng, T., and Z. Zhu. 2005. Lessons from murine models of atopic dermatitis. Current Allergy and Asthma Reports 5: 291–297.PubMed Zheng, T., and Z. Zhu. 2005. Lessons from murine models of atopic dermatitis. Current Allergy and Asthma Reports 5: 291–297.PubMed
44.
Zurück zum Zitat Saluja, R., A. Zoltowska, M.E. Ketelaar, and G. Nilsson. 2016. IL-33 and Thymic Stromal Lymphopoietin in mast cell functions. European Journal of Pharmacology 778: 68–76.PubMed Saluja, R., A. Zoltowska, M.E. Ketelaar, and G. Nilsson. 2016. IL-33 and Thymic Stromal Lymphopoietin in mast cell functions. European Journal of Pharmacology 778: 68–76.PubMed
45.
Zurück zum Zitat Soumelis, V., P.A. Reche, H. Kanzler, W. Yuan, G. Edward, B. Homey, M. Gilliet, S. Ho, S. Antonenko, A. Lauerma, K. Smith, D. Gorman, S. Zurawski, J. Abrams, S. Menon, T. McClanahan, R. de Waal-Malefyt Rd, F. Bazan, R.A. Kastelein, and Y.J. Liu. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunology 3: 673–680.PubMed Soumelis, V., P.A. Reche, H. Kanzler, W. Yuan, G. Edward, B. Homey, M. Gilliet, S. Ho, S. Antonenko, A. Lauerma, K. Smith, D. Gorman, S. Zurawski, J. Abrams, S. Menon, T. McClanahan, R. de Waal-Malefyt Rd, F. Bazan, R.A. Kastelein, and Y.J. Liu. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunology 3: 673–680.PubMed
46.
Zurück zum Zitat Chen, B.L., Y.Q. Chen, B.H. Ma, S.F. Yu, L.Y. Li, Q.X. Zeng, Y.T. Zhou, Y.F. Wu, W.L. Liu, J.B. Wan, Y. Yang, and C.W. Li. 2018. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Ralpha-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 48: 1494–1508. Chen, B.L., Y.Q. Chen, B.H. Ma, S.F. Yu, L.Y. Li, Q.X. Zeng, Y.T. Zhou, Y.F. Wu, W.L. Liu, J.B. Wan, Y. Yang, and C.W. Li. 2018. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Ralpha-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 48: 1494–1508.
47.
Zurück zum Zitat Chong, L., W. Zhang, Y. Nie, G. Yu, L. Liu, L. Lin, S. Wen, L. Zhu, and C. Li. 2014. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation 37: 1476–1485.PubMedPubMedCentral Chong, L., W. Zhang, Y. Nie, G. Yu, L. Liu, L. Lin, S. Wen, L. Zhu, and C. Li. 2014. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation 37: 1476–1485.PubMedPubMedCentral
48.
Zurück zum Zitat Brown, H.A., and J.M. Hanifin. 1990. Atopic dermatitis. Current Opinion in Immunology 2: 531–534. Brown, H.A., and J.M. Hanifin. 1990. Atopic dermatitis. Current Opinion in Immunology 2: 531–534.
49.
Zurück zum Zitat Brandt, E.B., and U. Sivaprasad. 2011. Th2 Cytokines and Atopic Dermatitis. Journal of Clinical & Cellular Immunology 2: 110. Brandt, E.B., and U. Sivaprasad. 2011. Th2 Cytokines and Atopic Dermatitis. Journal of Clinical & Cellular Immunology 2: 110.
50.
Zurück zum Zitat Yoshihisa, Y., T. Andoh, K. Matsunaga, M.U. Rehman, T. Maoka, and T. Shimizu. 2016. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model. PLoS One 11: e0152288.PubMedPubMedCentral Yoshihisa, Y., T. Andoh, K. Matsunaga, M.U. Rehman, T. Maoka, and T. Shimizu. 2016. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model. PLoS One 11: e0152288.PubMedPubMedCentral
52.
Zurück zum Zitat Briganti, S., and M. Picardo. 2003. Antioxidant activity, lipid peroxidation and skin diseases. What's new. Journal of the European Academy of Dermatology and Venereology 17: 663–669.PubMed Briganti, S., and M. Picardo. 2003. Antioxidant activity, lipid peroxidation and skin diseases. What's new. Journal of the European Academy of Dermatology and Venereology 17: 663–669.PubMed
53.
Zurück zum Zitat Morgan, M.J., and Z.G. Liu. 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 21: 103–115.PubMed Morgan, M.J., and Z.G. Liu. 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 21: 103–115.PubMed
54.
Zurück zum Zitat Sahebkar, A., A.F.G. Cicero, L.E. Simental-Mendia, B.B. Aggarwal, and S.C. Gupta. 2016. Curcumin downregulates human tumor necrosis factor-alpha levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacological Research 107: 234–242.PubMed Sahebkar, A., A.F.G. Cicero, L.E. Simental-Mendia, B.B. Aggarwal, and S.C. Gupta. 2016. Curcumin downregulates human tumor necrosis factor-alpha levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacological Research 107: 234–242.PubMed
55.
Zurück zum Zitat Buhrmann, C., A. Mobasheri, F. Busch, C. Aldinger, R. Stahlmann, A. Montaseri, and M. Shakibaei. 2011. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. The Journal of Biological Chemistry 286: 28556–28566.PubMedPubMedCentral Buhrmann, C., A. Mobasheri, F. Busch, C. Aldinger, R. Stahlmann, A. Montaseri, and M. Shakibaei. 2011. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. The Journal of Biological Chemistry 286: 28556–28566.PubMedPubMedCentral
56.
Zurück zum Zitat Mollazadeh, H., A.F.G. Cicero, C.N. Blesso, M. Pirro, M. Majeed, and A. Sahebkar. 2019. Immune modulation by curcumin: The role of interleukin-10. Critical Reviews in Food Science and Nutrition 59: 89–101.PubMed Mollazadeh, H., A.F.G. Cicero, C.N. Blesso, M. Pirro, M. Majeed, and A. Sahebkar. 2019. Immune modulation by curcumin: The role of interleukin-10. Critical Reviews in Food Science and Nutrition 59: 89–101.PubMed
57.
Zurück zum Zitat Han, H., W. Xu, M.B. Headley, H.K. Jessup, K.S. Lee, M. Omori, M.R. Comeau, A. Marshak-Rothstein, and S.F. Ziegler. 2012. Thymic stromal lymphopoietin (TSLP)-mediated dermal inflammation aggravates experimental asthma. Mucosal Immunology 5: 342–351.PubMedPubMedCentral Han, H., W. Xu, M.B. Headley, H.K. Jessup, K.S. Lee, M. Omori, M.R. Comeau, A. Marshak-Rothstein, and S.F. Ziegler. 2012. Thymic stromal lymphopoietin (TSLP)-mediated dermal inflammation aggravates experimental asthma. Mucosal Immunology 5: 342–351.PubMedPubMedCentral
Metadaten
Titel
Curcumin Ameliorates Ovalbumin-Induced Atopic Dermatitis and Blocks the Progression of Atopic March in Mice
verfasst von
Sukriti Sharma
Gurupreet S. Sethi
Amarjit S. Naura
Publikationsdatum
13.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01126-7

Weitere Artikel der Ausgabe 1/2020

Inflammation 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.