Skip to main content
Erschienen in: Current Dermatology Reports 3/2016

13.07.2016 | Laser Therapy (J Jagdeo, Section Editor)

Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy

verfasst von: Connor Thunshelle, Rui Yin, Qiquan Chen, Michael R. Hamblin

Erschienen in: Current Dermatology Reports | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Kennedy and Pottier discovered that photodynamic therapy (PDT) could be carried out using a procedure consisting of topical application of the porphyrin-precursor, 5-aminolevulinic acid (ALA) to the skin, followed after some time by illumination with various light parameters in the 1980s. Since then, ALA-PDT has expanded enormously and now covers most aspects of dermatological disease. The purpose of this review is to discuss a range of ingenious strategies that investigators have devised for improving the overall outcome (higher efficiency and lower side effects) of ALA-PDT. The big advance of using ALA esters instead of the free acid to improve skin penetration was conceived in the 1990s. A variety of more recent innovative approaches can be divided into three broad groups: (a) those relying on improving delivery or penetration of ALA into the skin; (b) those relying on ways to increase the synthesis of protoporphyrin IX inside the skin; (c) those relying on modification of the illumination parameters. In the first group, we have improved delivery of ALA with penetration-enhancing chemicals, iontophoresis, intracutaneous injection, or fractionated laser. There is also a large group of nanotechnology-related approaches with ALA being delivered using liposomes/ethosomes, ALA dendrimers, niosomes, mesoporous silica nanoparticles, conjugated gold nanoparticles, polymer nanoparticles, fullerene nanoparticles, and carbon nanotubes. In the second group, we can find the use of cellular differentiating agents, the use of iron chelators, and the effect of increasing the temperature. In the third group, we find methods designed to reduce pain as well as improve efficiency including fractionated light, daylight PDT, and wearable light sources for ambulatory PDT. This active area of research is expected to continue to provide a range of intriguing possibilities.
Literatur
1.••
Zurück zum Zitat Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008;7(3):283–9. doi:10.1039/b712847a. Good comprehensive review of the development of ALA-PDT, and its range of clinical applications.PubMedCrossRef Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008;7(3):283–9. doi:10.​1039/​b712847a. Good comprehensive review of the development of ALA-PDT, and its range of clinical applications.PubMedCrossRef
2.
Zurück zum Zitat Berlin NI, Neuberger A, Scott JJ. The metabolism of delta-aminolaevulic acid. 1. Normal pathways, studied with the aid of 15N. Biochem J. 1956;64:80–90.PubMedPubMedCentralCrossRef Berlin NI, Neuberger A, Scott JJ. The metabolism of delta-aminolaevulic acid. 1. Normal pathways, studied with the aid of 15N. Biochem J. 1956;64:80–90.PubMedPubMedCentralCrossRef
3.•
Zurück zum Zitat Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990;6(1–2):143–8. An early review by the original discoverers of ALA-PDT.PubMedCrossRef Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990;6(1–2):143–8. An early review by the original discoverers of ALA-PDT.PubMedCrossRef
4.••
Zurück zum Zitat Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38(8):2628–35. An important landmark paper in the history of PDT used as a cancer therapy.PubMed Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38(8):2628–35. An important landmark paper in the history of PDT used as a cancer therapy.PubMed
5.
Zurück zum Zitat Marcus SL, Dugan MH. Global status of clinical photodynamic therapy: the registration process for a new therapy. Lasers Surg Med. 1992;12(3):318–24.PubMedCrossRef Marcus SL, Dugan MH. Global status of clinical photodynamic therapy: the registration process for a new therapy. Lasers Surg Med. 1992;12(3):318–24.PubMedCrossRef
6.
Zurück zum Zitat Lang K, Schulte KW, Ruzicka T, Fritsch C. Aminolevulinic acid (Levulan) in photodynamic therapy of actinic keratoses. Skin Therapy Lett. 2001;6(10):1–2. 5.PubMed Lang K, Schulte KW, Ruzicka T, Fritsch C. Aminolevulinic acid (Levulan) in photodynamic therapy of actinic keratoses. Skin Therapy Lett. 2001;6(10):1–2. 5.PubMed
7.
Zurück zum Zitat Gaullier JM, Berg K, Peng Q, Anholt H, Selbo PK, Ma LW, et al. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997;57(8):1481–6.PubMed Gaullier JM, Berg K, Peng Q, Anholt H, Selbo PK, Ma LW, et al. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997;57(8):1481–6.PubMed
9.
10.
Zurück zum Zitat de Blois AW, Grouls RJ, Ackerman EW, Wijdeven WJ. Development of a stable solution of 5-aminolaevulinic acid for intracutaneous injection in photodynamic therapy. Lasers Med Sci. 2002;17(3):208–15. doi:10.1007/s101030200030.PubMedCrossRef de Blois AW, Grouls RJ, Ackerman EW, Wijdeven WJ. Development of a stable solution of 5-aminolaevulinic acid for intracutaneous injection in photodynamic therapy. Lasers Med Sci. 2002;17(3):208–15. doi:10.​1007/​s101030200030.PubMedCrossRef
11.
Zurück zum Zitat Sakamoto FH, Doukas AG, Farinelli WA, Tannous Z, Su Y, Smith NA, et al. Intracutaneous ALA photodynamic therapy: dose-dependent targeting of skin structures. Lasers Surg Med. 2011;43(7):621–31. doi:10.1002/lsm.21073.PubMedCrossRef Sakamoto FH, Doukas AG, Farinelli WA, Tannous Z, Su Y, Smith NA, et al. Intracutaneous ALA photodynamic therapy: dose-dependent targeting of skin structures. Lasers Surg Med. 2011;43(7):621–31. doi:10.​1002/​lsm.​21073.PubMedCrossRef
12.
Zurück zum Zitat Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Pretreatment with ablative fractional laser changes kinetics and biodistribution of topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL). Lasers Surg Med. 2014;46(6):462–9. doi:10.1002/lsm.22259.PubMedCrossRef Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Pretreatment with ablative fractional laser changes kinetics and biodistribution of topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL). Lasers Surg Med. 2014;46(6):462–9. doi:10.​1002/​lsm.​22259.PubMedCrossRef
13.
Zurück zum Zitat Lim HK, Jeong KH, Kim NI, Shin MK. Nonablative fractional laser as a tool to facilitate skin penetration of 5-aminolaevulinic acid with minimal skin disruption: a preliminary study. Br J Dermatol. 2014;170(6):1336–40. doi:10.1111/bjd.12817.PubMedCrossRef Lim HK, Jeong KH, Kim NI, Shin MK. Nonablative fractional laser as a tool to facilitate skin penetration of 5-aminolaevulinic acid with minimal skin disruption: a preliminary study. Br J Dermatol. 2014;170(6):1336–40. doi:10.​1111/​bjd.​12817.PubMedCrossRef
14.
Zurück zum Zitat Lippert J, Smucler R, Vlk M. Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate. Dermatol Surg. 2013;39(8):1202–8. doi:10.1111/dsu.12242.PubMedCrossRef Lippert J, Smucler R, Vlk M. Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate. Dermatol Surg. 2013;39(8):1202–8. doi:10.​1111/​dsu.​12242.PubMedCrossRef
16.•
Zurück zum Zitat Forster B, Klein A, Szeimies RM, Maisch T. Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol. 2010;19(9):806–12. doi:10.1111/j.1600-0625.2010.01093.x. Shows that FRAXEL laser increases ALA penetration into the skin and enhances PPIX production.PubMedCrossRef Forster B, Klein A, Szeimies RM, Maisch T. Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol. 2010;19(9):806–12. doi:10.​1111/​j.​1600-0625.​2010.​01093.​x. Shows that FRAXEL laser increases ALA penetration into the skin and enhances PPIX production.PubMedCrossRef
19.
Zurück zum Zitat De Rosa FS, Marchetti JM, Thomazini JA, Tedesco AC, Bentley MV. A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. J Control Release. 2000;65(3):359–66.PubMedCrossRef De Rosa FS, Marchetti JM, Thomazini JA, Tedesco AC, Bentley MV. A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. J Control Release. 2000;65(3):359–66.PubMedCrossRef
20.
Zurück zum Zitat Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies RM. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exp Dermatol. 2010;19(8):e302–5. doi:10.1111/j.1600-0625.2009.01001.x.PubMedCrossRef Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies RM. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exp Dermatol. 2010;19(8):e302–5. doi:10.​1111/​j.​1600-0625.​2009.​01001.​x.PubMedCrossRef
21.
Zurück zum Zitat Fang YP, Huang YB, Wu PC, Tsai YH. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm. 2009;73(3):391–8. doi:10.1016/j.ejpb.2009.07.011.PubMedCrossRef Fang YP, Huang YB, Wu PC, Tsai YH. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm. 2009;73(3):391–8. doi:10.​1016/​j.​ejpb.​2009.​07.​011.PubMedCrossRef
22.
Zurück zum Zitat Krishnan G, Roberts MS, Grice J, Anissimov YG, Benson HA. Enhanced transdermal delivery of 5-aminolevulinic acid and a dipeptide by iontophoresis. Biopolymers. 2011;96(2):166–71. doi:10.1002/bip.21520.PubMedCrossRef Krishnan G, Roberts MS, Grice J, Anissimov YG, Benson HA. Enhanced transdermal delivery of 5-aminolevulinic acid and a dipeptide by iontophoresis. Biopolymers. 2011;96(2):166–71. doi:10.​1002/​bip.​21520.PubMedCrossRef
23.
Zurück zum Zitat Merclin N, Bender J, Sparr E, Guy RH, Ehrsson H, Engstrom S. Transdermal delivery from a lipid sponge phase—iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester. J Control Release. 2004;100(2):191–8. doi:10.1016/j.jconrel.2004.08.025.PubMedCrossRef Merclin N, Bender J, Sparr E, Guy RH, Ehrsson H, Engstrom S. Transdermal delivery from a lipid sponge phase—iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester. J Control Release. 2004;100(2):191–8. doi:10.​1016/​j.​jconrel.​2004.​08.​025.PubMedCrossRef
24.
Zurück zum Zitat Piccioni A, Fargnoli MC, Schoinas S, Suppa M, Frascione P, Ginebri A, et al. Efficacy and tolerability of 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in wrinkle reduction of photodamaged skin. J Dermatolog Treat. 2011;22(5):247–53. doi:10.3109/09546634.2011.590791.PubMedCrossRef Piccioni A, Fargnoli MC, Schoinas S, Suppa M, Frascione P, Ginebri A, et al. Efficacy and tolerability of 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in wrinkle reduction of photodamaged skin. J Dermatolog Treat. 2011;22(5):247–53. doi:10.​3109/​09546634.​2011.​590791.PubMedCrossRef
30.
Zurück zum Zitat Gomez C, Benito M, Katime I, Teijon JM, Blanco MD. In vitro transdermal and biological evaluation of ALA-loaded poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) microgels for photodynamic therapy. J Microencapsul. 2012;29(7):626–35. doi:10.3109/02652048.2012.676091.PubMedCrossRef Gomez C, Benito M, Katime I, Teijon JM, Blanco MD. In vitro transdermal and biological evaluation of ALA-loaded poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) microgels for photodynamic therapy. J Microencapsul. 2012;29(7):626–35. doi:10.​3109/​02652048.​2012.​676091.PubMedCrossRef
31.
Zurück zum Zitat Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces. 2015;7(20):10671–6. doi:10.1021/acsami.5b03087.PubMedCrossRef Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces. 2015;7(20):10671–6. doi:10.​1021/​acsami.​5b03087.PubMedCrossRef
33.
Zurück zum Zitat de Oliveira Goncalves K, da Silva MN, Sicchieri LB, de Oliveira Silva FR, de Matos RA, Courrol LC. Aminolevulinic acid with gold nanoparticles: a novel theranostic agent for atherosclerosis. Analyst. 2015;140(6):1974–80. doi:10.1039/c4an02166e.PubMedCrossRef de Oliveira Goncalves K, da Silva MN, Sicchieri LB, de Oliveira Silva FR, de Matos RA, Courrol LC. Aminolevulinic acid with gold nanoparticles: a novel theranostic agent for atherosclerosis. Analyst. 2015;140(6):1974–80. doi:10.​1039/​c4an02166e.PubMedCrossRef
34.
Zurück zum Zitat Hadizadeh M, Fateh M. Synergistic cytotoxic effect of gold nanoparticles and 5-aminolevulinic acid-mediated photodynamic therapy against skin cancer cells. Iran J Med Sci. 2014;39(5):452–8.PubMedPubMedCentral Hadizadeh M, Fateh M. Synergistic cytotoxic effect of gold nanoparticles and 5-aminolevulinic acid-mediated photodynamic therapy against skin cancer cells. Iran J Med Sci. 2014;39(5):452–8.PubMedPubMedCentral
35.
Zurück zum Zitat Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagn Photodyn Ther. 2013;10(4):382–8. doi:10.1016/j.pdpdt.2013.03.010.CrossRef Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagn Photodyn Ther. 2013;10(4):382–8. doi:10.​1016/​j.​pdpdt.​2013.​03.​010.CrossRef
36.
Zurück zum Zitat Benito M, Martin V, Blanco MD, Teijon JM, Gomez C. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. J Pharm Sci. 2013;102(8):2760–9. doi:10.1002/jps.23621.PubMedCrossRef Benito M, Martin V, Blanco MD, Teijon JM, Gomez C. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. J Pharm Sci. 2013;102(8):2760–9. doi:10.​1002/​jps.​23621.PubMedCrossRef
37.
Zurück zum Zitat Li Z, Pan LL, Zhang FL, Zhu XL, Liu Y, Zhang ZZ. 5-Aminolevulinic acid-loaded fullerene nanoparticles for in vitro and in vivo photodynamic therapy. Photochem Photobiol. 2014;90(5):1144–9. doi:10.1111/php.12299.PubMed Li Z, Pan LL, Zhang FL, Zhu XL, Liu Y, Zhang ZZ. 5-Aminolevulinic acid-loaded fullerene nanoparticles for in vitro and in vivo photodynamic therapy. Photochem Photobiol. 2014;90(5):1144–9. doi:10.​1111/​php.​12299.PubMed
38.••
Zurück zum Zitat Battah S, O’Neill S, Edwards C, Balaratnam S, Dobbin P, MacRobert AJ. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int J Biochem Cell Biol. 2006;38(8):1382–92. doi:10.1016/j.biocel.2006.02.001. Important paper showing that ALA-dendrimers can enhance ALA delivery and improve PDT killing after illumination.PubMedCrossRef Battah S, O’Neill S, Edwards C, Balaratnam S, Dobbin P, MacRobert AJ. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int J Biochem Cell Biol. 2006;38(8):1382–92. doi:10.​1016/​j.​biocel.​2006.​02.​001. Important paper showing that ALA-dendrimers can enhance ALA delivery and improve PDT killing after illumination.PubMedCrossRef
39.
Zurück zum Zitat Battah SH, Chee CE, Nakanishi H, Gerscher S, MacRobert AJ, Edwards C. Synthesis and biological studies of 5-aminolevulinic acid-containing dendrimers for photodynamic therapy. Bioconjug Chem. 2001;12(6):980–8.PubMedCrossRef Battah SH, Chee CE, Nakanishi H, Gerscher S, MacRobert AJ, Edwards C. Synthesis and biological studies of 5-aminolevulinic acid-containing dendrimers for photodynamic therapy. Bioconjug Chem. 2001;12(6):980–8.PubMedCrossRef
40.
Zurück zum Zitat Rodriguez L, Vallecorsa P, Battah S, Di Venosa G, Calvo G, Mamone L, et al. Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease. Photochem Photobiol Sci. 2015;14(9):1617–27. doi:10.1039/c5pp00126a.PubMedCrossRef Rodriguez L, Vallecorsa P, Battah S, Di Venosa G, Calvo G, Mamone L, et al. Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease. Photochem Photobiol Sci. 2015;14(9):1617–27. doi:10.​1039/​c5pp00126a.PubMedCrossRef
42.
Zurück zum Zitat Blake E, Allen J, Curnow A. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Photodiagn Photodyn Ther. 2013;10(4):575–82. doi:10.1016/j.pdpdt.2013.06.006.CrossRef Blake E, Allen J, Curnow A. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Photodiagn Photodyn Ther. 2013;10(4):575–82. doi:10.​1016/​j.​pdpdt.​2013.​06.​006.CrossRef
43.•
Zurück zum Zitat Blake E, Allen J, Curnow A. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection. Photochem Photobiol. 2011;87(6):1419–26. doi:10.1111/j.1751-1097.2011.00985.x. Compares different iron chelating agents for increasing PPIX synthesis after application of ALA.PubMedCrossRef Blake E, Allen J, Curnow A. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection. Photochem Photobiol. 2011;87(6):1419–26. doi:10.​1111/​j.​1751-1097.​2011.​00985.​x. Compares different iron chelating agents for increasing PPIX synthesis after application of ALA.PubMedCrossRef
44.
Zurück zum Zitat Liu HF, Xu SZ, Zhang CR. Influence of CaNa2 EDTA on topical 5-aminolaevulinic acid photodynamic therapy. Chin Med J. 2004;117(6):922–6.PubMed Liu HF, Xu SZ, Zhang CR. Influence of CaNa2 EDTA on topical 5-aminolaevulinic acid photodynamic therapy. Chin Med J. 2004;117(6):922–6.PubMed
45.
Zurück zum Zitat Yang J, Xia Y, Liu X, Jiang S, Xiong L. Desferrioxamine shows different potentials for enhancing 5-aminolaevulinic acid-based photodynamic therapy in several cutaneous cell lines. Lasers Med Sci. 2010;25(2):251–7. doi:10.1007/s10103-009-0721-0.PubMedCrossRef Yang J, Xia Y, Liu X, Jiang S, Xiong L. Desferrioxamine shows different potentials for enhancing 5-aminolaevulinic acid-based photodynamic therapy in several cutaneous cell lines. Lasers Med Sci. 2010;25(2):251–7. doi:10.​1007/​s10103-009-0721-0.PubMedCrossRef
48.•
Zurück zum Zitat Malik Z, Ehrenberg B, Faraggi A. Inactivation of erythrocytic, lymphocytic and myelocytic leukemic cells by photoexcitation of endogenous porphyrins. J Photochem Photobiol B. 1989;4(2):195–205. Another early report describing the observations that would lead to ALA-PDT.PubMedCrossRef Malik Z, Ehrenberg B, Faraggi A. Inactivation of erythrocytic, lymphocytic and myelocytic leukemic cells by photoexcitation of endogenous porphyrins. J Photochem Photobiol B. 1989;4(2):195–205. Another early report describing the observations that would lead to ALA-PDT.PubMedCrossRef
49.•
Zurück zum Zitat Ortel B, Chen N, Brissette J, Dotto GP, Maytin E, Hasan T. Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes. Br J Cancer. 1998;77(11):1744–51. First report that differentiation can increase PPIX formation by up-regulating coproporphyrinogen oxidase.PubMedPubMedCentralCrossRef Ortel B, Chen N, Brissette J, Dotto GP, Maytin E, Hasan T. Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes. Br J Cancer. 1998;77(11):1744–51. First report that differentiation can increase PPIX formation by up-regulating coproporphyrinogen oxidase.PubMedPubMedCentralCrossRef
51.
52.
Zurück zum Zitat Rollakanti KR, Anand S, Davis SC, Pogue BW, Maytin EV. Noninvasive optical imaging of UV-induced squamous cell carcinoma in murine skin: studies of early tumor development and vitamin D enhancement of protoporphyrin IX production. Photochem Photobiol. 2015. doi:10.1111/php.12503.PubMed Rollakanti KR, Anand S, Davis SC, Pogue BW, Maytin EV. Noninvasive optical imaging of UV-induced squamous cell carcinoma in murine skin: studies of early tumor development and vitamin D enhancement of protoporphyrin IX production. Photochem Photobiol. 2015. doi:10.​1111/​php.​12503.PubMed
53.
Zurück zum Zitat Galitzer BI. Effect of retinoid pretreatment on outcomes of patients treated by photodynamic therapy for actinic keratosis of the hand and forearm. J Drugs Dermatol. 2011;10(10):1124–32.PubMed Galitzer BI. Effect of retinoid pretreatment on outcomes of patients treated by photodynamic therapy for actinic keratosis of the hand and forearm. J Drugs Dermatol. 2011;10(10):1124–32.PubMed
55.
Zurück zum Zitat Moan J, Berg K, Gadmar OB, Iani V, Ma L, Juzenas P. The temperature dependence of protoporphyrin IX production in cells and tissues. Photochem Photobiol. 1999;70(4):669–73.PubMedCrossRef Moan J, Berg K, Gadmar OB, Iani V, Ma L, Juzenas P. The temperature dependence of protoporphyrin IX production in cells and tissues. Photochem Photobiol. 1999;70(4):669–73.PubMedCrossRef
56.
Zurück zum Zitat Juzenas P, Sorensen R, Iani V, Moan J. Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature. Photochem Photobiol. 1999;69(4):478–81.PubMedCrossRef Juzenas P, Sorensen R, Iani V, Moan J. Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature. Photochem Photobiol. 1999;69(4):478–81.PubMedCrossRef
58.
Zurück zum Zitat Mamalis A, Koo E, Sckisel GD, Siegel DM, Jagdeo J. The temperature-dependent impact of thermal-ALA-PDT on apoptosis and reactive oxygen species generation in human dermal fibroblasts. Br J Dermatol. 2016. doi:10.1111/bjd.14509.PubMed Mamalis A, Koo E, Sckisel GD, Siegel DM, Jagdeo J. The temperature-dependent impact of thermal-ALA-PDT on apoptosis and reactive oxygen species generation in human dermal fibroblasts. Br J Dermatol. 2016. doi:10.​1111/​bjd.​14509.PubMed
59.
Zurück zum Zitat De Vijlder HC, Middelburg T, De Bruijn HS, Martino Neumann HA, Sterenborg HC, Robinson DJ, et al. Optimizing ALA-PDT in the management of non-melanoma skin cancer by fractionated illumination. G Ital Dermatol Venereol. 2009;144(4):433–9.PubMed De Vijlder HC, Middelburg T, De Bruijn HS, Martino Neumann HA, Sterenborg HC, Robinson DJ, et al. Optimizing ALA-PDT in the management of non-melanoma skin cancer by fractionated illumination. G Ital Dermatol Venereol. 2009;144(4):433–9.PubMed
60.
Zurück zum Zitat van der Veen N, van Leengoed HL, Star WM. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations. Br J Cancer. 1994;70(5):867–72.PubMedPubMedCentralCrossRef van der Veen N, van Leengoed HL, Star WM. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations. Br J Cancer. 1994;70(5):867–72.PubMedPubMedCentralCrossRef
61.•
Zurück zum Zitat de Vijlder HC, Sterenborg HJ, Neumann HA, Robinson DJ, de Haas ER. Light fractionation significantly improves the response of superficial basal cell carcinoma to aminolaevulinic acid photodynamic therapy: five-year follow-up of a randomized, prospective trial. Acta Derm Venereol. 2012;92(6):641–7. doi:10.2340/00015555-1448. Clinical study showing that fractionated light delivery improves ALA-PDT outcome.PubMedCrossRef de Vijlder HC, Sterenborg HJ, Neumann HA, Robinson DJ, de Haas ER. Light fractionation significantly improves the response of superficial basal cell carcinoma to aminolaevulinic acid photodynamic therapy: five-year follow-up of a randomized, prospective trial. Acta Derm Venereol. 2012;92(6):641–7. doi:10.​2340/​00015555-1448. Clinical study showing that fractionated light delivery improves ALA-PDT outcome.PubMedCrossRef
62.
Zurück zum Zitat Sotiriou E, Apalla Z, Chovarda E, Goussi C, Trigoni A, Ioannides D. Single vs. fractionated photodynamic therapy for face and scalp actinic keratoses: a randomized, intraindividual comparison trial with 12-month follow-up. J Eur Acad Dermatol Venereol. 2012;26(1):36–40. doi:10.1111/j.1468-3083.2011.04003.x.PubMedCrossRef Sotiriou E, Apalla Z, Chovarda E, Goussi C, Trigoni A, Ioannides D. Single vs. fractionated photodynamic therapy for face and scalp actinic keratoses: a randomized, intraindividual comparison trial with 12-month follow-up. J Eur Acad Dermatol Venereol. 2012;26(1):36–40. doi:10.​1111/​j.​1468-3083.​2011.​04003.​x.PubMedCrossRef
63.
Zurück zum Zitat de Bruijn HS, Casas AG, Di Venosa G, Gandara L, Sterenborg HJ, Batlle A, et al. Light fractionated ALA-PDT enhances therapeutic efficacy in vitro; the influence of PpIX concentration and illumination parameters. Photochem Photobiol Sci. 2013;12(2):241–5. doi:10.1039/c2pp25287b.PubMedCrossRef de Bruijn HS, Casas AG, Di Venosa G, Gandara L, Sterenborg HJ, Batlle A, et al. Light fractionated ALA-PDT enhances therapeutic efficacy in vitro; the influence of PpIX concentration and illumination parameters. Photochem Photobiol Sci. 2013;12(2):241–5. doi:10.​1039/​c2pp25287b.PubMedCrossRef
64.•
Zurück zum Zitat de Bruijn HS, Brooks S, van der Ploeg-van den Heuvel A, Ten Hagen TL, de Haas ER, Robinson DJ. Light Fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLoS ONE. 2016;11(2):e0148850. doi:10.1371/journal.pone.0148850. Clinical study showing that daylight-mediated ALA-PDT performs equally well to red light, but is better tolerated.PubMedPubMedCentralCrossRef de Bruijn HS, Brooks S, van der Ploeg-van den Heuvel A, Ten Hagen TL, de Haas ER, Robinson DJ. Light Fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLoS ONE. 2016;11(2):e0148850. doi:10.​1371/​journal.​pone.​0148850. Clinical study showing that daylight-mediated ALA-PDT performs equally well to red light, but is better tolerated.PubMedPubMedCentralCrossRef
65.
66.
Zurück zum Zitat Rubel DM, Spelman L, Murrell DF, See JA, Hewitt D, Foley P, et al. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial. Br J Dermatol. 2014;171(5):1164–71. doi:10.1111/bjd.13138.PubMedCrossRef Rubel DM, Spelman L, Murrell DF, See JA, Hewitt D, Foley P, et al. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial. Br J Dermatol. 2014;171(5):1164–71. doi:10.​1111/​bjd.​13138.PubMedCrossRef
68.
Zurück zum Zitat Attili SK, Lesar A, McNeill A, Camacho-Lopez M, Moseley H, Ibbotson S, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br J Dermatol. 2009;161(1):170–3. doi:10.1111/j.1365-2133.2009.09096.x.PubMedCrossRef Attili SK, Lesar A, McNeill A, Camacho-Lopez M, Moseley H, Ibbotson S, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br J Dermatol. 2009;161(1):170–3. doi:10.​1111/​j.​1365-2133.​2009.​09096.​x.PubMedCrossRef
70.
Zurück zum Zitat Ferrick B, Izikson L, Ibrahimi O, Jalian HR, Kroshinsky D, Anderson RR, et al. Quantitative volumetric changes after conventional ALA-PDT compared to a new inhibitory PDT method (i-PDT) to reduce inflammation in a preliminary study. Lasers Surg Med. 2014;46(S25):43–4. Ferrick B, Izikson L, Ibrahimi O, Jalian HR, Kroshinsky D, Anderson RR, et al. Quantitative volumetric changes after conventional ALA-PDT compared to a new inhibitory PDT method (i-PDT) to reduce inflammation in a preliminary study. Lasers Surg Med. 2014;46(S25):43–4.
Metadaten
Titel
Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy
verfasst von
Connor Thunshelle
Rui Yin
Qiquan Chen
Michael R. Hamblin
Publikationsdatum
13.07.2016
Verlag
Springer US
Erschienen in
Current Dermatology Reports / Ausgabe 3/2016
Elektronische ISSN: 2162-4933
DOI
https://doi.org/10.1007/s13671-016-0154-5

Weitere Artikel der Ausgabe 3/2016

Current Dermatology Reports 3/2016 Zur Ausgabe

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.