Skip to main content
Erschienen in: Skeletal Radiology 2/2020

04.08.2019 | Review Article

Current applications and future directions of deep learning in musculoskeletal radiology

verfasst von: Pauley Chea, Jacob C. Mandell

Erschienen in: Skeletal Radiology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Deep learning with convolutional neural networks (CNN) is a rapidly advancing subset of artificial intelligence that is ideally suited to solving image-based problems. There are an increasing number of musculoskeletal applications of deep learning, which can be conceptually divided into the categories of lesion detection, classification, segmentation, and non-interpretive tasks. Numerous examples of deep learning achieving expert-level performance in specific tasks in all four categories have been demonstrated in the past few years, although comprehensive interpretation of imaging examinations has not yet been achieved. It is important for the practicing musculoskeletal radiologist to understand the current scope of deep learning as it relates to musculoskeletal radiology. Interest in deep learning from researchers, radiology leadership, and industry continues to increase, and it is likely that these developments will impact the daily practice of musculoskeletal radiology in the near future.
Literatur
1.
Zurück zum Zitat Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288:318–28.PubMedPubMedCentral Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288:318–28.PubMedPubMedCentral
2.
Zurück zum Zitat Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290:590–606.PubMed Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290:590–606.PubMed
3.
Zurück zum Zitat Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. RadioGraphics. 2017;37:2113–31.PubMed Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. RadioGraphics. 2017;37:2113–31.PubMed
4.
Zurück zum Zitat Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K. Big data and machine learning—strategies for driving this bus: a summary of the 2016 Intersociety Summer Conference. J Am Coll Radiol. 2017;14:811–7.PubMed Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K. Big data and machine learning—strategies for driving this bus: a summary of the 2016 Intersociety Summer Conference. J Am Coll Radiol. 2017;14:811–7.PubMed
5.
Zurück zum Zitat Rosenkrantz AB, Nicola GN, Allen B, Hughes DR, Hirsch JA. MACRA, MIPS, and the new Medicare quality payment program: an update for radiologists. J Am Coll Radiol. 2017;14:316–23.PubMed Rosenkrantz AB, Nicola GN, Allen B, Hughes DR, Hirsch JA. MACRA, MIPS, and the new Medicare quality payment program: an update for radiologists. J Am Coll Radiol. 2017;14:316–23.PubMed
7.
Zurück zum Zitat Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.PubMedPubMedCentral Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.PubMedPubMedCentral
8.
Zurück zum Zitat Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer. 2019;5:157–69.PubMed Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer. 2019;5:157–69.PubMed
10.
Zurück zum Zitat Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36:257–72.PubMed Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36:257–72.PubMed
11.
13.
Zurück zum Zitat Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. ArXiv12070580 Cs [Internet]. 2012 [cited 2019 May 4]; Available from: http://arxiv.org/abs/1207.0580 Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. ArXiv12070580 Cs [Internet]. 2012 [cited 2019 May 4]; Available from: http://​arxiv.​org/​abs/​1207.​0580
14.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. ArXiv160304467 Cs [Internet]. 2016 [cited 2019 May 4]; Available from: http://arxiv.org/abs/1603.04467. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. ArXiv160304467 Cs [Internet]. 2016 [cited 2019 May 4]; Available from: http://​arxiv.​org/​abs/​1603.​04467.
18.
Zurück zum Zitat Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med. 2018;98:8–15.PubMed Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med. 2018;98:8–15.PubMed
19.
Zurück zum Zitat Roth HR, Wang Y, Yao J, Lu L, Burns JE, Summers RM. Deep convolutional networks for automated detection of posterior-element fractures on spine CT. ArXiv160200020 Cs. 2016;97850P. Roth HR, Wang Y, Yao J, Lu L, Burns JE, Summers RM. Deep convolutional networks for automated detection of posterior-element fractures on spine CT. ArXiv160200020 Cs. 2016;97850P.
20.
Zurück zum Zitat Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 2017;88:581–6.PubMedPubMedCentral Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 2017;88:581–6.PubMedPubMedCentral
21.
Zurück zum Zitat Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skelet Radiol. 2019;48:239–44. Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skelet Radiol. 2019;48:239–44.
23.
Zurück zum Zitat Chung SW, Han SS, Lee JW, Oh K-S, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89:468–73.PubMedPubMedCentral Chung SW, Han SS, Lee JW, Oh K-S, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89:468–73.PubMedPubMedCentral
24.
Zurück zum Zitat Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45.PubMed Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45.PubMed
25.
Zurück zum Zitat Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci. 2018;115:11591–6.PubMed Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci. 2018;115:11591–6.PubMed
26.
Zurück zum Zitat Pranata YD. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Prog Biomed. 2019;11. Pranata YD. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Prog Biomed. 2019;11.
27.
Zurück zum Zitat Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019. Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019.
28.
Zurück zum Zitat Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019. Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019.
29.
Zurück zum Zitat Lassau N, Estienne T, de Vomecourt P, Azoulay M, Cagnol J, Garcia G, et al. Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI. Diagn Interv Imaging 2019. Lassau N, Estienne T, de Vomecourt P, Azoulay M, Cagnol J, Garcia G, et al. Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI. Diagn Interv Imaging 2019.
30.
Zurück zum Zitat Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15:e1002699.PubMedPubMedCentral Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15:e1002699.PubMedPubMedCentral
31.
Zurück zum Zitat Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging [Internet]. [cited 2018 Oct 22];0. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.26246. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging [Internet]. [cited 2018 Oct 22];0. Available from: http://​onlinelibrary.​wiley.​com/​doi/​abs/​10.​1002/​jmri.​26246.
32.
Zurück zum Zitat Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep Learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289:160–9.PubMedPubMedCentral Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep Learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289:160–9.PubMedPubMedCentral
33.
Zurück zum Zitat Abidin AZ, Deng B, DSouza AM, Nagarajan MB, Coan P, Wismüller A. Deep transfer learning for characterizing chondrocyte patterns in phase contrast X-ray computed tomography images of the human patellar cartilage. Computers in Biology and Medicine. 2018;95:24–33.PubMedPubMedCentral Abidin AZ, Deng B, DSouza AM, Nagarajan MB, Coan P, Wismüller A. Deep transfer learning for characterizing chondrocyte patterns in phase contrast X-ray computed tomography images of the human patellar cartilage. Computers in Biology and Medicine. 2018;95:24–33.PubMedPubMedCentral
34.
Zurück zum Zitat Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire osteoarthritis initiative baseline cohort. Osteoarthr Cartil 2019. Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire osteoarthritis initiative baseline cohort. Osteoarthr Cartil 2019.
36.
Zurück zum Zitat Jamaludin A, Kadir T, Zisserman A. SpineNet: Automatically Pinpointing Classification Evidence in Spinal MRIs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Med Image Comput Comput-Assist Interv – MICCAI 2016 [Internet]. Cham: Springer International Publishing; 2016. 166–75. Jamaludin A, Kadir T, Zisserman A. SpineNet: Automatically Pinpointing Classification Evidence in Spinal MRIs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Med Image Comput Comput-Assist Interv – MICCAI 2016 [Internet]. Cham: Springer International Publishing; 2016. 166–75.
37.
Zurück zum Zitat Lang N, Zhang Y, Zhang E, Zhang J, Chow D, Chang P, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imaging. 2019. Lang N, Zhang Y, Zhang E, Zhang J, Chow D, Chang P, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imaging. 2019.
39.
Zurück zum Zitat Chung SW, Han SS, Lee JW, Oh K-S, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89:468–73.PubMedPubMedCentral Chung SW, Han SS, Lee JW, Oh K-S, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89:468–73.PubMedPubMedCentral
40.
Zurück zum Zitat Belharbi S, Chatelain C, Hérault R, Adam S, Thureau S, Chastan M, et al. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput Biol Med. 2017;87:95–103.PubMed Belharbi S, Chatelain C, Hérault R, Adam S, Thureau S, Chastan M, et al. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput Biol Med. 2017;87:95–103.PubMed
42.
Zurück zum Zitat Antony J, McGuinness K, Connor NEO, Moran K. Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks. ArXiv160902469 Cs [Internet]. 2016 [cited 2019 Jan 21]; Available from: http://arxiv.org/abs/1609.02469. Antony J, McGuinness K, Connor NEO, Moran K. Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks. ArXiv160902469 Cs [Internet]. 2016 [cited 2019 Jan 21]; Available from: http://​arxiv.​org/​abs/​1609.​02469.
44.
Zurück zum Zitat Lu J-T, Pedemonte S, Bizzo B, Doyle S, Andriole KP, Michalski MH, et al. DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. ArXiv180710215 Cs [Internet]. 2018 [cited 2018 Nov 11]; Available from: http://arxiv.org/abs/1807.10215. Lu J-T, Pedemonte S, Bizzo B, Doyle S, Andriole KP, Michalski MH, et al. DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. ArXiv180710215 Cs [Internet]. 2018 [cited 2018 Nov 11]; Available from: http://​arxiv.​org/​abs/​1807.​10215.
46.
Zurück zum Zitat Koitka S, Demircioglu A, Kim MS, Friedrich CM, Nensa F. Ossification area localization in pediatric hand radiographs using deep neural networks for object detection. Najarian K, editor. PLOS ONE. 2018;13:e0207496.PubMedPubMedCentral Koitka S, Demircioglu A, Kim MS, Friedrich CM, Nensa F. Ossification area localization in pediatric hand radiographs using deep neural networks for object detection. Najarian K, editor. PLOS ONE. 2018;13:e0207496.PubMedPubMedCentral
47.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287:313–22.PubMed Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287:313–22.PubMed
48.
Zurück zum Zitat Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2018;290:498–503.PubMed Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2018;290:498–503.PubMed
50.
Zurück zum Zitat Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017;36:41–51.PubMed Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017;36:41–51.PubMed
51.
Zurück zum Zitat Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017;30:427–41.PubMedPubMedCentral Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017;30:427–41.PubMedPubMedCentral
52.
Zurück zum Zitat Tajmir SH, Lee H, Shailam R, Gale HI, Nguyen JC, Westra SJ, et al. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skelet Radiol. 2019;48:275–83. Tajmir SH, Lee H, Shailam R, Gale HI, Nguyen JC, Westra SJ, et al. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skelet Radiol. 2019;48:275–83.
53.
Zurück zum Zitat Kapinski N, Zielinski J, Borucki BA, Trzcinski T, Ciszkowska-Lyson B, Nowinski KS. Estimating Achilles tendon healing progress with convolutional neural networks. ArXiv180605091 Cs [Internet]. 2018 [cited 2018 Nov 11]; Available from: http://arxiv.org/abs/1806.05091. Kapinski N, Zielinski J, Borucki BA, Trzcinski T, Ciszkowska-Lyson B, Nowinski KS. Estimating Achilles tendon healing progress with convolutional neural networks. ArXiv180605091 Cs [Internet]. 2018 [cited 2018 Nov 11]; Available from: http://​arxiv.​org/​abs/​1806.​05091.
55.
Zurück zum Zitat Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. Am J Roentgenol. 2017;209:1374–80. Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, et al. Computerized bone age estimation using deep learning-based program: evaluation of the accuracy and efficiency. Am J Roentgenol. 2017;209:1374–80.
56.
Zurück zum Zitat Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, et al. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J. 2017;26:1374–83.PubMed Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, et al. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J. 2017;26:1374–83.PubMed
58.
Zurück zum Zitat Winklhofer S, Held U, Burgstaller JM, Finkenstaedt T, Bolog N, Ulrich N, et al. Degenerative lumbar spinal canal stenosis: intra- and inter-reader agreement for magnetic resonance imaging parameters. Eur Spine J. 2017;26:353–61.PubMed Winklhofer S, Held U, Burgstaller JM, Finkenstaedt T, Bolog N, Ulrich N, et al. Degenerative lumbar spinal canal stenosis: intra- and inter-reader agreement for magnetic resonance imaging parameters. Eur Spine J. 2017;26:353–61.PubMed
59.
Zurück zum Zitat Miskin N, Gaviola GC, Huang RY, Kim CJ, Lee TC, Small KM, et al. Intra- and Intersubspecialty variability in lumbar spine MRI interpretation: a multireader study comparing musculoskeletal radiologists and Neuroradiologists. Curr Probl Diagn Radiol. 2019. Miskin N, Gaviola GC, Huang RY, Kim CJ, Lee TC, Small KM, et al. Intra- and Intersubspecialty variability in lumbar spine MRI interpretation: a multireader study comparing musculoskeletal radiologists and Neuroradiologists. Curr Probl Diagn Radiol. 2019.
61.
Zurück zum Zitat Deniz CM, Xiang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, et al. Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep. 2018;8:16485.PubMedPubMedCentral Deniz CM, Xiang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, et al. Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep. 2018;8:16485.PubMedPubMedCentral
62.
Zurück zum Zitat Ambellan F. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med Image Anal. 2019;10. Ambellan F. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med Image Anal. 2019;10.
63.
Zurück zum Zitat Chmelik J, Jakubicek R, Walek P, Jan J, Ourednicek P, Lambert L, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal. 2018;49:76–88.PubMed Chmelik J, Jakubicek R, Walek P, Jan J, Ourednicek P, Lambert L, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal. 2018;49:76–88.PubMed
64.
Zurück zum Zitat Tack A, Mukhopadhyay A, Zachow S. Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26:680–8.PubMed Tack A, Mukhopadhyay A, Zachow S. Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26:680–8.PubMed
65.
Zurück zum Zitat Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2018;79:2379–91.PubMed Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2018;79:2379–91.PubMed
66.
Zurück zum Zitat Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phys Biol Med. 2016;29:207–21. Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phys Biol Med. 2016;29:207–21.
67.
Zurück zum Zitat Wang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two-step convolutional neural network-based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Prog Biomed. 2017;144:97–104. Wang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two-step convolutional neural network-based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Prog Biomed. 2017;144:97–104.
68.
Zurück zum Zitat Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Med image Comput Comput-assist Interv – MICCAI 2013. Springer: Berlin Heidelberg; 2013. p. 246–53. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Med image Comput Comput-assist Interv – MICCAI 2013. Springer: Berlin Heidelberg; 2013. p. 246–53.
69.
Zurück zum Zitat Pröve P-L, Jopp-van Well E, Stanczus B, Morlock MM, Herrmann J, Groth M, et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med 2018. Pröve P-L, Jopp-van Well E, Stanczus B, Morlock MM, Herrmann J, Groth M, et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med 2018.
70.
Zurück zum Zitat Zhou Z, Zhao G, Kijowski R, Liu F. Deep convolutional neural network for segmentation of knee joint anatomy: Zhou et al. Magn Reson Med. 2018;80:2759–70.PubMedPubMedCentral Zhou Z, Zhao G, Kijowski R, Liu F. Deep convolutional neural network for segmentation of knee joint anatomy: Zhou et al. Magn Reson Med. 2018;80:2759–70.PubMedPubMedCentral
71.
Zurück zum Zitat Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. ArXiv151100561 Cs [Internet]. 2015 [cited 2019 Mar 24]; Available from: http://arxiv.org/abs/1511.00561 Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. ArXiv151100561 Cs [Internet]. 2015 [cited 2019 Mar 24]; Available from: http://​arxiv.​org/​abs/​1511.​00561
72.
Zurück zum Zitat Heimann T, Morrison BJ, Styner MA, Niethammer M, Warfield SK. Segmentation of knee images: a grand challenge. Proc. MICCAI Workshop on Medical Image Analysis for the Clinic. Heimann T, Morrison BJ, Styner MA, Niethammer M, Warfield SK. Segmentation of knee images: a grand challenge. Proc. MICCAI Workshop on Medical Image Analysis for the Clinic.
73.
Zurück zum Zitat Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245–51.PubMed Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245–51.PubMed
74.
Zurück zum Zitat Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol. 2018;36:566–74.PubMed Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol. 2018;36:566–74.PubMed
75.
Zurück zum Zitat Wang H, Peng H, Chang Y, Liang D. A survey of GPU-based acceleration techniques in MRI reconstructions. Quant Imaging Med Surg. 2018;8:196–208.PubMedPubMedCentral Wang H, Peng H, Chang Y, Liang D. A survey of GPU-based acceleration techniques in MRI reconstructions. Quant Imaging Med Surg. 2018;8:196–208.PubMedPubMedCentral
76.
Zurück zum Zitat Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8:679–94.PubMedPubMedCentral Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8:679–94.PubMedPubMedCentral
77.
Zurück zum Zitat Wu D, Kim K, El Fakhri G, Li Q. Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging. 2017;36:2479–86.PubMedPubMedCentral Wu D, Kim K, El Fakhri G, Li Q. Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging. 2017;36:2479–86.PubMedPubMedCentral
78.
Zurück zum Zitat Wu Y, Ma Y, Capaldi DP, Liu J, Zhao W, Du J, et al. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magn Reson Imaging. 2019. Wu Y, Ma Y, Capaldi DP, Liu J, Zhao W, Du J, et al. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magn Reson Imaging. 2019.
79.
Zurück zum Zitat Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017;44:e360–75.PubMed Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017;44:e360–75.PubMed
80.
Zurück zum Zitat Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic resonance imaging via deep learning. 2016 IEEE 13th Int Symp Biomed Imaging ISBI. 2016. 514–7. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic resonance imaging via deep learning. 2016 IEEE 13th Int Symp Biomed Imaging ISBI. 2016. 514–7.
81.
Zurück zum Zitat Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. ArXiv170400447 Cs [Internet]. 2017 [cited 2018 Nov 12]; Available from: http://arxiv.org/abs/1704.00447. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. ArXiv170400447 Cs [Internet]. 2017 [cited 2018 Nov 12]; Available from: http://​arxiv.​org/​abs/​1704.​00447.
83.
Zurück zum Zitat Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med. 2018;80:2139–54.PubMedPubMedCentral Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med. 2018;80:2139–54.PubMedPubMedCentral
84.
Zurück zum Zitat Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018;31:604–10.PubMedPubMedCentral Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018;31:604–10.PubMedPubMedCentral
85.
Zurück zum Zitat Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245–51.PubMed Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245–51.PubMed
86.
Zurück zum Zitat Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524–35.PubMedPubMedCentral Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524–35.PubMedPubMedCentral
87.
Zurück zum Zitat Wu Y, Ma Y, Capaldi DP, Liu J, Zhao W, Du J, et al. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.:30. Wu Y, Ma Y, Capaldi DP, Liu J, Zhao W, Du J, et al. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.:30.
88.
Zurück zum Zitat Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a User’s guide. RadioGraphics. 2005;25:1279–97.PubMed Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a User’s guide. RadioGraphics. 2005;25:1279–97.PubMed
90.
Zurück zum Zitat He Y, Guo J, Ding X, van Ooijen PMA, Zhang Y, Chen A, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. Eur Radiol [Internet]. 2019 [cited 2019 Apr 8]; Available from: http://link.springer.com/10.1007/s00330-019-06082-2. He Y, Guo J, Ding X, van Ooijen PMA, Zhang Y, Chen A, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. Eur Radiol [Internet]. 2019 [cited 2019 Apr 8]; Available from: http://​link.​springer.​com/​10.​1007/​s00330-019-06082-2.
92.
Zurück zum Zitat Liew C. The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol. 2018;102:152–6.PubMed Liew C. The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol. 2018;102:152–6.PubMed
94.
Zurück zum Zitat Rubin DL, Kahn CE. Common data elements in radiology. Radiology. 2016;283:837–44.PubMed Rubin DL, Kahn CE. Common data elements in radiology. Radiology. 2016;283:837–44.PubMed
95.
Zurück zum Zitat Nguyen GK, Shetty AS. Artificial intelligence and machine learning: opportunities for radiologists in training. J Am Coll Radiol. 2018;15:1320–1.PubMed Nguyen GK, Shetty AS. Artificial intelligence and machine learning: opportunities for radiologists in training. J Am Coll Radiol. 2018;15:1320–1.PubMed
Metadaten
Titel
Current applications and future directions of deep learning in musculoskeletal radiology
verfasst von
Pauley Chea
Jacob C. Mandell
Publikationsdatum
04.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 2/2020
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-019-03284-z

Weitere Artikel der Ausgabe 2/2020

Skeletal Radiology 2/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.