Skip to main content
Erschienen in: Clinical and Translational Allergy 1/2016

Open Access 01.12.2016 | Review

Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

verfasst von: Katrine Lindholm Bøgh, Jolanda van Bilsen, Robert Głogowski, Iván López-Expósito, Grégory Bouchaud, Carine Blanchard, Marie Bodinier, Joost Smit, Raymond Pieters, Shanna Bastiaan-Net, Nicole de Wit, Eva Untersmayr, Karine Adel-Patient, Leon Knippels, Michelle M. Epstein, Mario Noti, Unni Cecilie Nygaard, Ian Kimber, Kitty Verhoeckx, Liam O’Mahony

Erschienen in: Clinical and Translational Allergy | Ausgabe 1/2016

Abstract

Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Abkürzungen
APC
antigen presenting cell
BLG
beta-lactoglubulin
BN
Brown Norway
CM
cow’s milk
CT
cholera toxin
DAMP
danger associated molecular pattern
DC
dendritic cells
DTH
delayed type hypersensitivity
e.p.
epicutaneous
i.d.
intradermally
IEL
intraepithelial lymphocytes
IL
interleukin
ILC
innate lymphoid cell
i.n.
intranasal
iNKT
invariant natural killer T cell
i.p.
intraperitoneal
ITH
immediate type hypersensitivity
i.v.
intravenous
LTP
lipid transfer protein
MCT
medium chain triglyceride
OVA
ovalbumin
OVM
ovomucoid
PCA
passive cutaneous anaphylaxis
PE
peanut extract
SEB
staphylococcus aureus enterotoxin B
SOPF
specific and opportunistic pathogen free
SPF
specific pathogen free
Th
T helper cell
TSLP
thymic stromal lymphopoietin

Background

Food allergy affects a significant proportion of the population and is associated with important health effects. In addition, food allergy has an impact on quality of life and represents a substantial economic burden [1, 2]. The exponential growth of the human population means that existing protein sources, such as soy, are being consumed by a wider population, while novel protein sources, such as insect and algae, are currently being examined for inclusion in human foodstuffs. The introduction of new proteins into the diet inevitably creates a potential opportunity for the development of new food allergies. There is a need, therefore, for the development and application of appropriate strategies for evaluating the allergenic potential of existing and new food proteins as an important component of safety assessment. A crucial question in food allergy research is what characteristics confer on proteins the ability to cause sensitization and allergy. Current understanding of this is incomplete and this has limited the development of predictive methods based on in silico analysis of protein sequence and structure, and in vitro methods most often based on the measurement of a single parameter. For this reason, there is a continued interest in the development of suitable animal models that provide a more holistic approach to the assessment of the allergic potential of proteins. Although there is a variety of animal models for evaluating allergenicity, none of the existing models has been validated, is predictive, or widely accepted [3]. Because the choice of animal experimental design as well as the selection of appropriate endpoints and evaluation parameters may lead to contradictory results, there is an enormous impact on performance and predictive accuracy of animal models. Here, we review the experimental design and interpretation of animal models for the assessment of the allergenic potential of novel food proteins (Fig. 1).

Reference proteins

To assess the relative allergenicity of novel proteins, it is essential to use known allergens in humans as reference proteins. It is unknown why certain proteins are allergenic, compared to the large majority of non-allergenic food proteins. As reviewed extensively elsewhere [4], most plant allergens belong to the prolamin superfamily, including the lipid transfer proteins (LTP) and 2S albumins or to the cupin superfamily, which include the 11S and 7S globulins. Animal food allergens predominately belong to the parvalbumin, tropomysin and casein protein families. The shared conserved structure and biological activity among proteins in these families contribute to their allergenicity. However, protein homology alone does not guarantee allergenicity [5]. Sensitizing rats with 7S globulins from peanut, hazelnut, soy or pea induced IgE with different biological activities [6]. In addition, patients allergic to goat’s milk, but who tolerate cow’s milk, show an absence IgE-binding to bovine b-casein by IgE specific to caprine b-casein, despite a sequence identity of 91 % between the respective proteins [7]. This suggests that subtle differences in physical or biological properties are modulators of allergic responses even to well-described food allergens.
Initial studies by Astwood et al. [8] proposed that stability of proteins to in vitro gastric digestion significantly discriminated known allergens from non/low-allergens. However, subsequent studies with a wider range of proteins did not support these findings [9, 10]. Thus, additional tests, including those in animal models, may be useful in the assessment of the allergenic potential of novel proteins. Dearman and Kimber [11] showed that known allergenic proteins (peanut agglutinin and ovalbumin (OVA)) induced specific IgE upon intraperitoneal (i.p.) injection of mice, while presumed non/low-allergenic proteins (potato agglutinin, potato acid phosphatase) were immunogenic, but induced only low IgE titer responses. In contrast, a multi-laboratory study was unable to accurately differentiate between known allergens and putative non/low-allergens, including spinach rubisco and soy lipoxygenase [12]. Oral exposure to allergens under specific experimental conditions was able to distinguish allergenic from non/low-allergenic food extracts, while systemic exposure did not [13].
There is a significant need to validate a toolbox of reference proteins, which contain potent allergenic, weak and non/low-allergenic proteins. Published data, to date, demonstrate a lack of reproducible and predictive measurements, which emphasizes the need for in vivo models, that are thoroughly tested with a wide range of well-characterized, purified, and endotoxin-free potent, weak or non/low-allergenic proteins.

Animal species and strain

The species most commonly employed in food allergy research is the mouse. In addition to their small size and short breeding cycle, the sequence of immunological events involved in the development of sensitization and the elicitation of allergic reactions is similar, although not identical to humans [14]. Moreover, the availability of various immunological and molecular reagents and transgenic animals makes them a powerful tool for investigating immunological mechanisms related to food allergies and evaluating the sensitizing potential of new food proteins.
As for humans, genetic predisposition in mice is important for measuring in vivo sensitization to novel food proteins. Smit et al. [15] examined three different murine strains following oral administration of peanut extract. Higher concentrations of peanut-specific IgE were found in BALB/c mice compared with other strains. In contrast, Berin et al. [16] reported no differences between BALB/c and C3H/HeOuJ mice in their IgE response to β-lactoglubulin (BLG) and C3H/HeOuJ mice produced higher peanut protein-specific IgE levels. These disparate results were attributed to the use of different protocols for inducing sensitization. Both Berin et al. [16] and Smit et al. [15] reported that spleen cells from peanut sensitized BALB/c mice secreted more IL-4, IL-5, IL-13 and IFN-γ than those from C3H/HeOuJ mice, suggesting that BALB/c mice might be the preferable strain.
As an alternative to the mouse, Brown Norway (BN) rats mount strong IgE antibody responses and due to their size, it is possible to monitor kinetics of serum specific antibody responses within individual animals. Another advantage is that the test protein can be delivered by daily gavage over a period of weeks in the absence of adjuvant [17]. On the downside, oral dosing of rats requires a larger amount of protein, compared to mice, which influences the cost of the experiment and fewer immunological reagents are available than for mouse.
In contrast to murine models, dogs spontaneously develop allergies [18]. Thus, it is a good species for evaluating food allergy. Moreover, it is also possible to immunize the same animal with multiple allergens. Furthermore, it is possible to do repeated endoscopy of the gut, to identify high IgE responder animals and their larger organ size and blood volume allows for more analyses and longitudinal studies. Although dogs are well suited for mechanistic studies, it is not feasible to use them for routine testing for safety assessment. They are expensive to maintain, there are a limited number of strains, they have greater inter-animal variation than rodents, and commercially available immunological reagents are lacking [17]. Similar drawbacks are present in swine with the addition of long dosing times needed for sensitization [12].
Other potential animal species are guinea pigs and rabbits. However, guinea pigs do not produce IgE. Allergic responses in guinea pigs are IgG1a mediated and possibly other mechanisms are also involved, thereby making the translation to humans more difficult. Rabbits generate high levels of IgE after subcutaneous sensitization, but are poorly characterized and thereby rarely used as a model species for food allergy [19].
In conclusion, mice are currently the most commonly used in vivo model for evaluating potential sensitizing capacities of food proteins. Notably, when using mouse models, it is important to wisely select an optimal strain and sensitization protocol, depending on the allergen source and specific research question.

Route of sensitization

There are multiple routes used to induce allergic sensitization to food allergens including i.p., oral, intranasal (i.n.) and cutaneous administration [20, 21]. However, the route of administration may alter the resulting immune response. For example, i.p. sensitization with wheat proteins induced a specific IgE response with similar IgE-binding epitopes to humans [22], whereas i.p. sensitization with OVA led to more OVA-specific IgE-binding epitopes compared to oral sensitization [23].
Sensitization to food allergens such as peanut or cow’s milk (CM) may occur in the gut with oral sensitization. Over the last few years, several oral food allergy models were established in rodents [24, 25] and are useful for investigating the mechanisms underlying sensitization and clinical reactions to food proteins. For example, Li et al. [26] demonstrated that oral exposure of C3H/HeJ mice to peanut extract (PE) in combination with cholera toxin (CT) induced PE-specific IgE in serum and systemic anaphylactic symptoms upon oral challenge. Alternatively, the skin may also be a route for sensitization to food allergens [27]. For example, in a human study it was found that cutaneous exposure, rather than maternal or infant allergen consumption, led to peanut sensitization [28]. Recently, Spergel et al. [29] started to decipher cutaneous sensitization mechanisms with food allergens in mice. These authors found that epicutaneous (e.p.) sensitization with OVA, in the absence of aluminum hydroxide, resulted in higher antibody levels compared to i.p. administration of OVA with aluminum hydroxide [29], suggesting that e.p. sensitization is a robust sensitization route. Furthermore, Strid et al. [30] reported that an aqueous solution of either peanut allergen or OVA, when applied to abraded skin of mice, induced the production of antigen-specific IgE. Notably, the most effective route of food allergen sensitization varies significantly between mouse strains [15, 31].
Therefore, the route of allergen sensitization is an important and necessary consideration for the use of any relevant animal model of food allergy. Oral sensitization may be required to mimic the effect of digestion and the gut epithelium on sensitization to food proteins. However, it is not yet known which route of sensitization is best to predict the allergenic potency of food proteins in the human population.

Dose–sensitization relationships

Risk assessment for food allergens does not fundamentally differ from assessing the risk of chemical substances or microbiological agents as they often include similar methodologies [3234]. In the hazard characterization of food allergens, a qualitative, and, wherever possible, quantitative description of the sensitizing property of a food allergen is made, together with its relationship to dose, where possible. These dose–sensitization data are helpful to classify food allergens by creating threshold values below which the risk of inducing a new food allergy is considered to be negligible or acceptable.
In humans, knowledge on dose–sensitization relationships to food allergens is extremely limited. Probably both low- and high- dose tolerance induction may be relevant mechanisms for explaining the fact that just a small percentage of the human population develops food allergy [35]. Since many variables (e.g. exposure route and frequency, food-related factors, host-related factors, matrix effects) are likely to be of importance, the doses required for sensitization might prove highly variable.
No animal model has been adopted for use in the generation of dose–sensitization data. Ideally, an appropriate animal model should be (a) validated by dose–response curves with different sensitizations and (b) be sensitive for distinguishing a threshold beyond which significant sensitization would be predicted and (c) potentially be sensitive for producing graded responses comparable to what is known regarding their prevalence and severity of responses in humans, e.g. peanut > egg > spinach [12]. Previously, animal studies demonstrated dose–response relationships within a restricted dose range for only a limited number of proteins [12, 13, 36]. Using these animal studies one can only conclude that there is a hazard connected to a given protein, because the mechanistic knowledge to interpret the dose–sensitization profile in terms of risk assessment is lacking. This was nicely illustrated by Kroghsbo et al. [36] where dose–sensitization data of two related proteins (gluten and enzymatically hydrolysed gluten) were compared to determine which protein is the strongest sensitizer. Enzymatically hydrolysed gluten gave the highest immune response, which was dose-related. Gluten showed no dose-related responses. However, in contrast to the hydrolysed gluten, gluten showed a response at the low dose. Thus, one can conclude that both forms of this protein possess sensitizing capacity and the doses relevant for human exposure should be taken into consideration when qualifying the potential risks for humans.
In conclusion, dose–sensitization studies in animals can be used to enhance our mechanistic knowledge on the sensitization process and characterize the allergenic hazard of novel food proteins. However, the current lack of dose–sensitization data in food allergy makes it difficult to perform a risk assessment. In addition, dose-dependent effects on immunological responses are not always linear, which further complicates interpretation.

Protein preparation

Ideally, an animal model should assess the sensitizing capacity of the individual novel proteins, as well as the novel protein in the context of the whole food. However, the choice of how the proteins are prepared prior to sensitization assessment may have significant implications on the predictive value of the model. Should purified proteins, protein extracts or the complex whole food be used as test materials? Could the use of whole foods predict the sensitizing potential of individual proteins? Will purified proteins fold into the correct structure in the absence of the food matrix? Are there matrix proteins that modify (potentiate or inhibit) sensitizing capacity? These are only a few of the considerations that should be addressed before choosing a predictive animal model. Studying the sensitizing capacity of an allergen, as a constituent of different protein preparations is a major task that requires well-conducted and controlled animal studies [37].
For novel foods where there is no prior knowledge of the potential allergenicity of proteins contained herein, whole food allergenicity assessment might be the only option to identify potential de novo sensitizing proteins. The use of whole foods has the advantage of presenting the proteins to the immune system in the context of lipids, sugars and other proteins, and matrix factors known to influence the sensitizing capacity of a given protein [37, 38].
When using protein extracts, proteins may be lost or the relative amounts may be changed during the extraction process [37], because extraction is dependent on protein solubility and may be influenced by the processing of the foods [39]. This could result in the testing of an incomplete panel of proteins.
Additionally, the purity and quality of purified proteins must be of a high standard, because the predictive value of the animal model may be greatly influenced by contaminants. Both protein and endotoxin contamination can confuse allergenicity assessments. This issue was highlighted following the use of commercially “purified” OVA, where contamination with ovomucoid (OVM) resulted in an overestimation of the intrinsic sensitizing potential of OVA [40],. This indicates that the presence of small amounts of a potent sensitizer may obscure the sensitizing capacity of the intended study protein. Immune-modulating effects occur with endotoxin contamination, which may potentially lead to an overestimation of the protein-specific sensitizing capacity [41]. Thus, purified proteins should ideally be free of all possible modifying contaminants.

Protein processing

Foods are subjected to a wide variety of different processing methods before being consumed. Processing may affect the inherent allergenicity of the proteins contained within the food, by either decreasing or increasing their allergenic properties [39, 42]. However, there are no general rules on how and to what degree different forms of processing impact the allergenic properties of the food [39, 42].
Processing methods that affect the allergenic properties of food include heating, hydrolysis, pH and pressure treatment, which may modify the chemical and structural features of the proteins. The impact of heating on the sensitizing capacity of peanut was described by Ladics et al. [12] who compared the sensitizing capacity of raw and roasted peanut extract and observed no clear differences after oral or i.p. dosing of BN rats. Additionally, Bowman and Selgrade [13] showed similar results after oral administration to C3H/HeJ mice. In contrast, Kroghsbo et al. [37] demonstrated that oral dosing of BN rats with roasted peanut, but not whole blanched peanut, resulted in Ara h 1- and 2-specific IgE responses. These studies show that heating intensity can influence the sensitizing capacity of peanut proteins.
Hydrolysis usually reduces allergenicity, however, a study by Kroghsbo et al. [36] showed that acid hydrolysis of gluten proteins resulted in a significantly higher specific IgE response than unmodified gluten, in contrast to enzymatically hydrolyzed gluten, after i.p. immunization of BN rats. In vitro digestion abolished the sensitizing capacity of the CM protein BLG, but the same procedure did not affect sensitization to the peanut protein Ara h 1, even though Ara h 1 was digested to smaller peptides than BLG [9]. These studies collectively showed that hydrolysis may affect individual proteins differently and that the type of hydrolyses may affect the outcome.

Food matrix

Foods are composed of proteins, fat, carbohydrates, micronutrients and various contaminants, all of which may have various effects on intrinsic allergenicity of proteins by changing protein digestibility, bioaccessibility and/or bioavailability, or due to adjuvant or immune-modulatory effects. These factors should be considered in the in vivo allergenicity assessment of new proteins/protein sources.
Various food constituents can alter the digestibility of proteins, thus affecting the form and the way they will reach the site where immune responses are induced. This can simply result from a buffering effect of the whole food or from the presence of protease inhibitors. Additionally, emulsion of protein with lipids will modify their structure and the accessibility of enzymes to cleavage sites, with various effects on digestibility [43]. Similar effects were observed for added constituents such as stabilizers, thickeners or emulsifiers [44]. Competitive effects of other proteins for enzymatic digestion and active epithelial transport can also impact allergen digestibility and bioavailability [45]. Sequestration of protein in low accessible substructures, such as within protein body organelles as observed in seeds, can delay their release and limit their digestion [46]. High fat food increases gastric residence in humans, thus leading to an increased threshold for the occurrence of objective symptoms [47].
Proteins can co-localize with other food constituents such as pro-Th2 or modulating factors, whereby the corresponding microenvironment will determine the polarization of the specific immune response. Some studies have reported a lack of intrinsic immunogenicity/allergenicity of certain major allergens from milk, peanut or Brazil nuts [4850]. The immune response was prompted by the adjuvant effect of other food constituents, as demonstrated by (defatted) extract from peanut [48] or with lipids from Brazil nuts that will activate iNKT cells to produce IL-4 [50]. Other proteins (lectins) or contaminants such as aflatoxin present in the food matrix influence sensitization [51], whereas ω-3 PUFA-derived metabolites decrease mast cell activation [52].
Lastly, the quantity of any new protein(s) in food items should be considered. For example, the newly expressed protein Cry1Ab (MON810 maize) was demonstrated to be highly immunogenic when administered as a purified protein, but no Cry1Ab-specific immune response was evident after experimental sensitization with maize flour, probably due to the low levels of Cry1Ab within the flour [50].

Adjuvants

T cell sensitization to allergenic proteins requires fully activated professional antigen presenting cells (APC) that not only present relevant peptides in the context of MHCII, but also express a range of costimulatory signals [53]. Importantly, the lack of appropriate costimulatory signals results in anergy or tolerance. Substances that can induce costimulation are considered adjuvants, being defined as components that are able to potentiate and/or modulate adaptive immune responses.
It is not well understood to what extent adjuvants are needed to promote an allergic response, but adjuvant signals appear crucial at least in a range of animal studies. Adjuvants influence both the activation and subsequent migration of dendritic cells (DCs) to a draining lymph node, which reside in the vicinity of the first exposure site to potential allergens. It is increasingly realized that signals coming from epithelial cells can instruct DC to become activated APC. These epithelium-derived signals together are referred to as a danger associated molecular pattern (DAMP) and include innate cytokines and chemokines or alarmins [5456]. Together with a range of immune cells such as innate lymphoid cells, intraepithelial lymphocytes (IELs) [5759], eosinophils and mast cells, DAMPs determine the outcome of the immune response. The importance of the epithelial barrier in controlling Th2 immune responses has been reviewed more extensively elsewhere [56, 60].
In animal models of food allergy, sensitization by the i.p. route with the use of aluminum hydroxide as an adjuvant is common [61]. The mechanisms behind the adjuvant effect of aluminum hydroxide are still not fully understood [62], but stimulation of DC antigen presentation [63] and a IL-4-driven Th2 response have been described [64]. Additionally, changes in specific antibody responses to aluminum hydroxide-adsorbed antigens have been observed [62, 65, 66] and is probably due to the modulation of antibody responses related to structural changes of the antigens [67].
One of the best known mucosal adjuvants used to sensitize animals to food proteins is CT [26]. The adjuvant effect of CT depends on CD11b DCs and cAMP [68]. Importantly, because Vibrio cholera infection is relatively rare in humans, CT should be regarded as an experimental model adjuvant and is not relevant for promoting food allergy in man.
Additional modulating substances may influence sensitization to food proteins. Staphylococcus aureus enterotoxin B (SEB), a bacterial superantigen relevant to humans, promotes sensitization to OVA [69]. The NSAID diclofenac causes epithelial damage in the intestinal tract and stimulates the allergic response to peanut extract, but only in combination with CT [57, 58]. Medium chain triglyceride (MCT), but not long-chain triglycerides induce sensitization to peanut in mice, without CT [70]. The role of endotoxin as a possible adjuvant remains unclear because data are not consistent across different experimental models and doses [16, 71]. Uric acid is a DAMP produced by epithelial cells and administration of monosodium urate can replace CT as an adjuvant [72].
Occasionally, allergy in test animals can be induced without adjuvant. Birmingham et al. [73] and Gonipeta et al. [74] sensitized mice to hazelnut and milk whey protein, by transdermal application of the allergen, for 6 consecutive weeks. Although they did not add an adjuvant, they clipped the hair from skin and used mild occlusion for 1 day, which may cause mild inflammatory responses and release DAMPs [75]. Others [54, 76], have used tape stripping methods to promote epicutaneous sensitization to food allergens. Noti et al. [54] showed that this route of exposure requires the TSLP-basophil axis, indicating activation of innate immune responses. Guinea pigs have also been used as a model to investigate the allergenicity of specifically CM without adding adjuvant by exposing the guinea pigs to the CM via their drinking water for several weeks [77]. However it is difficult to translate this model to the human setting due to differences in immune physiology and limited knowledge and tools to study their immune system. Lastly, the BN rat model for food allergy is performed without added adjuvant, but in this model the allergen is gavaged for 35 to 42 days [78], again possibly inducing epithelial stress (in the oesophagus) with associated adjuvant effects.
In conclusion, primarily based on mouse data, adjuvants or at least adjuvant-like activation of innate immunity seems to be important for the induction of sensitization to food proteins. However, addition of an adjuvant will not always be necessary in an animal model when testing sensitizing capacity of novel proteins, especially when the novel protein/food has inherent sensitizing capacity.

Environmental factors

Not everyone becomes allergic to foods. This suggests that other factors like lifestyle and environmental factors, interacting with a genetic predisposition, play a role. To accurately predict the allergenic potential of novel food proteins using animal models, it is essential to consider the various environmental factors that could influence sensitization in humans.
Firstly, unintended dietary pre-exposure to the food protein under investigation or to a cross-reactive protein could lead to the induction of allergen-specific oral tolerance, which would prevent further sensitization in the animal model and lead to false negative results. Dietary control in parental generations before mating or during suckling [79, 80] and monitoring other dietary factors such as the quantity of bioactive lipid components or non-digestible fibers in animal diet, which influence the immune response, can help minimize potential bias in sensitization profiles [8183]. However, other currently unknown dietary factors, may also influence immune responses within the gut and further research is needed to identify these factors.
Protein modifications (e.g. due to environmental pollution or during food processing) have a substantial impact on the elicitation of protein-specific immune responses. In addition, interference with the physiological digestion capacity of the GI tract contributes to food allergy. Pharmacological gastric acid suppression is associated with food allergy development via the oral route in experimental mouse models [84, 85]. While animal age seems to play a minor role in many models [86], the use of newborn/weaned animals can be relevant when using a different experimental approach to induce sensitization or if the protein being investigated is ultimately intended for consumption by human infants [87].
The composition of the gut microbiome may influence the outcome of food allergy models and may contribute to inter-laboratory variation. There is increasing evidence that gut microbiota plays a critical role in allergic sensitization and tolerance induction in humans and rodents [88, 89]. The fetal immune system favors a Th2 response that is related to an increased risk of developing allergic disease. Bacterial colonization after birth provides a microbial stimulus affecting the maturation and modulation of the intestinal and systemic immune system [90]. Commensal bacteria can stimulate tight junction-related proteins thereby reducing epithelial permeability, while also promoting immunoregulatory responses within mucosal tissue which protects against allergic sensitization [9194]. Germ-free mice display a characteristic increased immune response to allergens with a remarkable Th2 bias. Thus, these animals could represent a highly sensitive model to study allergenicity of new proteins [95, 96], but are difficult to maintain. The gut microbiome of different animal facilities will be influenced by the breeding environment (e.g. specific pathogen free (SPF) versus specific and opportunistic pathogen free (SOPF), diet and water). In particular, microbiome alterations associated with ω-fatty acids and obesity should be controlled. Lastly, there are indications that vitamin A and D deficiencies, which modify intestinal homeostasis, might moderate intestinal immunity via interaction with the microbiome [79, 97].
Breeding environment and experience of the experimenter should be taken into consideration, since stress responses may influence the immune response to the administered protein/food [98]. In conclusion, breeding conditions (parental generations, housing, stress), diet and other environmental factors must be carefully adjusted between different laboratories and standardized whenever possible to develop a reproducible animal model to study protein sensitization. Unfortunately, many published manuscripts still do not describe these parameters in detail and therefore, currently, it is not possible to recommend a specific dietary regimen, other than the protein of interest should not be included in the diet before testing the animals.

In vivo readouts

Common food allergy signs and symptoms in patients include itching, swelling of lips, tongue, face and throat, abdominal pain, diarrhea, nausea, or vomiting, while anaphylactic reactions involve constriction of airways, cardiovascular shock with a severe drop in blood pressure, rapid pulse and/or loss of consciousness [99]. Upon exposure to food allergens, a number of allergy signs that mimic clinical symptoms in patients can be observed in animal model systems [3, 100]. Such in vivo parameters are useful to study allergenicity of food proteins, the impact of genetics or microbial colonization [101]. To model food allergy, animals are typically sensitized with an allergenic food or protein (with or without adjuvant) by feeding or other routes, followed by challenges to the GI tract, circulation (intravenous (i.v.), i.p.), or skin (subcutaneous), which then manifests in an organ-specific distinct readout.
Repeated oral food allergen challenges of previously sensitized animals results in measureable clinical signs including diarrhea, piloerection, changes in activity, mobility and behavior or most often a combination of all signs that can be enumerated in a clinical allergy score [54].
Systemic food allergen challenges often result in severe allergic reactions mimicking anaphylaxis in patients. Such reactions are evaluated using anaphylaxis scoring protocols that assess severity including scratching, diarrhea, piloerection, labored respiration, cyanosis around mouth and tail, reduced activity, tremors, convulsion or death [26]. Measuring hypothermia (rectal temperature or subcutaneously (s.c.) implanted programmable temperature transponder) or vascular leakage (i.p allergen challenge immediately followed by i.v. Evan’s blue injection and animals are monitored for blue color accumulation in the extremities) are additional in vivo readouts [102, 103].
To measure airway hyperreactivity (AHR) in the context of food allergen sensitization, allergen challenge may be intranasal, intra-tracheal or via nebulization [104]. Upon allergen challenge, animals are assessed for airway resistance and compliance in response to methacholine and not by allergen exposure using invasive or enhanced pause (PenH) non-invasive techniques [105]. Notably, this read out may be more dependent upon changes in the airways (e.g., inflammation and increased airway smooth muscle) than to the mast cell-IgE-histamine axis.
Passive cutaneous anaphylaxis (PCA) is an immediate dermal response to an allergen-IgE interaction that is typically characterized by increased vascular leakage within the skin that can be assessed by i.v. injection of Evans blue. In vivo PCA readouts include ear swelling (thickening of skin) and skin color [103]. Alternatively animals are injected intradermally (i.d.) in the ear pinnae with the allergen and ear swelling is measured within 1 h. This acute allergic skin response can be used to asses an immediate type hypersensitivity (ITH) [106, 107]. Delayed type hypersensitivity (DTH) represents an additional skin test to assess late-phase cutaneous food allergic reactions, in which animals are injected s.c. with allergen into the hind footpads or in the ear pinnae and edema measured [108].
While in vivo readouts allow for a rapid assessment of allergic responses, a caveat of these readouts is that measures of allergy are often subjective and thus, require blinding of experimental groups. In vivo readouts provide more information than just sensitization potential as allergy effector mechanisms become activated, although not all of these responses are IgE-dependent. Lastly, one should ensure that ethical concerns are considered, particularly when inducing severe allergic reactions. The advantages and disadvantages of the different in vivo readouts are summarized in Table 1.
Table 1
In vivo readouts
Test
Advantages
Disadvantages
Gastrointestinal [54]
Non-invasive, does not harm animals, qualitative and quantitative allergy scoring, blinded scoring possible
No standardized scoring system, lab to lab variations, subjective, diarrhea as only GI specific sign
Systemic
 Anaphylaxis score [76]
Non-invasive, qualitative and quantitative allergy scoring, blinded scoring possible
Subjective, ethical consideration
Hypothermia [109, 110]
Rectal temperature (semi-invasive), quantitative readout, blinded scoring possible
Accuracy of rectal measurements, transplanted responders (invasive), ethical consideration
 Vascular leakage [24, 110]
Qualitative readout, blinded scoring possible
Invasive
Airways
 AHR [105]
Qualitative and quantitative, objective readout, blinded measurements are possible, anesthesia not required for non-invasive AHR
Invasive and anesthesia required (only for invasive AHR), usually endpoint measurement, expensive equipment required
Skin [111]
 PCA
Quantitative measurement of skin thickness, qualitative assessement of vascular leakage
Invasive, blinded scoring not possible
 ITH
Quantitative measurement of skin swelling
Invasive, blinded scoring not possible
 DTH
Quantitative measurement of skin/tissue swelling
Invasive, blinded scoring not possible

Ex vivo readouts

A wide range of ex vivo readouts can be utilized to assess or support the sensitizing capacity of novel proteins. The most common readout consists of measuring specific IgE antibody levels from exposed animals by ELISA [112]. However, allergen-specific IgG may obscure the analysis as allergen-specific IgG generally is present at 100 to 1000-fold higher concentrations than allergen-specific IgE. IgE detection can be improved by depleting IgG or by employing a capture ELISA [48, 113, 114]. In addition, new technologies such as rapid evanescent biosensor technology would be useful to avoid the influence of IgG when measuring allergen-specific IgE [115]. Although total IgE may be correlated with specific IgE in controlled experimental settings [116], identification of allergen-specific IgE is required for allergenic assessment of novel foods. It is also important to assess the biological activity of antigen-specific IgE. For example, functionality of serum IgE may be assessed in vitro as the ability to induce specific degranulation of basophils or mast cells [117].
Allergic sensitization starts with activation of innate cells, including epithelial cells, DCs and ILC2 s, T cells and Th2 cytokines [118, 119]. Cytokine production and immune cell proliferation are typically measured after ex vivo stimulation of cells from the lymph node or spleen with the allergen or with T cell mitogens [113, 120]. While intracellular cytokine production on the single cell level can be determined by flow cytometry, cytokine secretion from cell suspensions is measured as supernatant concentrations by ELISA or multiplex assays. The Th1/Th2/Th17/Treg cytokine balance, rather than the absolute cytokine levels, is thought to be important [121]. Current models suggest that cytokine and proliferation responses during the induction phase of sensitization in the draining lymph node may be useful in predicting sensitizing capacity [122124]. Measuring TSLP, IL-25 and IL-33, along with ILC2 s, in the intestine during food allergy sensitization may provide additional predictive markers of sensitizing potential [26, 55].
Determination of cell phenotypes, subsets and co-stimulatory molecules on innate and adaptive immune cells in the lymph node, spleen or intestines are readouts possibly useful to support a sensitizing potential. Such measurements can be performed by high throughput flow cytometric or mass spectrometry-based assays. Determination of gene expression (e.g. mRNA) and cytokine gene epigenetics, co-stimulatory molecules or inflammatory markers are also ex vivo endpoints currently applied.
Many animal models for food allergy investigate the anaphylactic response to a food allergy challenge [24, 76, 107, 110]. Ex vivo endpoints for anaphylaxis include serum mast cell proteases (mMCP-1), [125] and histamine release assays.

Future perspectives and conclusions

Considerable progress has been made in using animal models to better understand the basic mechanisms and environmental influences contributing to food allergen sensitization. Researchers intending to utilize animal models of food allergy should be aware of the experimental parameters outlined in this review, which may have an impact on their results. In addition, published reports should include sufficient details concerning all of these parameters, to allow for reproduction in other laboratories. The Pros and Cons of the experimental parameters discussed in this review are summarized in Table 2. The ideal animal model for assessing the potential sensitizing capacity of new proteins has yet to be developed, but the ideal model must predict known strong and weak food allergens. The development of a reference protein toolbox is essential and would revolutionize the use of animal models in the future risk assessment of potential allergens. Ideally, the sensitization route would be oral or via the skin and not only IgE measurements, but also functional or symptomatic responses should be recorded. In addition, more research is required to determine why only some proteins are allergenic in contrast to the majority of proteins. The identification of certain protein characteristics such as structural similarities or intrinsic activities will greatly assist the development of animal models for the screening of allergenic potential. However, even known food allergens do not induce food allergy in all exposed individuals and therefore, host and environmental factors also need to be explored further, which can be achieved through the use of animal models.
Table 2
Pros and Cons of different food allergy model design parameters
Design parameter
Sub-parameter
Pros
Cons
Reference proteins
Strong, weak and non-allergenic proteins
Confirm reproducibility and predictability
Requires additional groups of animals
Animal species
Mice
Small size, short breeding cycle, availability of many reagents
Usually need adjuvants, low amount of sera can be obtained
Rats
Small size, short breeding cycle, larger amount of sera can be obtained, no need for use of adjuvant
Restricted availability of reagents, larger amount of protein/food required
Dogs
Large organ size and increased amount of sera can be obtained, spontaneously develop allergies
Restricted availability of reagents, Very large amount of protein/food required, large animals, prolonged duration of animal studies, expensive and ethical consideration
Route of sensitization
Oral
Relevant route of sensitization
Often needs the use of adjuvant, require large amount of protein
i.p.
No adjuvant, robust sensitization route, no need for large amount of proteins/food
Non-physiological relevant route
Cutaneous
Relevant route of sensitization
Usually requires immunological danger signals
Dose–response relationship
 
Helps in creating threshold levels, helps in hazard identification
Several groups of animals required for each protein
Protein preparation
Whole foods
Ability to study the sensitizing capacity of proteins in their natural matrix, Ability to study the allergenicity of true novel foods, Easy to prepare
Difficult to identify the sensitising proteins
Purified proteins
Ability to study the inherent sensitizing capacity of the individual protein
Difficult to prepare, need large amounts of high quality purified protein, protein structure may change
Food Extracts
Easy to prepare
Difficult to identify the sensitizing protein, some proteins may be lost or the relative amounts may change, protein structure may change
Protein processing
Raw protein/food
Ability to study the inherent allergenicity
May not reflect the end use of the protein
Processed protein/food
Ability to study the sensitizing capacity of the consumed version which cannot be predicted otherwise
May impact the allergenic properties
Adjuvant
 
Provides a danger signal
Artificially modifies the immune response

Authors’ contributions

JS wrote the reference proteins section, RG and IL-E wrote the animal species and strains section, MB, GB and CB wrote the route of sensitization section, JB wrote the dose–sensitization relationships section, KLB wrote the protein preparation and processing sections, KAP wrote the food matrix section, RP wrote the adjuvants section, SB-N, KAP and EU wrote the environmental factors section, LK, ME and MN wrote the in vivo readouts section, while IL-E and UCN wrote the ex vivo readouts section. LOM, KLB, IK and KV wrote the introduction and conclusions and coordinated the drafting of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors are all part of the COST Action FA1402 entitled: Improving Allergy Risk Assessment Strategy for New Food Proteins (ImpARAS). LOM is supported by Swiss National Foundation grants (Project Numbers: CRSII3_154488 and 310030-144219) and European Union research grants.

Competing interests

Liam O’Mahony is a consultant to Alimentary Health Ltd and has received research funding from GSK.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69:1008–25.PubMedCrossRef Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69:1008–25.PubMedCrossRef
2.
Zurück zum Zitat Muraro A, Halken S, Arshad SH, Beyer K, Dubois AE, Du TG, et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy. 2014;69:590–601.PubMedCrossRef Muraro A, Halken S, Arshad SH, Beyer K, Dubois AE, Du TG, et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy. 2014;69:590–601.PubMedCrossRef
3.
Zurück zum Zitat McClain S, Bannon GA. Animal models of food allergy: opportunities and barriers. Curr Allergy Asthma Rep. 2006;6:141–4.PubMedCrossRef McClain S, Bannon GA. Animal models of food allergy: opportunities and barriers. Curr Allergy Asthma Rep. 2006;6:141–4.PubMedCrossRef
4.
Zurück zum Zitat Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52.PubMedCrossRef Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52.PubMedCrossRef
5.
Zurück zum Zitat Lin J, Shewry PR, Archer DB, Beyer K, Niggemann B, Haas H, et al. The potential allergenicity of two 2S albumins from soybean (Glycine max): a protein microarray approach. Int Arch Allergy Immunol. 2006;141:91–102.PubMedCrossRef Lin J, Shewry PR, Archer DB, Beyer K, Niggemann B, Haas H, et al. The potential allergenicity of two 2S albumins from soybean (Glycine max): a protein microarray approach. Int Arch Allergy Immunol. 2006;141:91–102.PubMedCrossRef
6.
Zurück zum Zitat Kroghsbo S, Bøgh KL, Rigby NM, Mills EN, Rogers A, Madsen CB. Sensitization with 7S globulins from peanut, hazelnut, soy or pea induces IgE with different biological activities which are modified by soy tolerance. Int Arch Allergy Immunol. 2011;155:212–24.PubMedCrossRef Kroghsbo S, Bøgh KL, Rigby NM, Mills EN, Rogers A, Madsen CB. Sensitization with 7S globulins from peanut, hazelnut, soy or pea induces IgE with different biological activities which are modified by soy tolerance. Int Arch Allergy Immunol. 2011;155:212–24.PubMedCrossRef
7.
Zurück zum Zitat Hazebrouck S, Ah-Leung S, Bidat E, Paty E, Drumare MF, Tilleul S, et al. Goat’s milk allergy without cow’s milk allergy: suppression of non-cross-reactive epitopes on caprine β-casein. Clin Exp Allergy. 2014;44:602–10.PubMedCrossRef Hazebrouck S, Ah-Leung S, Bidat E, Paty E, Drumare MF, Tilleul S, et al. Goat’s milk allergy without cow’s milk allergy: suppression of non-cross-reactive epitopes on caprine β-casein. Clin Exp Allergy. 2014;44:602–10.PubMedCrossRef
8.
Zurück zum Zitat Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. 1996;14:1269–73.PubMedCrossRef Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. 1996;14:1269–73.PubMedCrossRef
9.
Zurück zum Zitat Bøgh KL, Madsen CB. Food allergens: is there a correlation between stability to digestion and allergenicity? Crit Rev Food Sci Nutr. 2015. [Epub ahead of print] Bøgh KL, Madsen CB. Food allergens: is there a correlation between stability to digestion and allergenicity? Crit Rev Food Sci Nutr. 2015. [Epub ahead of print]
10.
Zurück zum Zitat Fu TT, Abbott UR, Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—a comparative study. J Agric Food Chem. 2002;50:7154–60.PubMedCrossRef Fu TT, Abbott UR, Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—a comparative study. J Agric Food Chem. 2002;50:7154–60.PubMedCrossRef
11.
Zurück zum Zitat Dearman RJ, Kimber I. Determination of protein allergenicity: studies in mice. Toxicol Lett. 2001;120:181–6.PubMedCrossRef Dearman RJ, Kimber I. Determination of protein allergenicity: studies in mice. Toxicol Lett. 2001;120:181–6.PubMedCrossRef
12.
Zurück zum Zitat Ladics GS, Knippels LM, Penninks AH, Bannon GA, Goodman RE, Herouet-Guicheney C. Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regul Toxicol Pharmacol. 2010;56:212–24.PubMedCrossRef Ladics GS, Knippels LM, Penninks AH, Bannon GA, Goodman RE, Herouet-Guicheney C. Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regul Toxicol Pharmacol. 2010;56:212–24.PubMedCrossRef
13.
Zurück zum Zitat Bowman CC, Selgrade MK. Differences in allergenic potential of food extracts following oral exposure in mice reflect differences in digestibility: potential approaches to safety assessment. Toxicol Sci. 2008;102:100–9.PubMedCrossRef Bowman CC, Selgrade MK. Differences in allergenic potential of food extracts following oral exposure in mice reflect differences in digestibility: potential approaches to safety assessment. Toxicol Sci. 2008;102:100–9.PubMedCrossRef
14.
Zurück zum Zitat Eigenmann PA, Antonella MM, Sampson HA, Wahn U. iPAC: an initiative to fight the burden of allergies in children. Pediatr Allergy Immunol. 2008;19:1–3.CrossRef Eigenmann PA, Antonella MM, Sampson HA, Wahn U. iPAC: an initiative to fight the burden of allergies in children. Pediatr Allergy Immunol. 2008;19:1–3.CrossRef
15.
Zurück zum Zitat Smit JJ, Willemsen K, Hassing I, Fiechter D, Storm G, van Bloois L, et al. Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses. PLoS One. 2011;6:e28917.PubMedPubMedCentralCrossRef Smit JJ, Willemsen K, Hassing I, Fiechter D, Storm G, van Bloois L, et al. Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses. PLoS One. 2011;6:e28917.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Berin MC, Zheng Y, Domaradzki M, Li XM, Sampson HA. Role of TLR4 in allergic sensitization to food proteins in mice. Allergy. 2006;61:64–71.PubMedCrossRef Berin MC, Zheng Y, Domaradzki M, Li XM, Sampson HA. Role of TLR4 in allergic sensitization to food proteins in mice. Allergy. 2006;61:64–71.PubMedCrossRef
17.
Zurück zum Zitat Dearman RJ, Kimber I. Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy. 2009;39:458–68.PubMedCrossRef Dearman RJ, Kimber I. Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy. 2009;39:458–68.PubMedCrossRef
18.
Zurück zum Zitat Teuber SS, Del VG, Morigasaki S, Jung HR, Eisele PH, Frick OL, Buchanan BB. The atopic dog as a model of peanut and tree nut food allergy. J Allergy Clin Immunol. 2002;110:921–7.PubMedCrossRef Teuber SS, Del VG, Morigasaki S, Jung HR, Eisele PH, Frick OL, Buchanan BB. The atopic dog as a model of peanut and tree nut food allergy. J Allergy Clin Immunol. 2002;110:921–7.PubMedCrossRef
19.
Zurück zum Zitat Vinuesa M, Bassan N, Cases AI, Krumrik G. Montelukast treatment (cysteinyl leukotriene receptor antagonist) in a model of food allergy: modifications in lymphatic cell population from rectal mucosa. Rev Esp Enferm Dig. 2010;102:421–5.PubMedCrossRef Vinuesa M, Bassan N, Cases AI, Krumrik G. Montelukast treatment (cysteinyl leukotriene receptor antagonist) in a model of food allergy: modifications in lymphatic cell population from rectal mucosa. Rev Esp Enferm Dig. 2010;102:421–5.PubMedCrossRef
20.
Zurück zum Zitat Dearman RJ, Kimber I. A mouse model for food allergy using intraperitoneal sensitization. Methods. 2007;41:91–8.PubMedCrossRef Dearman RJ, Kimber I. A mouse model for food allergy using intraperitoneal sensitization. Methods. 2007;41:91–8.PubMedCrossRef
21.
Zurück zum Zitat Gourbeyre P, Dery-Papini S, Larre C, Gaudin JC, Brossard C, Bodinier M. Wheat gliadins modified by deamidation are more efficient than native gliadins in inducing a Th2 response in Balb/c mice experimentally sensitized to wheat allergens. Mol Nutr Food Res. 2012;56:336–44.PubMedCrossRef Gourbeyre P, Dery-Papini S, Larre C, Gaudin JC, Brossard C, Bodinier M. Wheat gliadins modified by deamidation are more efficient than native gliadins in inducing a Th2 response in Balb/c mice experimentally sensitized to wheat allergens. Mol Nutr Food Res. 2012;56:336–44.PubMedCrossRef
22.
Zurück zum Zitat Dery-Papini S, Bodinier M, Pineau F, Triballeau S, Tranquet O, Adel-Patient K, et al. Immunoglobulin-E-binding epitopes of wheat allergens in patients with food allergy to wheat and in mice experimentally sensitized to wheat proteins. Clin Exp Allergy. 2011;41:1478–92.CrossRef Dery-Papini S, Bodinier M, Pineau F, Triballeau S, Tranquet O, Adel-Patient K, et al. Immunoglobulin-E-binding epitopes of wheat allergens in patients with food allergy to wheat and in mice experimentally sensitized to wheat proteins. Clin Exp Allergy. 2011;41:1478–92.CrossRef
23.
Zurück zum Zitat Mine Y, Yang M. Epitope characterization of ovalbumin in BALB/c mice using different entry routes. Biochim Biophys Acta. 2007;1774:200–12.PubMedCrossRef Mine Y, Yang M. Epitope characterization of ovalbumin in BALB/c mice using different entry routes. Biochim Biophys Acta. 2007;1774:200–12.PubMedCrossRef
24.
Zurück zum Zitat Li XM, Schofield BH, Huang CK, Kleiner GI, Sampson HA. A murine model of IgE-mediated cow’s milk hypersensitivity. J Allergy Clin Immunol. 1999;103:206–14.PubMedCrossRef Li XM, Schofield BH, Huang CK, Kleiner GI, Sampson HA. A murine model of IgE-mediated cow’s milk hypersensitivity. J Allergy Clin Immunol. 1999;103:206–14.PubMedCrossRef
25.
Zurück zum Zitat Knippels LM, Penninks AH, Spanhaak S, Houben GF. Oral sensitization to food proteins: a Brown Norway rat model. Clin Exp Allergy. 1998;28:368–75.PubMedCrossRef Knippels LM, Penninks AH, Spanhaak S, Houben GF. Oral sensitization to food proteins: a Brown Norway rat model. Clin Exp Allergy. 1998;28:368–75.PubMedCrossRef
26.
Zurück zum Zitat Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000;106:150–8.PubMedCrossRef Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000;106:150–8.PubMedCrossRef
27.
Zurück zum Zitat Lack G, Fox D, Northstone K, Golding J. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348:977–85.PubMedCrossRef Lack G, Fox D, Northstone K, Golding J. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348:977–85.PubMedCrossRef
28.
Zurück zum Zitat Fox AT, Sasieni P, Du TG, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009;123:417–23.PubMedCrossRef Fox AT, Sasieni P, Du TG, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009;123:417–23.PubMedCrossRef
29.
Zurück zum Zitat Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101:1614–22.PubMedPubMedCentralCrossRef Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101:1614–22.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol. 2004;34:2100–9.PubMedCrossRef Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol. 2004;34:2100–9.PubMedCrossRef
31.
Zurück zum Zitat Morafo V, Srivastava K, Huang CK, Kleiner G, Lee SY, Sampson HA, Li AM. Genetic susceptibility to food allergy is linked to differential TH2-TH1 responses in C3H/HeJ and BALB/c mice. J Allergy Clin Immunol. 2003;111:1122–8.PubMedCrossRef Morafo V, Srivastava K, Huang CK, Kleiner G, Lee SY, Sampson HA, Li AM. Genetic susceptibility to food allergy is linked to differential TH2-TH1 responses in C3H/HeJ and BALB/c mice. J Allergy Clin Immunol. 2003;111:1122–8.PubMedCrossRef
32.
Zurück zum Zitat Madsen CB, Hattersley S, Buck J, Gendel SM, Houben GF, Hourihane JO, et al. Approaches to risk assessment in food allergy: report from a workshop ‘‘developing a framework for assessing the risk from allergenic foods”. Food Chem Toxicol. 2009;47:480–9.PubMedCrossRef Madsen CB, Hattersley S, Buck J, Gendel SM, Houben GF, Hourihane JO, et al. Approaches to risk assessment in food allergy: report from a workshop ‘‘developing a framework for assessing the risk from allergenic foods”. Food Chem Toxicol. 2009;47:480–9.PubMedCrossRef
33.
Zurück zum Zitat Spanjersberg MQ, Lucas Luijckx NB, Houben GF. Risk analysis of food allergens. In: Jedrychowski L, Wichers HJ, editors. Chemical and biological properties of food allergens. CRC Press, Florence, KY, 2009. p. 387–97. Spanjersberg MQ, Lucas Luijckx NB, Houben GF. Risk analysis of food allergens. In: Jedrychowski L, Wichers HJ, editors. Chemical and biological properties of food allergens. CRC Press, Florence, KY, 2009. p. 387–97.
34.
Zurück zum Zitat Crevel RW, Baumert JL, Baka A, Houben GF, Knulst AC, Kruizinga AG, et al. Development and evolution of risk assessment for food allergens. Food Chem Toxicol. 2014;67:262–76.PubMedCrossRef Crevel RW, Baumert JL, Baka A, Houben GF, Knulst AC, Kruizinga AG, et al. Development and evolution of risk assessment for food allergens. Food Chem Toxicol. 2014;67:262–76.PubMedCrossRef
35.
36.
Zurück zum Zitat Kroghsbo S, Andersen NB, Rasmussen TF, Jacobsen S, Madsen CB. Acid hydrolysis of wheat gluten induces formation of new epitopes but does not enhance sensitizing capacity by the oral route: a study in “gluten free” Brown Norway rats. PLoS One. 2014;9:e107137.PubMedPubMedCentralCrossRef Kroghsbo S, Andersen NB, Rasmussen TF, Jacobsen S, Madsen CB. Acid hydrolysis of wheat gluten induces formation of new epitopes but does not enhance sensitizing capacity by the oral route: a study in “gluten free” Brown Norway rats. PLoS One. 2014;9:e107137.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Kroghsbo S, Rigby NM, Johnson PE, Adel-Patient K, Bøgh KL, Salt LJ, et al. Assessment of the sensitizing potential of processed peanut proteins in Brown Norway rats: roasting does not enhance allergenicity. PLoS One. 2014;9:e96475.PubMedPubMedCentralCrossRef Kroghsbo S, Rigby NM, Johnson PE, Adel-Patient K, Bøgh KL, Salt LJ, et al. Assessment of the sensitizing potential of processed peanut proteins in Brown Norway rats: roasting does not enhance allergenicity. PLoS One. 2014;9:e96475.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Madsen JL, Kroghsbo S, Madsen CB, Pozdnyakova I, Barkholt V, Bøgh KL. The impact of structural integrity and route of administration on the antibody specificity against three cow’s milk allergens—a study in Brown Norway rats. Clin Transl Allergy. 2014;4:25.PubMedPubMedCentralCrossRef Madsen JL, Kroghsbo S, Madsen CB, Pozdnyakova I, Barkholt V, Bøgh KL. The impact of structural integrity and route of administration on the antibody specificity against three cow’s milk allergens—a study in Brown Norway rats. Clin Transl Allergy. 2014;4:25.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Verhoeckx KC, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, et al. Food processing and allergenicity. Food Chem Toxicol. 2015;80:223–40.PubMedCrossRef Verhoeckx KC, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, et al. Food processing and allergenicity. Food Chem Toxicol. 2015;80:223–40.PubMedCrossRef
40.
Zurück zum Zitat Bernhisel-Broadbent J, Dintzis HM, Dintzis RZ, Sampson HA. Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice. J Allergy Clin Immunol. 1994;93:1047–59.PubMedCrossRef Bernhisel-Broadbent J, Dintzis HM, Dintzis RZ, Sampson HA. Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice. J Allergy Clin Immunol. 1994;93:1047–59.PubMedCrossRef
41.
Zurück zum Zitat Brix S, Kjaer TM, Barkholt V, Frokiaer H. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen. Int Arch Allergy Immunol. 2004;135:216–20.PubMedCrossRef Brix S, Kjaer TM, Barkholt V, Frokiaer H. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen. Int Arch Allergy Immunol. 2004;135:216–20.PubMedCrossRef
42.
Zurück zum Zitat Thomas K, MacIntosh S, Bannon G, Herouet-Guicheney C, Holsapple M, Ladics G, et al. Scientific advancement of novel protein allergenicity evaluation: an overview of work from the HESI Protein Allergenicity Technical Committee (2000–2008). Food Chem Toxicol. 2009;47:1041–50.PubMedCrossRef Thomas K, MacIntosh S, Bannon G, Herouet-Guicheney C, Holsapple M, Ladics G, et al. Scientific advancement of novel protein allergenicity evaluation: an overview of work from the HESI Protein Allergenicity Technical Committee (2000–2008). Food Chem Toxicol. 2009;47:1041–50.PubMedCrossRef
43.
Zurück zum Zitat Benede S, Lopez-Exposito I, Molina E, Lopez-Fandino R. Egg proteins as allergens and the effects of the food matrix and processing. Food Funct. 2015;6:694–713.PubMedCrossRef Benede S, Lopez-Exposito I, Molina E, Lopez-Fandino R. Egg proteins as allergens and the effects of the food matrix and processing. Food Funct. 2015;6:694–713.PubMedCrossRef
44.
Zurück zum Zitat Mouecoucou J, Sanchez C, Villaume C, Marrion O, Fremont S, Laurent F, Mejean L. Effects of different levels of gum arabic, low methylated pectin and xylan on in vitro digestibility of beta-lactoglobulin. J Dairy Sci. 2003;86:3857–65.PubMedCrossRef Mouecoucou J, Sanchez C, Villaume C, Marrion O, Fremont S, Laurent F, Mejean L. Effects of different levels of gum arabic, low methylated pectin and xylan on in vitro digestibility of beta-lactoglobulin. J Dairy Sci. 2003;86:3857–65.PubMedCrossRef
45.
Zurück zum Zitat Schulten V, Lauer I, Scheurer S, Thalhammer T, Bohle B. A food matrix reduces digestion and absorption of food allergens in vivo. Mol Nutr Food Res. 2011;55:1484–91.PubMedCrossRef Schulten V, Lauer I, Scheurer S, Thalhammer T, Bohle B. A food matrix reduces digestion and absorption of food allergens in vivo. Mol Nutr Food Res. 2011;55:1484–91.PubMedCrossRef
46.
Zurück zum Zitat Teuber SS. Hypothesis: The protein body effect and other aspects of food matrix effects. Ann N Y Acad Sci. 2002;964:111–6.PubMedCrossRef Teuber SS. Hypothesis: The protein body effect and other aspects of food matrix effects. Ann N Y Acad Sci. 2002;964:111–6.PubMedCrossRef
47.
Zurück zum Zitat Mackie A, Knulst A, Le TM, Bures P, Salt L, Mills EN, et al. High fat food increases gastric residence and thus thresholds for objective symptoms in allergic patients. Mol Nutr Food Res. 2012;56:1708–14.PubMedCrossRef Mackie A, Knulst A, Le TM, Bures P, Salt L, Mills EN, et al. High fat food increases gastric residence and thus thresholds for objective symptoms in allergic patients. Mol Nutr Food Res. 2012;56:1708–14.PubMedCrossRef
48.
Zurück zum Zitat van Wijk F, Nierkens S, Hassing I, Feijen M, Koppelman SJ, de Jong GAH, et al. The effect of the food matrix on in vivo immune responses to purified peanut allergens. Toxicol Sci. 2005;86:333–41.PubMedCrossRef van Wijk F, Nierkens S, Hassing I, Feijen M, Koppelman SJ, de Jong GAH, et al. The effect of the food matrix on in vivo immune responses to purified peanut allergens. Toxicol Sci. 2005;86:333–41.PubMedCrossRef
49.
Zurück zum Zitat Adel-Patient K, Guimaraes VD, Paris A, Drumare MF, Ah-Leung S, Lamourette P, et al. Immunological and metabolomic impacts of administration of Cry1Ab protein and MON 810 maize in mouse. PLoS One. 2011;6:e16346.PubMedPubMedCentralCrossRef Adel-Patient K, Guimaraes VD, Paris A, Drumare MF, Ah-Leung S, Lamourette P, et al. Immunological and metabolomic impacts of administration of Cry1Ab protein and MON 810 maize in mouse. PLoS One. 2011;6:e16346.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, et al. Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy. 2013;68:74–83.PubMedCrossRef Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, et al. Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy. 2013;68:74–83.PubMedCrossRef
51.
Zurück zum Zitat Kocabas CN, Sekerel BE. Does systemic exposure to aflatoxin B(1) cause allergic sensitization? Allergy. 2003;58:363–5.PubMedCrossRef Kocabas CN, Sekerel BE. Does systemic exposure to aflatoxin B(1) cause allergic sensitization? Allergy. 2003;58:363–5.PubMedCrossRef
52.
Zurück zum Zitat Kunisawa J, Arita M, Hayasaka T, Harada T, Iwamoto R, Nagasawa R, et al. Dietary omega3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep. 2015;5:9750.PubMedPubMedCentralCrossRef Kunisawa J, Arita M, Hayasaka T, Harada T, Iwamoto R, Nagasawa R, et al. Dietary omega3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep. 2015;5:9750.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Schiavi E, Smolinska S, O’Mahony L. Intestinal dendritic cells. Curr Opin Gastroenterol. 2015;31:98–103.PubMedCrossRef Schiavi E, Smolinska S, O’Mahony L. Intestinal dendritic cells. Curr Opin Gastroenterol. 2015;31:98–103.PubMedCrossRef
54.
Zurück zum Zitat Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014;133:1390–9.PubMedPubMedCentralCrossRef Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014;133:1390–9.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131:187–200.PubMedCrossRef Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131:187–200.PubMedCrossRef
56.
Zurück zum Zitat Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43:29–40.PubMedCrossRef Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43:29–40.PubMedCrossRef
57.
Zurück zum Zitat Bol-Schoenmakers M, Bleumink R, Marcondes RM, Mouser E, Hassing I, Ludwig I, et al. Diclofenac enhances allergic responses in a mouse peanut allergy model. Clin Exp Allergy. 2011;41:424–33.PubMedCrossRef Bol-Schoenmakers M, Bleumink R, Marcondes RM, Mouser E, Hassing I, Ludwig I, et al. Diclofenac enhances allergic responses in a mouse peanut allergy model. Clin Exp Allergy. 2011;41:424–33.PubMedCrossRef
58.
Zurück zum Zitat Bol-Schoenmakers M, Marcondes RM, Bleumink R, Boon L, Man S, Hassing I, et al. Regulation by intestinal gammadelta T cells during establishment of food allergic sensitization in mice. Allergy. 2011;66:331–40.PubMedCrossRef Bol-Schoenmakers M, Marcondes RM, Bleumink R, Boon L, Man S, Hassing I, et al. Regulation by intestinal gammadelta T cells during establishment of food allergic sensitization in mice. Allergy. 2011;66:331–40.PubMedCrossRef
59.
Zurück zum Zitat Frossard CP, Asigbetse KE, Burger D, Eigenmann PA. Gut T cell receptor-gammadelta(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118–30.PubMedPubMedCentralCrossRef Frossard CP, Asigbetse KE, Burger D, Eigenmann PA. Gut T cell receptor-gammadelta(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118–30.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol. 2014;133:309–17.PubMedPubMedCentralCrossRef Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol. 2014;133:309–17.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Heydenreich B, Bellinghausen I, Lund L, Henmar H, Lund G, Adler WP, Saloga J. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids—differences in vivo and in vitro. Clin Exp Immunol. 2014;176:310–9.PubMedPubMedCentralCrossRef Heydenreich B, Bellinghausen I, Lund L, Henmar H, Lund G, Adler WP, Saloga J. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids—differences in vivo and in vitro. Clin Exp Immunol. 2014;176:310–9.PubMedPubMedCentralCrossRef
63.
64.
Zurück zum Zitat Comoy EE, Capron A, Thyphronitis G. In vivo induction of type 1 and 2 immune responses against protein antigens. Int Immunol. 1997;9:523–31.PubMedCrossRef Comoy EE, Capron A, Thyphronitis G. In vivo induction of type 1 and 2 immune responses against protein antigens. Int Immunol. 1997;9:523–31.PubMedCrossRef
65.
Zurück zum Zitat Zlatkovic J, Tsouchnikas G, Jarmer J, Koessl C, Stiasny K, Heinz FX. Aluminum hydroxide influences not only the extent but also the fine specificity and functional activity of antibody responses to tick-borne encephalitis virus in mice. J Virol. 2013;87:12187–95.PubMedPubMedCentralCrossRef Zlatkovic J, Tsouchnikas G, Jarmer J, Koessl C, Stiasny K, Heinz FX. Aluminum hydroxide influences not only the extent but also the fine specificity and functional activity of antibody responses to tick-borne encephalitis virus in mice. J Virol. 2013;87:12187–95.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Bøgh KL, Barkholt V, Madsen CB. Characterization of the immunogenicity and allergenicity of two cow’s milk hydrolysates–a study in Brown Norway rats. Scand J Immunol. 2015;81:274–83.PubMedCrossRef Bøgh KL, Barkholt V, Madsen CB. Characterization of the immunogenicity and allergenicity of two cow’s milk hydrolysates–a study in Brown Norway rats. Scand J Immunol. 2015;81:274–83.PubMedCrossRef
67.
Zurück zum Zitat Jones LS, Peek LJ, Power J, Markham A, Yazzie B, Middaugh CR. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J Biol Chem. 2005;280:13406–14.PubMedCrossRef Jones LS, Peek LJ, Power J, Markham A, Yazzie B, Middaugh CR. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J Biol Chem. 2005;280:13406–14.PubMedCrossRef
68.
Zurück zum Zitat Mattsson J, Schon K, Ekman L, Fahlen-Yrlid L, Yrlid U, Lycke NY. Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsalpha in CD11b(+) DCs. Mucosal Immunol. 2015;8:815–27.PubMedCrossRef Mattsson J, Schon K, Ekman L, Fahlen-Yrlid L, Yrlid U, Lycke NY. Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsalpha in CD11b(+) DCs. Mucosal Immunol. 2015;8:815–27.PubMedCrossRef
69.
Zurück zum Zitat Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J Allergy Clin Immunol. 2009;123:231–8.PubMedPubMedCentralCrossRef Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J Allergy Clin Immunol. 2009;123:231–8.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Li J, Wang Y, Tang L, de Villiers WJ, Cohen D, Woodward J, et al. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol. 2013;131:442–50.PubMedPubMedCentralCrossRef Li J, Wang Y, Tang L, de Villiers WJ, Cohen D, Woodward J, et al. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol. 2013;131:442–50.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Torii I, Shimizu S, Daimon T, Shinohara Y, Kudo T, Sato A, Tsujimura T. Exposure to high doses of Lipopolysaccharide during ovalbumin sensitization prevents the development of allergic Th2 responses to a dietary antigen. J Toxicol Pathol. 2014;27:205–15.PubMedPubMedCentralCrossRef Torii I, Shimizu S, Daimon T, Shinohara Y, Kudo T, Sato A, Tsujimura T. Exposure to high doses of Lipopolysaccharide during ovalbumin sensitization prevents the development of allergic Th2 responses to a dietary antigen. J Toxicol Pathol. 2014;27:205–15.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Kong J, Chalcraft K, Mandur TS, Jimenez-Saiz R, Walker TD, Goncharova S, et al. Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy. 2015;70:495–505.PubMedCrossRef Kong J, Chalcraft K, Mandur TS, Jimenez-Saiz R, Walker TD, Goncharova S, et al. Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy. 2015;70:495–505.PubMedCrossRef
73.
Zurück zum Zitat Birmingham NP, Parvataneni S, Hassan HM, Harkema J, Samineni S, Navuluri L, et al. An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut. Int Arch Allergy Immunol. 2007;144:203–10.PubMedCrossRef Birmingham NP, Parvataneni S, Hassan HM, Harkema J, Samineni S, Navuluri L, et al. An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut. Int Arch Allergy Immunol. 2007;144:203–10.PubMedCrossRef
74.
Zurück zum Zitat Gonipeta B, Parvataneni S, Tempelman RJ, Gangur V. An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein. J Dairy Sci. 2009;92:4738–44.PubMedCrossRef Gonipeta B, Parvataneni S, Tempelman RJ, Gangur V. An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein. J Dairy Sci. 2009;92:4738–44.PubMedCrossRef
75.
Zurück zum Zitat Chandra SA, Stokes AH, Hailey R, Merrill CL, Melich DH, DeSmet K, et al. Dermal toxicity studies: factors impacting study interpretation and outcome. Toxicol Pathol. 2015;43:474–81.PubMedCrossRef Chandra SA, Stokes AH, Hailey R, Merrill CL, Melich DH, DeSmet K, et al. Dermal toxicity studies: factors impacting study interpretation and outcome. Toxicol Pathol. 2015;43:474–81.PubMedCrossRef
76.
Zurück zum Zitat Bartnikas LM, Gurish MF, Burton OT, Leisten S, Janssen E, Oettgen HC, et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131:451–60.PubMedPubMedCentralCrossRef Bartnikas LM, Gurish MF, Burton OT, Leisten S, Janssen E, Oettgen HC, et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131:451–60.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Devey ME, Anderson KJ, Coombs RR, Henschel MJ, Coates ME. The modified anaphylaxis hypothesis for cot death. Anaphylactic sensitization in guinea-pigs fed cow’s milk. Clin Exp Immunol. 1976;26:542–8.PubMedPubMedCentral Devey ME, Anderson KJ, Coombs RR, Henschel MJ, Coates ME. The modified anaphylaxis hypothesis for cot death. Anaphylactic sensitization in guinea-pigs fed cow’s milk. Clin Exp Immunol. 1976;26:542–8.PubMedPubMedCentral
78.
Zurück zum Zitat Knippels LM, Houben GF, Spanhaak S, Penninks AH. An oral sensitization model in Brown Norway rats to screen for potential allergenicity of food proteins. Methods. 1999;19:78–82.PubMedCrossRef Knippels LM, Houben GF, Spanhaak S, Penninks AH. An oral sensitization model in Brown Norway rats to screen for potential allergenicity of food proteins. Methods. 1999;19:78–82.PubMedCrossRef
79.
Zurück zum Zitat Knippels LMJ, Penninks AH, Houben GF. Continued expression of anti-soy protein antibodies in rats bred on a soy protein-free diet for one generation: the importance of dietary control in oral sensitization research. J Allergy Clin Immunol. 1998;101:815–20.PubMedCrossRef Knippels LMJ, Penninks AH, Houben GF. Continued expression of anti-soy protein antibodies in rats bred on a soy protein-free diet for one generation: the importance of dietary control in oral sensitization research. J Allergy Clin Immunol. 1998;101:815–20.PubMedCrossRef
80.
Zurück zum Zitat Bernard H, Ah-Leung S, Drumare MF, Feraudet-Tarisse C, Verhasselt V, Wal JM, et al. Peanut allergens are rapidly transferred in human breast milk and can prevent sensitization in mice. Allergy. 2014;69:888–97.PubMedCrossRef Bernard H, Ah-Leung S, Drumare MF, Feraudet-Tarisse C, Verhasselt V, Wal JM, et al. Peanut allergens are rapidly transferred in human breast milk and can prevent sensitization in mice. Allergy. 2014;69:888–97.PubMedCrossRef
81.
Zurück zum Zitat Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol. 2015;15:308–22.PubMedCrossRef Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol. 2015;15:308–22.PubMedCrossRef
82.
Zurück zum Zitat Merrill AH Jr, Schmelz EM, Wang E, Dillehay DL, Rice LG, Meredith F, et al. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J Nutr. 1997;127:830S–3S.PubMed Merrill AH Jr, Schmelz EM, Wang E, Dillehay DL, Rice LG, Meredith F, et al. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J Nutr. 1997;127:830S–3S.PubMed
83.
Zurück zum Zitat Hogenkamp A, Knippels LM, Garssen J, van Esch BC. Supplementation of mice with specific nondigestible oligosaccharides during pregnancy or lactation leads to diminished sensitization and allergy in the female offspring. J Nutr. 2015;145:996–1002.PubMedCrossRef Hogenkamp A, Knippels LM, Garssen J, van Esch BC. Supplementation of mice with specific nondigestible oligosaccharides during pregnancy or lactation leads to diminished sensitization and allergy in the female offspring. J Nutr. 2015;145:996–1002.PubMedCrossRef
84.
Zurück zum Zitat Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121:1301–8.PubMedPubMedCentralCrossRef Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121:1301–8.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Diesner SC, Knittelfelder R, Krishnamurthy D, Pali-Scholl I, Gajdzik L, Jensen-Jarolim E, Untersmayr E. Dose-dependent food allergy induction against ovalbumin under acid-suppression: a murine food allergy model. Immunol Lett. 2008;121:45–51.PubMedPubMedCentralCrossRef Diesner SC, Knittelfelder R, Krishnamurthy D, Pali-Scholl I, Gajdzik L, Jensen-Jarolim E, Untersmayr E. Dose-dependent food allergy induction against ovalbumin under acid-suppression: a murine food allergy model. Immunol Lett. 2008;121:45–51.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Untersmayr E, Diesner SC, Bramswig KH, Knittelfelder R, Bakos N, Gundacker C, et al. Characterization of intrinsic and extrinsic risk factors for celery allergy in immunosenescence. Mech Ageing Dev. 2008;129:120–8.PubMedCrossRef Untersmayr E, Diesner SC, Bramswig KH, Knittelfelder R, Bakos N, Gundacker C, et al. Characterization of intrinsic and extrinsic risk factors for celery allergy in immunosenescence. Mech Ageing Dev. 2008;129:120–8.PubMedCrossRef
87.
Zurück zum Zitat Hanson DG. Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns. J Immunol. 1981;127:1518–24.PubMed Hanson DG. Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns. J Immunol. 1981;127:1518–24.PubMed
88.
Zurück zum Zitat Frei R, Lauener RP, Crameri R, O’Mahony L. Microbiota and dietary interactions: an update to the hygiene hypothesis? Allergy. 2012;67:451–61.PubMedCrossRef Frei R, Lauener RP, Crameri R, O’Mahony L. Microbiota and dietary interactions: an update to the hygiene hypothesis? Allergy. 2012;67:451–61.PubMedCrossRef
89.
Zurück zum Zitat Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut. 2012;61:354–66.PubMedCrossRef Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut. 2012;61:354–66.PubMedCrossRef
90.
Zurück zum Zitat Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res. 2007;622:58–69.PubMedCrossRef Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res. 2007;622:58–69.PubMedCrossRef
91.
Zurück zum Zitat Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol. 2015;31:153–8.PubMedCrossRef Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol. 2015;31:153–8.PubMedCrossRef
92.
Zurück zum Zitat Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B, Ceddia M, et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy. 2010;40:811–9.PubMed Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B, Ceddia M, et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy. 2010;40:811–9.PubMed
93.
Zurück zum Zitat Sibartie S, O’Hara AM, Ryan J, Fanning A, O’Mahony J, O’Neill S, et al. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol. 2009;10:54.PubMedPubMedCentralCrossRef Sibartie S, O’Hara AM, Ryan J, Fanning A, O’Mahony J, O’Neill S, et al. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol. 2009;10:54.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F, Lyons A, et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog. 2008;4:e1000112.PubMedPubMedCentralCrossRef O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F, Lyons A, et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog. 2008;4:e1000112.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S, del-Patient K, Corthier G, Wal JM, Rabot S. Allergic sensitization to bovine beta-lactoglobulin: comparison between germ-free and conventional BALB/c mice. Int Arch Allergy Immunol. 2009;148:65–72.PubMedCrossRef Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S, del-Patient K, Corthier G, Wal JM, Rabot S. Allergic sensitization to bovine beta-lactoglobulin: comparison between germ-free and conventional BALB/c mice. Int Arch Allergy Immunol. 2009;148:65–72.PubMedCrossRef
96.
Zurück zum Zitat Morin S, Bernard H, Przybylski-Nicaise L, Corthier G, Rabot S, Wal JM, Hazebrouck S. Allergenic and immunogenic potential of cow’s milk beta-lactoglobulin and caseins evidenced without adjuvant in germ-free mice. Mol Nutr Food Res. 2011;55:1700–7.PubMedCrossRef Morin S, Bernard H, Przybylski-Nicaise L, Corthier G, Rabot S, Wal JM, Hazebrouck S. Allergenic and immunogenic potential of cow’s milk beta-lactoglobulin and caseins evidenced without adjuvant in germ-free mice. Mol Nutr Food Res. 2011;55:1700–7.PubMedCrossRef
97.
Zurück zum Zitat Konieczna P, Ferstl R, Ziegler M, Frei R, Nehrbass D, Lauener RP, et al. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One. 2013;8:e62617.PubMedPubMedCentralCrossRef Konieczna P, Ferstl R, Ziegler M, Frei R, Nehrbass D, Lauener RP, et al. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One. 2013;8:e62617.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.PubMedCrossRef McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.PubMedCrossRef
99.
100.
Zurück zum Zitat Knippels LMJ, van Wijk F, Penninks AH. Food allergy: what do we learn from animal models? Curr Opin Allergy Clin Immunol. 2004;4:205–9.PubMedCrossRef Knippels LMJ, van Wijk F, Penninks AH. Food allergy: what do we learn from animal models? Curr Opin Allergy Clin Immunol. 2004;4:205–9.PubMedCrossRef
101.
Zurück zum Zitat Kimber I, Dearman RJ, Penninks AH, Knippels LMJ, Buchanan RB, Hammerberg B, et al. Assessment of protein allergenicity on the basis of immune reactivity: animal models. Environ Health Perspect. 2003;111:1125–30.PubMedPubMedCentralCrossRef Kimber I, Dearman RJ, Penninks AH, Knippels LMJ, Buchanan RB, Hammerberg B, et al. Assessment of protein allergenicity on the basis of immune reactivity: animal models. Environ Health Perspect. 2003;111:1125–30.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol. 2002;109:658–68.PubMedCrossRef Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol. 2002;109:658–68.PubMedCrossRef
103.
Zurück zum Zitat Evans H, Killoran KE, Mitre E. Measuring local anaphylaxis in mice. J Vis Exp. 2014;92:e52005.PubMed Evans H, Killoran KE, Mitre E. Measuring local anaphylaxis in mice. J Vis Exp. 2014;92:e52005.PubMed
104.
Zurück zum Zitat Reiner D, Lee RY, Dekan G, Epstein MM. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice. PLoS One. 2014;9:e103979.PubMedPubMedCentralCrossRef Reiner D, Lee RY, Dekan G, Epstein MM. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice. PLoS One. 2014;9:e103979.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006;118:551–9.PubMedCrossRef Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006;118:551–9.PubMedCrossRef
106.
Zurück zum Zitat Schouten B, van Esch BC, Hofman GA, van den Elsen LW, Willemsen LE, Garssen J. Acute allergic skin reactions and intestinal contractility changes in mice orally sensitized against casein or whey. Int Arch Allergy Immunol. 2008;147:125–34.PubMedCrossRef Schouten B, van Esch BC, Hofman GA, van den Elsen LW, Willemsen LE, Garssen J. Acute allergic skin reactions and intestinal contractility changes in mice orally sensitized against casein or whey. Int Arch Allergy Immunol. 2008;147:125–34.PubMedCrossRef
107.
Zurück zum Zitat van Esch BC, Schouten B, Hofman GA, van Baalen T, Nijkamp FP, Knippels LM, et al. Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow’s milk allergy. Pediatr Allergy Immunol. 2010;21:e780–6.PubMedCrossRef van Esch BC, Schouten B, Hofman GA, van Baalen T, Nijkamp FP, Knippels LM, et al. Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow’s milk allergy. Pediatr Allergy Immunol. 2010;21:e780–6.PubMedCrossRef
108.
Zurück zum Zitat Prescott VE, Forbes E, Foster PS, Matthaei K, Hogan SP. Mechanistic analysis of experimental food allergen-induced cutaneous reactions. J Leukoc Biol. 2006;80:258–66.PubMedCrossRef Prescott VE, Forbes E, Foster PS, Matthaei K, Hogan SP. Mechanistic analysis of experimental food allergen-induced cutaneous reactions. J Leukoc Biol. 2006;80:258–66.PubMedCrossRef
109.
Zurück zum Zitat Mathias CB, Hobson SA, Garcia-Lloret M, Lawson G, Poddighe D, Freyschmidt EJ, et al. IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol. 2011;127:795–805.PubMedPubMedCentralCrossRef Mathias CB, Hobson SA, Garcia-Lloret M, Lawson G, Poddighe D, Freyschmidt EJ, et al. IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol. 2011;127:795–805.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Han H, Thelen TD, Comeau MR, Ziegler SF. Thymic stromal lymphopoietin-mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest. 2014;124:5442–52.PubMedPubMedCentralCrossRef Han H, Thelen TD, Comeau MR, Ziegler SF. Thymic stromal lymphopoietin-mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest. 2014;124:5442–52.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Zabel BA, Nakae S, Zúñiga L, Kim JY, Ohyama T, Alt C, et al. Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J Exp Med. 2008;205:2207–20.PubMedPubMedCentralCrossRef Zabel BA, Nakae S, Zúñiga L, Kim JY, Ohyama T, Alt C, et al. Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J Exp Med. 2008;205:2207–20.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Birmingham N, Payankaulam S, Thanesvorakul S, Stefura B, HayGlass K, Gangur V. An ELISA-based method for measurement of food-specific IgE antibody in mouse serum: an alternative to the passive cutaneous anaphylaxis assay. J Immunol Methods. 2003;275:89–98.PubMedCrossRef Birmingham N, Payankaulam S, Thanesvorakul S, Stefura B, HayGlass K, Gangur V. An ELISA-based method for measurement of food-specific IgE antibody in mouse serum: an alternative to the passive cutaneous anaphylaxis assay. J Immunol Methods. 2003;275:89–98.PubMedCrossRef
113.
Zurück zum Zitat Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM. Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy. 2005;60:658–64.PubMedCrossRef Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM. Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy. 2005;60:658–64.PubMedCrossRef
114.
Zurück zum Zitat Lovik M, Hogseth AK, Gaarder PI, Hagemann R, Eide I. Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology. 1997;121:165–78.PubMedCrossRef Lovik M, Hogseth AK, Gaarder PI, Hagemann R, Eide I. Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology. 1997;121:165–78.PubMedCrossRef
115.
Zurück zum Zitat Olzhausen J, Schawaller M, Wiki M, Akdis C, Jutel M, Crameri R, Rhyner C. Evanescent field-based fast measurements of allergen specific antibodies during SIT. Allergy. 2014;69(s99):72. Olzhausen J, Schawaller M, Wiki M, Akdis C, Jutel M, Crameri R, Rhyner C. Evanescent field-based fast measurements of allergen specific antibodies during SIT. Allergy. 2014;69(s99):72.
116.
Zurück zum Zitat Granum B, Gaarder PI, Groeng E, Leikvold R, Namork E, Lovik M. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies. Toxicol Lett. 2001;118:171–81.PubMedCrossRef Granum B, Gaarder PI, Groeng E, Leikvold R, Namork E, Lovik M. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies. Toxicol Lett. 2001;118:171–81.PubMedCrossRef
117.
Zurück zum Zitat Bøgh KL, Kroghsbo S, Dahl L, Rigby NM, Barkholt V, Mills EN, Madsen CB. Digested Ara h 1 has sensitizing capacity in Brown Norway rats. Clin Exp Allergy. 2009;39:1611–21.PubMedCrossRef Bøgh KL, Kroghsbo S, Dahl L, Rigby NM, Barkholt V, Mills EN, Madsen CB. Digested Ara h 1 has sensitizing capacity in Brown Norway rats. Clin Exp Allergy. 2009;39:1611–21.PubMedCrossRef
118.
Zurück zum Zitat Vercelli D, Jabara HH, Arai K, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B cell interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.PubMedCrossRef Vercelli D, Jabara HH, Arai K, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B cell interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.PubMedCrossRef
119.
Zurück zum Zitat Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–33.PubMedCrossRef Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–33.PubMedCrossRef
120.
Zurück zum Zitat Nakajima-Adachi H, Kikuchi A, Fujimura Y, Shibahara K, Makino T, Goseki-Sone M, et al. Peyer’s patches and mesenteric lymph nodes cooperatively promote enteropathy in a mouse model of food allergy. PLoS One. 2014;9:e107492.PubMedPubMedCentralCrossRef Nakajima-Adachi H, Kikuchi A, Fujimura Y, Shibahara K, Makino T, Goseki-Sone M, et al. Peyer’s patches and mesenteric lymph nodes cooperatively promote enteropathy in a mouse model of food allergy. PLoS One. 2014;9:e107492.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127:701–21.PubMedCrossRef Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127:701–21.PubMedCrossRef
122.
Zurück zum Zitat van Zijverden M, van der Pijl A, Bol M, van Pinxteren FA, de Haar C, Penninks AH, et al. Diesel exhaust, carbon black, and silica particles display distinct Th1/Th2 modulating activity. Toxicol Appl Pharmacol. 2000;168:131–9.PubMedCrossRef van Zijverden M, van der Pijl A, Bol M, van Pinxteren FA, de Haar C, Penninks AH, et al. Diesel exhaust, carbon black, and silica particles display distinct Th1/Th2 modulating activity. Toxicol Appl Pharmacol. 2000;168:131–9.PubMedCrossRef
123.
Zurück zum Zitat Nygaard UC, Ormstad H, Aase A, Lovik M. The IgE adjuvant effect of particles: characterisation of the primary cellular response in the draining lymph node. Toxicology. 2005;206:181–93.PubMedCrossRef Nygaard UC, Ormstad H, Aase A, Lovik M. The IgE adjuvant effect of particles: characterisation of the primary cellular response in the draining lymph node. Toxicology. 2005;206:181–93.PubMedCrossRef
124.
Zurück zum Zitat Gerberick GF, Ryan CA, Dearman RJ, Kimber I. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods. 2007;41:54–60.PubMedCrossRef Gerberick GF, Ryan CA, Dearman RJ, Kimber I. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods. 2007;41:54–60.PubMedCrossRef
125.
Zurück zum Zitat Vaali K, Puumalainen TJ, Lehto M, Wolff H, Rita H, Alenius H, Palosuo T. Murine model of food allergy after epicutaneous sensitization: role of mucosal mast cell protease-1. Scand J Gastroenterol. 2006;41:1405–13.PubMedCrossRef Vaali K, Puumalainen TJ, Lehto M, Wolff H, Rita H, Alenius H, Palosuo T. Murine model of food allergy after epicutaneous sensitization: role of mucosal mast cell protease-1. Scand J Gastroenterol. 2006;41:1405–13.PubMedCrossRef
Metadaten
Titel
Current challenges facing the assessment of the allergenic capacity of food allergens in animal models
verfasst von
Katrine Lindholm Bøgh
Jolanda van Bilsen
Robert Głogowski
Iván López-Expósito
Grégory Bouchaud
Carine Blanchard
Marie Bodinier
Joost Smit
Raymond Pieters
Shanna Bastiaan-Net
Nicole de Wit
Eva Untersmayr
Karine Adel-Patient
Leon Knippels
Michelle M. Epstein
Mario Noti
Unni Cecilie Nygaard
Ian Kimber
Kitty Verhoeckx
Liam O’Mahony
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Clinical and Translational Allergy / Ausgabe 1/2016
Elektronische ISSN: 2045-7022
DOI
https://doi.org/10.1186/s13601-016-0110-2

Weitere Artikel der Ausgabe 1/2016

Clinical and Translational Allergy 1/2016 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.