Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2017

08.04.2017 | NON-THEMATIC REVIEW

Cytokine-induced senescence for cancer surveillance

verfasst von: Thomas Wieder, Ellen Brenner, Heidi Braumüller, Oliver Bischof, Martin Röcken

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

The immune response is a first-line systemic defense to curb tumorigenesis and metastasis. Much effort has been invested to design antitumor interventions that would boost the immune system in its fight to defeat or contain cancerous growth. Tumor vaccination protocols, transfer of tumor-associated-antigen-specific T cells, T cell activity-regulating antibodies, and recombinant cytokines are counted among a toolbox filled with immunotherapeutic options. Although the mechanistic underpinnings of tumor immune control remain to be deciphered, these are studied with the goal of cancer cell destruction. In contrast, tumor dormancy is considered as a dangerous equilibrium between cell proliferation and cell death. There is, however, emerging evidence that tumor immune control can be achieved in the absence of overt cancer cell death. Here, we propose cytokine-induced senescence (CIS) by transfer of T helper-1 cells (TH1) or by recombinant cytokines as a novel therapeutic intervention for cancer treatment. Immunity-induced senescence triggers a stable cell cycle arrest of cancer cells. It engages the immune system to construct defensive, isolating barriers around tumors, and prevents tumor growth through the delivery or induction of TH1-cytokines in the tumor microenvironment. Keeping cancer cells in a non-proliferating state is a strategy, which directly copes with the lost homeostasis of aggressive tumors. As most studies show that even after efficient cancer therapies minimal residual disease persists, we suggest that therapies should include immune-mediated senescence for cancer surveillance. CIS has the goal to control the residual tumor and to transform a deadly disease into a state of silent tumor persistence.
Literatur
1.
Zurück zum Zitat Perez-Mancera, P. A., Young, A. R., & Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nature Reviews: Cancer, 14(8), 547–558.PubMed Perez-Mancera, P. A., Young, A. R., & Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nature Reviews: Cancer, 14(8), 547–558.PubMed
3.
Zurück zum Zitat Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., et al. (2012). Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 14(4), 355–365.CrossRefPubMedPubMedCentral Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., et al. (2012). Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 14(4), 355–365.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., et al. (2013). Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell, 152(1–2), 340–351.CrossRefPubMedPubMedCentral Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., et al. (2013). Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell, 152(1–2), 340–351.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.CrossRefPubMedPubMedCentral Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Campisi, J., Andersen, J. K., Kapahi, P., & Melov, S. (2011). Cellular senescence: a link between cancer and age-related degenerative disease? Seminars in Cancer Biology, 21(6), 354–359.PubMedPubMedCentral Campisi, J., Andersen, J. K., Kapahi, P., & Melov, S. (2011). Cellular senescence: a link between cancer and age-related degenerative disease? Seminars in Cancer Biology, 21(6), 354–359.PubMedPubMedCentral
7.
Zurück zum Zitat Munoz-Espin, D., Canamero, M., Maraver, A., Gomez-Lopez, G., Contreras, J., Murillo-Cuesta, S., et al. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118.CrossRefPubMed Munoz-Espin, D., Canamero, M., Maraver, A., Gomez-Lopez, G., Contreras, J., Murillo-Cuesta, S., et al. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118.CrossRefPubMed
8.
Zurück zum Zitat Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M. C., Di Giacomo, V., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155(5), 1119–1130.CrossRefPubMed Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M. C., Di Giacomo, V., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155(5), 1119–1130.CrossRefPubMed
9.
Zurück zum Zitat Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724.CrossRefPubMed Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724.CrossRefPubMed
10.
Zurück zum Zitat Lee, S., Schmitt, C. A., & Reimann, M. (2011). The Myc/macrophage tango: oncogene-induced senescence, Myc style. Seminars in Cancer Biology, 21(6), 377–384.CrossRefPubMed Lee, S., Schmitt, C. A., & Reimann, M. (2011). The Myc/macrophage tango: oncogene-induced senescence, Myc style. Seminars in Cancer Biology, 21(6), 377–384.CrossRefPubMed
11.
Zurück zum Zitat Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research, 59(15), 3761–3767.PubMed Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research, 59(15), 3761–3767.PubMed
12.
Zurück zum Zitat Schmitt, C. A., Fridman, J. S., Yang, M., Lee, S., Baranov, E., Hoffman, R. M., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109(3), 335–346.CrossRefPubMed Schmitt, C. A., Fridman, J. S., Yang, M., Lee, S., Baranov, E., Hoffman, R. M., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109(3), 335–346.CrossRefPubMed
13.
Zurück zum Zitat Reimann, M., Lee, S., Loddenkemper, C., Dorr, J. R., Tabor, V., Aichele, P., et al. (2010). Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell, 17(3), 262–272.CrossRefPubMed Reimann, M., Lee, S., Loddenkemper, C., Dorr, J. R., Tabor, V., Aichele, P., et al. (2010). Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell, 17(3), 262–272.CrossRefPubMed
14.
Zurück zum Zitat Braumüller, H., Wieder, T., Brenner, E., Assmann, S., Hahn, M., Alkhaled, M., et al. (2013). T-helper-1-cell cytokines drive cancer into senescence. Nature, 494(7437), 361–365. Braumüller, H., Wieder, T., Brenner, E., Assmann, S., Hahn, M., Alkhaled, M., et al. (2013). T-helper-1-cell cytokines drive cancer into senescence. Nature, 494(7437), 361–365.
15.
Zurück zum Zitat Schilbach, K., Alkhaled, M., Welker, C., Eckert, F., Blank, G., Ziegler, H., et al. (2015). Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. OncoImmunology, 4(7), e1014760.CrossRefPubMedPubMedCentral Schilbach, K., Alkhaled, M., Welker, C., Eckert, F., Blank, G., Ziegler, H., et al. (2015). Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. OncoImmunology, 4(7), e1014760.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kang, T.-W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature, 479(7374), 547–551. doi:10.1038/nature10599.CrossRefPubMed Kang, T.-W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature, 479(7374), 547–551. doi:10.​1038/​nature10599.CrossRefPubMed
17.
Zurück zum Zitat Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75, 685–705.CrossRefPubMed Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75, 685–705.CrossRefPubMed
18.
Zurück zum Zitat Durante, M., & Loeffler, J. S. (2010). Charged particles in radiation oncology. Nature Reviews: Clinical Oncology, 7(1), 37–43.PubMed Durante, M., & Loeffler, J. S. (2010). Charged particles in radiation oncology. Nature Reviews: Clinical Oncology, 7(1), 37–43.PubMed
19.
Zurück zum Zitat Friesen, C., Herr, I., Krammer, P. H., & Debatin, K. M. (1996). Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Medicine, 2(5), 574–577.CrossRefPubMed Friesen, C., Herr, I., Krammer, P. H., & Debatin, K. M. (1996). Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Medicine, 2(5), 574–577.CrossRefPubMed
20.
Zurück zum Zitat Mocikat, R., Braumüller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., et al. (2003). Natural killer cells activated by MHC class I (low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity, 19(4), 561–569. Mocikat, R., Braumüller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., et al. (2003). Natural killer cells activated by MHC class I (low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity, 19(4), 561–569.
21.
Zurück zum Zitat Baum, V., Buhler, P., Gierschner, D., Herchenbach, D., Fiala, G. J., Schamel, W. W., et al. (2013). Antitumor activities of PSMAxCD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy, 5(1), 27–38.CrossRefPubMed Baum, V., Buhler, P., Gierschner, D., Herchenbach, D., Fiala, G. J., Schamel, W. W., et al. (2013). Antitumor activities of PSMAxCD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy, 5(1), 27–38.CrossRefPubMed
22.
Zurück zum Zitat Wieder, T., Essmann, F., Prokop, A., Schmelz, K., Schulze-Osthoff, K., Beyaert, R., et al. (2001). Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood, 97(5), 1378–1387.CrossRefPubMed Wieder, T., Essmann, F., Prokop, A., Schmelz, K., Schulze-Osthoff, K., Beyaert, R., et al. (2001). Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood, 97(5), 1378–1387.CrossRefPubMed
23.
Zurück zum Zitat Scholz, C., Wieder, T., Starck, L., Essmann, F., Schulze-Osthoff, K., Dörken, B., et al. (2005). Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene, 24(11), 1904–1913. Scholz, C., Wieder, T., Starck, L., Essmann, F., Schulze-Osthoff, K., Dörken, B., et al. (2005). Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene, 24(11), 1904–1913.
24.
Zurück zum Zitat Boujrad, H., Gubkina, O., Robert, N., Krantic, S., & Susin, S. A. (2007). AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle, 6(21), 2612–2619.CrossRefPubMed Boujrad, H., Gubkina, O., Robert, N., Krantic, S., & Susin, S. A. (2007). AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle, 6(21), 2612–2619.CrossRefPubMed
25.
Zurück zum Zitat Feoktistova, M., Geserick, P., Panayotova-Dimitrova, D., & Leverkus, M. (2012). Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle, 11(3), 460–467.CrossRefPubMed Feoktistova, M., Geserick, P., Panayotova-Dimitrova, D., & Leverkus, M. (2012). Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle, 11(3), 460–467.CrossRefPubMed
26.
Zurück zum Zitat Wang, Y., Zhan, Y., Xu, R., Shao, R., Jiang, J., & Wang, Z. (2015). Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Molecular Carcinogenesis, 54(Suppl 1), E26–E34.CrossRefPubMed Wang, Y., Zhan, Y., Xu, R., Shao, R., Jiang, J., & Wang, Z. (2015). Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Molecular Carcinogenesis, 54(Suppl 1), E26–E34.CrossRefPubMed
27.
Zurück zum Zitat van Spriel, A. B., Leusen, J. H., van Egmond, M., Dijkman, H. B., Assmann, K. J., Mayadas, T. N., et al. (2001). Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 97(8), 2478–2486.CrossRefPubMed van Spriel, A. B., Leusen, J. H., van Egmond, M., Dijkman, H. B., Assmann, K. J., Mayadas, T. N., et al. (2001). Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 97(8), 2478–2486.CrossRefPubMed
29.
Zurück zum Zitat Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-induced senescence in cancer. Journal of the National Cancer Institute, 102(20), 1536–1546.CrossRefPubMedPubMedCentral Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-induced senescence in cancer. Journal of the National Cancer Institute, 102(20), 1536–1546.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Nardella, C., Clohessy, J. G., Alimonti, A., & Pandolfi, P. P. (2011). Pro-senescence therapy for cancer treatment. Nature Reviews: Cancer, 11(7), 503–511.PubMed Nardella, C., Clohessy, J. G., Alimonti, A., & Pandolfi, P. P. (2011). Pro-senescence therapy for cancer treatment. Nature Reviews: Cancer, 11(7), 503–511.PubMed
31.
Zurück zum Zitat Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211–219.CrossRefPubMed Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211–219.CrossRefPubMed
32.
33.
Zurück zum Zitat Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell, 18(5), 485–498.CrossRefPubMedPubMedCentral Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell, 18(5), 485–498.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 120(3), 681–693.CrossRefPubMedPubMedCentral Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 120(3), 681–693.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Boelens, M. C., Nethe, M., Klarenbeek, S., de Ruiter, J. R., Schut, E., Bonzanni, N., et al. (2016). PTEN loss in E-cadherin-deficient mouse mammary epithelial cells rescues apoptosis and results in development of classical invasive lobular carcinoma. Cell Reports, 16(8), 2087–2101.CrossRefPubMedPubMedCentral Boelens, M. C., Nethe, M., Klarenbeek, S., de Ruiter, J. R., Schut, E., Bonzanni, N., et al. (2016). PTEN loss in E-cadherin-deficient mouse mammary epithelial cells rescues apoptosis and results in development of classical invasive lobular carcinoma. Cell Reports, 16(8), 2087–2101.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Jolly, L. A., Massoll, N., & Franco, A. T. (2016). Immune suppression mediated by myeloid and lymphoid derived immune cells in the tumor microenvironment facilitates progression of thyroid cancers driven by HrasG12V and Pten loss. Journal of Clinical & Cellular Immunology, 7(5), 451.CrossRef Jolly, L. A., Massoll, N., & Franco, A. T. (2016). Immune suppression mediated by myeloid and lymphoid derived immune cells in the tumor microenvironment facilitates progression of thyroid cancers driven by HrasG12V and Pten loss. Journal of Clinical & Cellular Immunology, 7(5), 451.CrossRef
37.
Zurück zum Zitat Benhamed, M., Herbig, U., Ye, T., Dejean, A., & Bischof, O. (2012). Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nature Cell Biology, 14(3), 266–275.CrossRefPubMedPubMedCentral Benhamed, M., Herbig, U., Ye, T., Dejean, A., & Bischof, O. (2012). Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nature Cell Biology, 14(3), 266–275.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. Journal of Investigative Dermatology, 133(6), 1601–1609.CrossRefPubMed Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. Journal of Investigative Dermatology, 133(6), 1601–1609.CrossRefPubMed
39.
Zurück zum Zitat Hunder, N. N., Wallen, H., Cao, J., Hendricks, D. W., Reilly, J. Z., Rodmyre, R., et al. (2008). Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. New England Journal of Medicine, 358(25), 2698–2703.CrossRefPubMedPubMedCentral Hunder, N. N., Wallen, H., Cao, J., Hendricks, D. W., Reilly, J. Z., Rodmyre, R., et al. (2008). Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. New England Journal of Medicine, 358(25), 2698–2703.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Müller-Hermelink, N., Braumüller, H., Pichler, B., Wieder, T., Mailhammer, R., Schaak, K., et al. (2008). TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell, 13(6), 507–518. Müller-Hermelink, N., Braumüller, H., Pichler, B., Wieder, T., Mailhammer, R., Schaak, K., et al. (2008). TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell, 13(6), 507–518.
41.
Zurück zum Zitat Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369(2), 122–133.CrossRefPubMed Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369(2), 122–133.CrossRefPubMed
42.
Zurück zum Zitat Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. New England Journal of Medicine, 372(4), 320–330.CrossRefPubMed Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. New England Journal of Medicine, 372(4), 320–330.CrossRefPubMed
43.
Zurück zum Zitat Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 373(17), 1627–1639.CrossRefPubMed Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 373(17), 1627–1639.CrossRefPubMed
44.
Zurück zum Zitat Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567.CrossRefPubMedPubMedCentral Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571.CrossRefPubMedPubMedCentral Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., & Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., & Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine.
47.
Zurück zum Zitat Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of Medicine, 372(26), 2509–2520.CrossRefPubMedPubMedCentral Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of Medicine, 372(26), 2509–2520.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Rosenberg, J. E., Hoffman-Censits, J., Powles, T., van der Heijden, M. S., Balar, A. V., Necchi, A., et al. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 387(10031), 1909–1920.CrossRefPubMedPubMedCentral Rosenberg, J. E., Hoffman-Censits, J., Powles, T., van der Heijden, M. S., Balar, A. V., Necchi, A., et al. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 387(10031), 1909–1920.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Mlecnik, B., Bindea, G., Angell, H. K., Maby, P., Angelova, M., Tougeron, D., et al. (2016). Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity, 44(3), 698–711.CrossRefPubMed Mlecnik, B., Bindea, G., Angell, H. K., Maby, P., Angelova, M., Tougeron, D., et al. (2016). Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity, 44(3), 698–711.CrossRefPubMed
50.
Zurück zum Zitat Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.CrossRefPubMedPubMedCentral Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366(26), 2455–2465.CrossRefPubMedPubMedCentral Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366(26), 2455–2465.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Gatenby, R. A. (2009). A change of strategy in the war on cancer. Nature, 459(7246), 508–509.CrossRefPubMed Gatenby, R. A. (2009). A change of strategy in the war on cancer. Nature, 459(7246), 508–509.CrossRefPubMed
53.
Zurück zum Zitat Wieder, T., Braumüller, H., Kneilling, M., Pichler, B., & Röcken, M. (2008). T cell-mediated help against tumors. Cell Cycle, 7(19), 2974–2977. Wieder, T., Braumüller, H., Kneilling, M., Pichler, B., & Röcken, M. (2008). T cell-mediated help against tumors. Cell Cycle, 7(19), 2974–2977.
54.
Zurück zum Zitat Wieder, T., Braumüller, H., Brenner, E., Zender, L., & Röcken, M. (2013). Changing T-cell enigma: cancer killing or cancer control? Cell Cycle, 12(19), 3146–3153. Wieder, T., Braumüller, H., Brenner, E., Zender, L., & Röcken, M. (2013). Changing T-cell enigma: cancer killing or cancer control? Cell Cycle, 12(19), 3146–3153.
55.
Zurück zum Zitat Finn, O. J. (2008). Cancer immunology. New England Journal of Medicine, 358(25), 2704–2715.CrossRefPubMed Finn, O. J. (2008). Cancer immunology. New England Journal of Medicine, 358(25), 2704–2715.CrossRefPubMed
56.
Zurück zum Zitat Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570.CrossRefPubMed Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570.CrossRefPubMed
57.
Zurück zum Zitat Bruyere, C., & Meijer, L. (2013). Targeting cyclin-dependent kinases in anti-neoplastic therapy. Current Opinion in Cell Biology, 25(6), 772–779.CrossRefPubMed Bruyere, C., & Meijer, L. (2013). Targeting cyclin-dependent kinases in anti-neoplastic therapy. Current Opinion in Cell Biology, 25(6), 772–779.CrossRefPubMed
58.
Zurück zum Zitat Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051), 642.CrossRefPubMed Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051), 642.CrossRefPubMed
59.
Zurück zum Zitat Lasorella, A., Benezra, R., & Iavarone, A. (2014). The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nature Reviews: Cancer, 14(2), 77–91.PubMed Lasorella, A., Benezra, R., & Iavarone, A. (2014). The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nature Reviews: Cancer, 14(2), 77–91.PubMed
60.
Zurück zum Zitat Folkman, J., & Ingber, D. (1992). Inhibition of angiogenesis. Seminars in Cancer Biology, 3(2), 89–96.PubMed Folkman, J., & Ingber, D. (1992). Inhibition of angiogenesis. Seminars in Cancer Biology, 3(2), 89–96.PubMed
61.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRefPubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRefPubMed
62.
Zurück zum Zitat Daniel, P. T., Wieder, T., Sturm, I., & Schulze-Osthoff, K. (2001). The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia, 15(7), 1022–1032.CrossRefPubMed Daniel, P. T., Wieder, T., Sturm, I., & Schulze-Osthoff, K. (2001). The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia, 15(7), 1022–1032.CrossRefPubMed
63.
Zurück zum Zitat Trapani, J. A., & Smyth, M. J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nature Reviews: Immunology, 2(10), 735–747.PubMed Trapani, J. A., & Smyth, M. J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nature Reviews: Immunology, 2(10), 735–747.PubMed
64.
Zurück zum Zitat Thiery, J., & Lieberman, J. (2014). Perforin: a key pore-forming protein for immune control of viruses and cancer. Sub-Cellular Biochemistry, 80, 197–220.CrossRefPubMed Thiery, J., & Lieberman, J. (2014). Perforin: a key pore-forming protein for immune control of viruses and cancer. Sub-Cellular Biochemistry, 80, 197–220.CrossRefPubMed
65.
Zurück zum Zitat Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., et al. (2016). Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell, 167(2), 397–404.e399.CrossRefPubMed Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., et al. (2016). Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell, 167(2), 397–404.e399.CrossRefPubMed
66.
Zurück zum Zitat Dorand, R. D., Nthale, J., Myers, J. T., Barkauskas, D. S., Avril, S., Chirieleison, S. M., et al. (2016). Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science, 353(6297), 399–403.CrossRefPubMedPubMedCentral Dorand, R. D., Nthale, J., Myers, J. T., Barkauskas, D. S., Avril, S., Chirieleison, S. M., et al. (2016). Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science, 353(6297), 399–403.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Pencik, J., Schlederer, M., Gruber, W., Unger, C., Walker, S. M., Chalaris, A., et al. (2015). STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 6, 7736.CrossRefPubMedPubMedCentral Pencik, J., Schlederer, M., Gruber, W., Unger, C., Walker, S. M., Chalaris, A., et al. (2015). STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 6, 7736.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Hortobagyi, G. N., Stemmer, S. M., Burris, H. A., Yap, Y. S., Sonke, G. S., Paluch-Shimon, S., et al. (2016). Ribociclib as first-line therapy for HR-positive, advanced breast cancer. New England Journal of Medicine, 375(18), 1738–1748.CrossRefPubMed Hortobagyi, G. N., Stemmer, S. M., Burris, H. A., Yap, Y. S., Sonke, G. S., Paluch-Shimon, S., et al. (2016). Ribociclib as first-line therapy for HR-positive, advanced breast cancer. New England Journal of Medicine, 375(18), 1738–1748.CrossRefPubMed
69.
Zurück zum Zitat Parrinello, S., Coppe, J. P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(Pt 3), 485–496.CrossRefPubMedPubMedCentral Parrinello, S., Coppe, J. P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(Pt 3), 485–496.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Wieder, T., Orfanos, C. E., & Geilen, C. C. (1998). Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. Journal of Biological Chemistry, 273(18), 11025–11031.CrossRefPubMed Wieder, T., Orfanos, C. E., & Geilen, C. C. (1998). Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. Journal of Biological Chemistry, 273(18), 11025–11031.CrossRefPubMed
71.
Zurück zum Zitat Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews: Cancer, 12(7), 487–493.PubMedPubMedCentral Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews: Cancer, 12(7), 487–493.PubMedPubMedCentral
72.
Zurück zum Zitat Kayser, S., Bobeta, C., Feucht, J., Witte, K. E., Scheu, A., Bulow, H. J., et al. (2015). Rapid generation of NY-ESO-1-specific CD4 T1 cells for adoptive T-cell therapy. Oncoimmunology, 4(5), e1002723.CrossRefPubMedPubMedCentral Kayser, S., Bobeta, C., Feucht, J., Witte, K. E., Scheu, A., Bulow, H. J., et al. (2015). Rapid generation of NY-ESO-1-specific CD4 T1 cells for adoptive T-cell therapy. Oncoimmunology, 4(5), e1002723.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Prokop, A., Wrasidlo, W., Lode, H., Herold, R., Lang, F., Henze, G., et al. (2003). Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene, 22(57), 9107–9120.CrossRefPubMed Prokop, A., Wrasidlo, W., Lode, H., Herold, R., Lang, F., Henze, G., et al. (2003). Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene, 22(57), 9107–9120.CrossRefPubMed
74.
Zurück zum Zitat Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V. A., Mackay, G., et al. (2013). A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 498(7452), 109–112.CrossRefPubMed Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V. A., Mackay, G., et al. (2013). A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 498(7452), 109–112.CrossRefPubMed
75.
Zurück zum Zitat Blagosklonny, M. V. (2012). Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY), 4(3), 159–165.CrossRef Blagosklonny, M. V. (2012). Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY), 4(3), 159–165.CrossRef
76.
Zurück zum Zitat Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., et al. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell, 19(3), 416–428.CrossRefPubMedPubMedCentral Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., et al. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell, 19(3), 416–428.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., et al. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 496(7444), 238–242.CrossRefPubMedPubMedCentral Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., et al. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 496(7444), 238–242.CrossRefPubMedPubMedCentral
Metadaten
Titel
Cytokine-induced senescence for cancer surveillance
verfasst von
Thomas Wieder
Ellen Brenner
Heidi Braumüller
Oliver Bischof
Martin Röcken
Publikationsdatum
08.04.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9667-z

Weitere Artikel der Ausgabe 2/2017

Cancer and Metastasis Reviews 2/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.