Skip to main content
Erschienen in: Inflammation 6/2018

01.08.2018 | ORIGINAL ARTICLE

Cytokine Production Is Differentially Modulated in Malignant and Non-malignant Tissues in ST2-Receptor Deficient Mice

verfasst von: Celso Tarso Rodrigues Viana, Laura Alejandra Ariza Orellano, Luciana Xavier Pereira, Simone Aparecida de Almeida, Letícia Chinait Couto, Marcela Guimarães Takahashi de Lazari, Silvia Passos Andrade, Paula Peixoto Campos

Erschienen in: Inflammation | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

IL-33/ST2 axis has been shown to exert both pro- and anti- effects in wound healing and tumor development. To further understand the role of this cytokine complex, we characterized comparatively the inflammatory component of a malignant tissue and non-malignant tissue in mice lacking ST2 receptor (ST2-KO). KO mice and their wild-type (WT) counterparts were either implanted subcutaneously with polyether-polyurethane sponge discs to induce non-malignant fibrovascular tissue growth or inoculated with 4T1 cells to induce mammary tumor. Loss of ST2 receptor in mice resulted in enhanced mammary tumor and fibrovascular tissue relative to the WT animals. The inflammatory parameters (MPO and NAG activities, levels of the cytokines CXCL1/KC, CCL2, TNF-α, TGF-β1, and mast cell number) were differentially modulated in both tissues. In tumors, these parameters were, overall, lower compared with those in tumors of WT mice. In KO implants, CXCL1/KC and TNF-α levels increased; MPO, NAG, and CCL2 levels decreased relative to the WT implants. In addition, deletion of ST2 receptor inhibited mast cell recruitment but had no effect on TGF-β1 levels in implants. Our study has shown antitumorigenic effect of ST2 in mammary tumor and this may be mediated by downregulation of pro-inflammatory cytokines (CXCL1/KC, CCL2, TNF-α, and TGF-β1). Conversely, in the fibrovascular tissue, lack of ST2 receptor resulted in differential modulation of cytokine production. Differential signaling mechanisms may be activated by IL-33/ST2 axis to modulate cytokine production in malignant and non-malignant proliferative processes.
Literatur
1.
Zurück zum Zitat Dvorak, H.F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine 315: 1650–1659.CrossRef Dvorak, H.F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine 315: 1650–1659.CrossRef
2.
Zurück zum Zitat Naldini, A., and F. Carraro. 2005. Role of inflammatory mediators in angiogenesis. Current Drug Targets. Inflammation and Allergy 4: 3–8.CrossRef Naldini, A., and F. Carraro. 2005. Role of inflammatory mediators in angiogenesis. Current Drug Targets. Inflammation and Allergy 4: 3–8.CrossRef
3.
Zurück zum Zitat Ye, J., D. Wu, P. Wu, Z. Chen, and J. Huang. 2014. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biology 35: 3945–3951.CrossRef Ye, J., D. Wu, P. Wu, Z. Chen, and J. Huang. 2014. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biology 35: 3945–3951.CrossRef
4.
Zurück zum Zitat Lin, W.W., and M. Karin. 2007. A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of Clinical Investigation 117: 1175–1183.CrossRef Lin, W.W., and M. Karin. 2007. A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of Clinical Investigation 117: 1175–1183.CrossRef
5.
Zurück zum Zitat Wasmer, M.H., and P. Krebs. 2016. The role of IL-33-dependent inflammation in the tumor microenvironment. Frontiers in Immunology 7: 682.PubMed Wasmer, M.H., and P. Krebs. 2016. The role of IL-33-dependent inflammation in the tumor microenvironment. Frontiers in Immunology 7: 682.PubMed
6.
Zurück zum Zitat Miller, A.M. 2011. Role of IL-33 in inflammation and disease. Journal of Inflammation (London) 8: 22.CrossRef Miller, A.M. 2011. Role of IL-33 in inflammation and disease. Journal of Inflammation (London) 8: 22.CrossRef
7.
Zurück zum Zitat Srikrishna, G., and H.H. Freeze. 2009. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11: 615–628.CrossRef Srikrishna, G., and H.H. Freeze. 2009. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11: 615–628.CrossRef
8.
Zurück zum Zitat Cayrol, C., and J.P. Girard. 2014. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Current Opinion in Immunology 31: 31–37.CrossRef Cayrol, C., and J.P. Girard. 2014. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Current Opinion in Immunology 31: 31–37.CrossRef
9.
Zurück zum Zitat Kakkar, R., and R.T. Lee. 2008. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery 7: 827–840.CrossRef Kakkar, R., and R.T. Lee. 2008. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery 7: 827–840.CrossRef
10.
Zurück zum Zitat Oshio, T., M. Komine, H. Tsuda, S.I. Tominaga, H. Saito, S. Nakae, and M. Ohtsuki. 2017. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science 85: 106–114.CrossRef Oshio, T., M. Komine, H. Tsuda, S.I. Tominaga, H. Saito, S. Nakae, and M. Ohtsuki. 2017. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science 85: 106–114.CrossRef
11.
Zurück zum Zitat McHedlidze, T., M. Waldner, S. Zopf, J. Walker, A.L. Rankin, M. Schuchmann, D. Voehringer, A.N. McKenzie, M.F. Neurath, S. Pflanz, and S. Wirtz. 2013. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357–371.CrossRef McHedlidze, T., M. Waldner, S. Zopf, J. Walker, A.L. Rankin, M. Schuchmann, D. Voehringer, A.N. McKenzie, M.F. Neurath, S. Pflanz, and S. Wirtz. 2013. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357–371.CrossRef
12.
Zurück zum Zitat Allakhverdi, Z., D.E. Smith, M.R. Comeau, and G. Delespesse. 2007. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of Immunology 179: 2051–2054.CrossRef Allakhverdi, Z., D.E. Smith, M.R. Comeau, and G. Delespesse. 2007. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of Immunology 179: 2051–2054.CrossRef
13.
Zurück zum Zitat Iikura, M., H. Suto, N. Kajiwara, K. Oboki, T. Ohno, Y. Okayama, H. Saito, S.J. Galli, and S. Nakae. 2007. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation 87: 971–978.CrossRef Iikura, M., H. Suto, N. Kajiwara, K. Oboki, T. Ohno, Y. Okayama, H. Saito, S.J. Galli, and S. Nakae. 2007. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation 87: 971–978.CrossRef
14.
Zurück zum Zitat Gao, X., X. Wang, Q. Yang, X. Zhao, W. Wen, G. Li, J. Lu, W. Qin, Y. Qi, F. Xie, J. Jiang, C. Wu, X. Zhang, X. Chen, H. Turnquist, Y. Zhu, and B. Lu. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. Journal of Immunology 194: 438–445.CrossRef Gao, X., X. Wang, Q. Yang, X. Zhao, W. Wen, G. Li, J. Lu, W. Qin, Y. Qi, F. Xie, J. Jiang, C. Wu, X. Zhang, X. Chen, H. Turnquist, Y. Zhu, and B. Lu. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. Journal of Immunology 194: 438–445.CrossRef
15.
Zurück zum Zitat Mertz, K.D., L.F. Mager, M.H. Wasmer, T. Thiesler, V.H. Koelzer, G. Ruzzante, S. Joller, J.R. Murdoch, T. Brummendorf, V. Genitsch, et al. 2016. The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncoimmunology 5: e1062966.CrossRef Mertz, K.D., L.F. Mager, M.H. Wasmer, T. Thiesler, V.H. Koelzer, G. Ruzzante, S. Joller, J.R. Murdoch, T. Brummendorf, V. Genitsch, et al. 2016. The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncoimmunology 5: e1062966.CrossRef
16.
Zurück zum Zitat Zhang, Y., C. Davis, S. Shah, D. Hughes, J.C. Ryan, D. Altomare, and M.M. Pena. 2017. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Molecular Carcinogenesis 56: 272–287.CrossRef Zhang, Y., C. Davis, S. Shah, D. Hughes, J.C. Ryan, D. Altomare, and M.M. Pena. 2017. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Molecular Carcinogenesis 56: 272–287.CrossRef
17.
Zurück zum Zitat Milovanovic, M., V. Volarevic, G. Radosavljevic, I. Jovanovic, N. Pejnovic, N. Arsenijevic, and M.L. Lukic. 2012. IL-33/ST2 axis in inflammation and immunopathology. Immunologic Research 52: 89–99.CrossRef Milovanovic, M., V. Volarevic, G. Radosavljevic, I. Jovanovic, N. Pejnovic, N. Arsenijevic, and M.L. Lukic. 2012. IL-33/ST2 axis in inflammation and immunopathology. Immunologic Research 52: 89–99.CrossRef
18.
Zurück zum Zitat Almeida, S.A., L.A. Orellano, L.X. Pereira, C.T. Viana, P.P. Campos, S.P. Andrade, and M.A. Ferreira. 2017. Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomedicine & Pharmacotherapy 86: 715–724.CrossRef Almeida, S.A., L.A. Orellano, L.X. Pereira, C.T. Viana, P.P. Campos, S.P. Andrade, and M.A. Ferreira. 2017. Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomedicine & Pharmacotherapy 86: 715–724.CrossRef
19.
Zurück zum Zitat Orellano, L.A., S.A. Almeida, P.P. Campos, and S.P. Andrade. 2015. Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research 101: 118–126.CrossRef Orellano, L.A., S.A. Almeida, P.P. Campos, and S.P. Andrade. 2015. Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research 101: 118–126.CrossRef
20.
Zurück zum Zitat Pereira, L.X., C.T.R. Viana, L.A.A. Orellano, S.A. Almeida, A.C. Vasconcelos, A.M. Goes, A. Birbrair, S.P. Andrade, and P.P. Campos. 2017. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sciences 176: 67–74.CrossRef Pereira, L.X., C.T.R. Viana, L.A.A. Orellano, S.A. Almeida, A.C. Vasconcelos, A.M. Goes, A. Birbrair, S.P. Andrade, and P.P. Campos. 2017. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sciences 176: 67–74.CrossRef
21.
Zurück zum Zitat Viana, C.T., P.R. Castro, S.M. Marques, M.T. Lopes, R. Goncalves, P.P. Campos, and S.P. Andrade. 2015. Correction: differential contribution of acute and chronic inflammation to the development of murine mammary 4T1 tumors. PLoS One 10: e0138408.CrossRef Viana, C.T., P.R. Castro, S.M. Marques, M.T. Lopes, R. Goncalves, P.P. Campos, and S.P. Andrade. 2015. Correction: differential contribution of acute and chronic inflammation to the development of murine mammary 4T1 tumors. PLoS One 10: e0138408.CrossRef
22.
Zurück zum Zitat Townsend, M.J., P.G. Fallon, D.J. Matthews, H.E. Jolin, and A.N.J. McKenzie. 2000. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. Journal of Experimental Medicine 191: 1069–1075.CrossRef Townsend, M.J., P.G. Fallon, D.J. Matthews, H.E. Jolin, and A.N.J. McKenzie. 2000. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. Journal of Experimental Medicine 191: 1069–1075.CrossRef
23.
Zurück zum Zitat Brint, E.K., D.M. Xu, H.Y. Liu, A. Dunne, A.N.J. McKenzie, L.A.J. O'Neill, and F.Y. Liew. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology 5: 373–379.CrossRef Brint, E.K., D.M. Xu, H.Y. Liu, A. Dunne, A.N.J. McKenzie, L.A.J. O'Neill, and F.Y. Liew. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology 5: 373–379.CrossRef
24.
Zurück zum Zitat Andrade, S.P., T.P. Fan, and G.P. Lewis. 1987. Quantitative in-vivo studies on angiogenesis in a rat sponge model. British Journal of Experimental Pathology 68: 755–766.PubMedPubMedCentral Andrade, S.P., T.P. Fan, and G.P. Lewis. 1987. Quantitative in-vivo studies on angiogenesis in a rat sponge model. British Journal of Experimental Pathology 68: 755–766.PubMedPubMedCentral
25.
Zurück zum Zitat Andrade, S.P., and M.A. Ferreira. 2009. The sponge implant model of angiogenesis. Methods in Molecular Biology 467: 295–304.CrossRef Andrade, S.P., and M.A. Ferreira. 2009. The sponge implant model of angiogenesis. Methods in Molecular Biology 467: 295–304.CrossRef
26.
Zurück zum Zitat Ghoneum, M., N.K. Badr El-Din, E. Noaman, and L. Tolentino. 2008. Saccharomyces cerevisiae, the Baker’s Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice. Cancer Immunology, Immunotherapy 57: 581–592.CrossRef Ghoneum, M., N.K. Badr El-Din, E. Noaman, and L. Tolentino. 2008. Saccharomyces cerevisiae, the Baker’s Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice. Cancer Immunology, Immunotherapy 57: 581–592.CrossRef
27.
Zurück zum Zitat Balkwill, F., and A. Mantovani. 2001. Inflammation and cancer: back to Virchow? Lancet 357: 539–545.CrossRef Balkwill, F., and A. Mantovani. 2001. Inflammation and cancer: back to Virchow? Lancet 357: 539–545.CrossRef
28.
Zurück zum Zitat Gao, K., X. Li, L. Zhang, L. Bai, W. Dong, G. Shi, X. Xia, and L. Wu. 2013. Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Letters 335: 463–471.CrossRef Gao, K., X. Li, L. Zhang, L. Bai, W. Dong, G. Shi, X. Xia, and L. Wu. 2013. Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Letters 335: 463–471.CrossRef
29.
Zurück zum Zitat O'Donnell, C., A. Mahmoud, J. Keane, C. Murphy, D. White, S. Carey, M. O'Riordain, M.W. Bennett, E. Brint, and A. Houston. 2016. An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. British Journal of Cancer 114: 37–43.CrossRef O'Donnell, C., A. Mahmoud, J. Keane, C. Murphy, D. White, S. Carey, M. O'Riordain, M.W. Bennett, E. Brint, and A. Houston. 2016. An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. British Journal of Cancer 114: 37–43.CrossRef
30.
Zurück zum Zitat Jovanovic, I.P., N.N. Pejnovic, G.D. Radosavljevic, J.M. Pantic, M.Z. Milovanovic, N.N. Arsenijevic, and M.L. Lukic. 2014. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. International Journal of Cancer 134: 1669–1682.CrossRef Jovanovic, I.P., N.N. Pejnovic, G.D. Radosavljevic, J.M. Pantic, M.Z. Milovanovic, N.N. Arsenijevic, and M.L. Lukic. 2014. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. International Journal of Cancer 134: 1669–1682.CrossRef
31.
Zurück zum Zitat Tung, H.Y., B. Plunkett, S.K. Huang, and Y. Zhou. 2014. Murine mast cells secrete and respond to interleukin-33. Journal of Interferon & Cytokine Research 34: 141–147.CrossRef Tung, H.Y., B. Plunkett, S.K. Huang, and Y. Zhou. 2014. Murine mast cells secrete and respond to interleukin-33. Journal of Interferon & Cytokine Research 34: 141–147.CrossRef
32.
Zurück zum Zitat Overed-Sayer, C., L. Rapley, T. Mustelin, and D.L. Clarke. 2013. Are mast cells instrumental for fibrotic diseases? Frontiers in Pharmacology 4: 174.PubMed Overed-Sayer, C., L. Rapley, T. Mustelin, and D.L. Clarke. 2013. Are mast cells instrumental for fibrotic diseases? Frontiers in Pharmacology 4: 174.PubMed
33.
Zurück zum Zitat Dos Santos, J.C., L.Z. Grund, C.S. Seibert, E.E. Marques, A.B. Soares, V.F. Quesniaux, B. Ryffel, M. Lopes-Ferreira, and C. Lima. 2017. Stingray venom activates IL-33 producing cardiomyocytes, but not mast cell, to promote acute neutrophil-mediated injury. Scientific Reports 7: 7912.CrossRef Dos Santos, J.C., L.Z. Grund, C.S. Seibert, E.E. Marques, A.B. Soares, V.F. Quesniaux, B. Ryffel, M. Lopes-Ferreira, and C. Lima. 2017. Stingray venom activates IL-33 producing cardiomyocytes, but not mast cell, to promote acute neutrophil-mediated injury. Scientific Reports 7: 7912.CrossRef
34.
Zurück zum Zitat Enoksson, M., C. Moller-Westerberg, G. Wicher, P.G. Fallon, K. Forsberg-Nilsson, C. Lunderius-Andersson, and G. Nilsson. 2013. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121: 530–536.CrossRef Enoksson, M., C. Moller-Westerberg, G. Wicher, P.G. Fallon, K. Forsberg-Nilsson, C. Lunderius-Andersson, and G. Nilsson. 2013. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121: 530–536.CrossRef
35.
Zurück zum Zitat Hueber, A.J., J.C. Alves-Filho, D.L. Asquith, C. Michels, N.L. Millar, J.H. Reilly, G.J. Graham, F.Y. Liew, A.M. Miller, and I.B. McInnes. 2011. IL-33 induces skin inflammation with mast cell and neutrophil activation. European Journal of Immunology 41: 2229–2237.CrossRef Hueber, A.J., J.C. Alves-Filho, D.L. Asquith, C. Michels, N.L. Millar, J.H. Reilly, G.J. Graham, F.Y. Liew, A.M. Miller, and I.B. McInnes. 2011. IL-33 induces skin inflammation with mast cell and neutrophil activation. European Journal of Immunology 41: 2229–2237.CrossRef
36.
Zurück zum Zitat Yin, H., X. Li, S. Hu, T. Liu, B. Yuan, H. Gu, Q. Ni, X. Zhang, and F. Zheng. 2013. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Molecular Immunology 56: 347–353.CrossRef Yin, H., X. Li, S. Hu, T. Liu, B. Yuan, H. Gu, Q. Ni, X. Zhang, and F. Zheng. 2013. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Molecular Immunology 56: 347–353.CrossRef
37.
Zurück zum Zitat Griesenauer, B., and S. Paczesny. 2017. The ST2/IL-33 axis in immune cells during inflammatory diseases. Frontiers in Immunology 8: 475.CrossRef Griesenauer, B., and S. Paczesny. 2017. The ST2/IL-33 axis in immune cells during inflammatory diseases. Frontiers in Immunology 8: 475.CrossRef
38.
Zurück zum Zitat Lin, J., G.Q. Zhao, Q. Wang, Q. Xu, C.Y. Che, L.T. Hu, N. Jiang, and L.L. Zhang. 2013. Regulation of interleukin 33/ST2 signaling of human corneal epithelium in allergic diseases. International Journal of Ophthalmology 6: 23–29.PubMedPubMedCentral Lin, J., G.Q. Zhao, Q. Wang, Q. Xu, C.Y. Che, L.T. Hu, N. Jiang, and L.L. Zhang. 2013. Regulation of interleukin 33/ST2 signaling of human corneal epithelium in allergic diseases. International Journal of Ophthalmology 6: 23–29.PubMedPubMedCentral
39.
Zurück zum Zitat Luzina, I.G., P. Kopach, V. Lockatell, P.H. Kang, A. Nagarsekar, A.P. Burke, J.D. Hasday, N.W. Todd, and S.P. Atamas. 2013. Interleukin-33 potentiates bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 49: 999–1008.CrossRef Luzina, I.G., P. Kopach, V. Lockatell, P.H. Kang, A. Nagarsekar, A.P. Burke, J.D. Hasday, N.W. Todd, and S.P. Atamas. 2013. Interleukin-33 potentiates bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 49: 999–1008.CrossRef
40.
Zurück zum Zitat Ali, S., A. Mohs, M. Thomas, J. Klare, R. Ross, M.L. Schmitz, and M.U. Martin. 2011. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. Journal of Immunology 187: 1609–1616.CrossRef Ali, S., A. Mohs, M. Thomas, J. Klare, R. Ross, M.L. Schmitz, and M.U. Martin. 2011. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. Journal of Immunology 187: 1609–1616.CrossRef
41.
Zurück zum Zitat Kunisch, E., S. Chakilam, M. Gandesiri, and R.W. Kinne. 2012. IL-33 regulates TNF-alpha dependent effects in synovial fibroblasts. International Journal of Molecular Medicine 29: 530–540.CrossRef Kunisch, E., S. Chakilam, M. Gandesiri, and R.W. Kinne. 2012. IL-33 regulates TNF-alpha dependent effects in synovial fibroblasts. International Journal of Molecular Medicine 29: 530–540.CrossRef
42.
Zurück zum Zitat Hodzic, Z., E.M. Schill, A.M. Bolock, and M. Good. 2017. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine 100: 1–10.CrossRef Hodzic, Z., E.M. Schill, A.M. Bolock, and M. Good. 2017. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine 100: 1–10.CrossRef
Metadaten
Titel
Cytokine Production Is Differentially Modulated in Malignant and Non-malignant Tissues in ST2-Receptor Deficient Mice
verfasst von
Celso Tarso Rodrigues Viana
Laura Alejandra Ariza Orellano
Luciana Xavier Pereira
Simone Aparecida de Almeida
Letícia Chinait Couto
Marcela Guimarães Takahashi de Lazari
Silvia Passos Andrade
Paula Peixoto Campos
Publikationsdatum
01.08.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0847-y

Weitere Artikel der Ausgabe 6/2018

Inflammation 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.