Skip to main content
main-content

01.07.2016 | Transactional Processing Systems | Ausgabe 7/2016

Journal of Medical Systems 7/2016

Data–Driven Multimodal Sleep Apnea Events Detection

Synchrosquezing Transform Processing and Riemannian Geometry Classification Approaches

Zeitschrift:
Journal of Medical Systems > Ausgabe 7/2016
Autor:
Tomasz M. Rutkowski
Wichtige Hinweise
This article is part of the Topical Collection on Transactional Processing Systems
The author is currently with The University of Tokyo, Tokyo, Japan.

Abstract

A novel multimodal and bio–inspired approach to biomedical signal processing and classification is presented in the paper. This approach allows for an automatic semantic labeling (interpretation) of sleep apnea events based the proposed data–driven biomedical signal processing and classification. The presented signal processing and classification methods have been already successfully applied to real–time unimodal brainwaves (EEG only) decoding in brain–computer interfaces developed by the author. In the current project the very encouraging results are obtained using multimodal biomedical (brainwaves and peripheral physiological) signals in a unified processing approach allowing for the automatic semantic data description. The results thus support a hypothesis of the data–driven and bio–inspired signal processing approach validity for medical data semantic interpretation based on the sleep apnea events machine–learning–related classification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2016

Journal of Medical Systems 7/2016 Zur Ausgabe