Skip to main content
Erschienen in:

10.06.2024 | Invited Review

Data set terminology of deep learning in medicine: a historical review and recommendation

verfasst von: Shannon L. Walston, Hiroshi Seki, Hirotaka Takita, Yasuhito Mitsuyama, Shingo Sato, Akifumi Hagiwara, Rintaro Ito, Shouhei Hanaoka, Yukio Miki, Daiju Ueda

Erschienen in: Japanese Journal of Radiology | Ausgabe 10/2024

Einloggen, um Zugang zu erhalten

Abstract

Medicine and deep learning-based artificial intelligence (AI) engineering represent two distinct fields each with decades of published history. The current rapid convergence of deep learning and medicine has led to significant advancements, yet it has also introduced ambiguity regarding data set terms common to both fields, potentially leading to miscommunication and methodological discrepancies. This narrative review aims to give historical context for these terms, accentuate the importance of clarity when these terms are used in medical deep learning contexts, and offer solutions to mitigate misunderstandings by readers from either field. Through an examination of historical documents, including articles, writing guidelines, and textbooks, this review traces the divergent evolution of terms for data sets and their impact. Initially, the discordant interpretations of the word ‘validation’ in medical and AI contexts are explored. We then show that in the medical field as well, terms traditionally used in the deep learning domain are becoming more common, with the data for creating models referred to as the ‘training set’, the data for tuning of parameters referred to as the ‘validation (or tuning) set’, and the data for the evaluation of models as the ‘test set’. Additionally, the test sets used for model evaluation are classified into internal (random splitting, cross-validation, and leave-one-out) sets and external (temporal and geographic) sets. This review then identifies often misunderstood terms and proposes pragmatic solutions to mitigate terminological confusion in the field of deep learning in medicine. We support the accurate and standardized description of these data sets and the explicit definition of data set splitting terminologies in each publication. These are crucial methods for demonstrating the robustness and generalizability of deep learning applications in medicine. This review aspires to enhance the precision of communication, thereby fostering more effective and transparent research methodologies in this interdisciplinary field.
Literatur
1.
Zurück zum Zitat Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. 2023;42:3–15.PubMedPubMedCentralCrossRef Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. 2023;42:3–15.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Yoshiura T, Kiryu S. FAIR: a recipe for ensuring fairness in healthcare artificial intelligence. Jpn J Radiol. 2024;42:1–2.PubMedCrossRef Yoshiura T, Kiryu S. FAIR: a recipe for ensuring fairness in healthcare artificial intelligence. Jpn J Radiol. 2024;42:1–2.PubMedCrossRef
4.
Zurück zum Zitat Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, et al. Current state of artificial intelligence in clinical applications for head and neck MR imaging. Magn Reson Med Sci. 2023;22:401–14.PubMedPubMedCentralCrossRef Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, et al. Current state of artificial intelligence in clinical applications for head and neck MR imaging. Magn Reson Med Sci. 2023;22:401–14.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging. Radiol Med. 2023;128:1236–49.PubMedPubMedCentralCrossRef Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging. Radiol Med. 2023;128:1236–49.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, et al. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med. 2023;37:583–95.PubMedCrossRef Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, et al. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med. 2023;37:583–95.PubMedCrossRef
7.
Zurück zum Zitat Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, et al. Clinical applications of artificial intelligence in liver imaging. Radiol Med. 2023;128:655–67.PubMedCrossRef Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, et al. Clinical applications of artificial intelligence in liver imaging. Radiol Med. 2023;128:655–67.PubMedCrossRef
9.
Zurück zum Zitat Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Jpn J Radiol. 2019;37:15–33.PubMedCrossRef Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Jpn J Radiol. 2019;37:15–33.PubMedCrossRef
10.
Zurück zum Zitat Matsumoto T, Walston SL, Walston M, Kabata D, Miki Y, Shiba M, et al. Deep learning-based time-to-death prediction model for COVID-19 patients using clinical data and chest radiographs. J Digit Imaging. 2023;36:178–88.PubMedCrossRef Matsumoto T, Walston SL, Walston M, Kabata D, Miki Y, Shiba M, et al. Deep learning-based time-to-death prediction model for COVID-19 patients using clinical data and chest radiographs. J Digit Imaging. 2023;36:178–88.PubMedCrossRef
11.
Zurück zum Zitat Chassagnon G, De Margerie-Mellon C, Vakalopoulou M, Marini R, Hoang-Thi T-N, Revel M-P, et al. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol. 2023;41:235–44.PubMed Chassagnon G, De Margerie-Mellon C, Vakalopoulou M, Marini R, Hoang-Thi T-N, Revel M-P, et al. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol. 2023;41:235–44.PubMed
12.
Zurück zum Zitat Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, et al. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol. 2022;40:341–66.PubMedCrossRef Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, et al. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol. 2022;40:341–66.PubMedCrossRef
13.
Zurück zum Zitat Nakanishi K, Tanaka J, Nakaya Y, Maeda N, Sakamoto A, Nakayama A, et al. Whole-body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol. 2022;40:229–44.PubMedCrossRef Nakanishi K, Tanaka J, Nakaya Y, Maeda N, Sakamoto A, Nakayama A, et al. Whole-body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol. 2022;40:229–44.PubMedCrossRef
14.
Zurück zum Zitat Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol. 2023;41:1127–47.PubMedCrossRef Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol. 2023;41:1127–47.PubMedCrossRef
16.
Zurück zum Zitat Barat M, Chassagnon G, Dohan A, Gaujoux S, Coriat R, Hoeffel C, et al. Artificial intelligence: a critical review of current applications in pancreatic imaging. Jpn J Radiol. 2021;39:514–23.PubMedCrossRef Barat M, Chassagnon G, Dohan A, Gaujoux S, Coriat R, Hoeffel C, et al. Artificial intelligence: a critical review of current applications in pancreatic imaging. Jpn J Radiol. 2021;39:514–23.PubMedCrossRef
17.
Zurück zum Zitat Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271–97.PubMedCrossRef Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271–97.PubMedCrossRef
18.
Zurück zum Zitat Kline RR. Cybernetics, automata studies, and the Dartmouth Conference on Artificial Intelligence. IEEE Ann Hist Comput. 2011;33:5–16.CrossRef Kline RR. Cybernetics, automata studies, and the Dartmouth Conference on Artificial Intelligence. IEEE Ann Hist Comput. 2011;33:5–16.CrossRef
19.
Zurück zum Zitat Turing AM. I.—Computing machinery and intelligence. Mind. 1950;LIX:433–60.CrossRef Turing AM. I.—Computing machinery and intelligence. Mind. 1950;LIX:433–60.CrossRef
20.
Zurück zum Zitat Alpaydin E. Introduction to Machine Learning. Thomas Dietterich, Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, editor. MIT Press; 2010. Alpaydin E. Introduction to Machine Learning. Thomas Dietterich, Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, editor. MIT Press; 2010.
22.
Zurück zum Zitat Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320:1101–2.PubMedCrossRef Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320:1101–2.PubMedCrossRef
24.
Zurück zum Zitat Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138:W1-12.PubMedCrossRef Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138:W1-12.PubMedCrossRef
25.
Zurück zum Zitat Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.PubMedPubMedCentralCrossRef Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.PubMedCrossRef Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.PubMedCrossRef
27.
Zurück zum Zitat Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351: h5527.PubMedPubMedCentralCrossRef Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351: h5527.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.PubMedCrossRef Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.PubMedCrossRef
29.
Zurück zum Zitat Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.PubMedCrossRef Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.PubMedCrossRef
30.
Zurück zum Zitat Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51–8.PubMedCrossRef Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51–8.PubMedCrossRef
31.
Zurück zum Zitat Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;385: e078378.PubMedPubMedCentralCrossRef Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;385: e078378.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37:505–15.PubMedCrossRef Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37:505–15.PubMedCrossRef
33.
Zurück zum Zitat Park SH, Kressel HY. Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci. 2018;33: e152.PubMedPubMedCentralCrossRef Park SH, Kressel HY. Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci. 2018;33: e152.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology. 2020;294:487–9.PubMedCrossRef Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology. 2020;294:487–9.PubMedCrossRef
35.
Zurück zum Zitat Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2: e200029.PubMedPubMedCentralCrossRef Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2: e200029.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11: e048008.PubMedPubMedCentralCrossRef Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11: e048008.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021;11: e047709.PubMedPubMedCentralCrossRef Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021;11: e047709.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.PubMedCrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.PubMedCrossRef
39.
Zurück zum Zitat Batchu V, Nearing G, Gulshan V. A deep learning data fusion model using sentinel-1/2, SoilGrids, SMAP, and GLDAS for soil moisture retrieval. J Hydrometeorol. 2023;24:1789–823.CrossRef Batchu V, Nearing G, Gulshan V. A deep learning data fusion model using sentinel-1/2, SoilGrids, SMAP, and GLDAS for soil moisture retrieval. J Hydrometeorol. 2023;24:1789–823.CrossRef
40.
Zurück zum Zitat Voets M, Møllersen K, Bongo LA. Reproduction study using public data of: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS One. 2019;14: e0217541.PubMedPubMedCentralCrossRef Voets M, Møllersen K, Bongo LA. Reproduction study using public data of: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS One. 2019;14: e0217541.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392:2388–96.PubMedCrossRef Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392:2388–96.PubMedCrossRef
42.
Zurück zum Zitat Upadhyay U, Ranjan M, Golla S, Tanamala S, Sreenivas P, Chilamkurthy S, et al. Deep-ASPECTS: a segmentation-assisted model for stroke severity measurement. Computer vision – ECCV 2022 Workshops. Springer Nature; 2023. p. 330–9. Upadhyay U, Ranjan M, Golla S, Tanamala S, Sreenivas P, Chilamkurthy S, et al. Deep-ASPECTS: a segmentation-assisted model for stroke severity measurement. Computer vision – ECCV 2022 Workshops. Springer Nature; 2023. p. 330–9.
43.
Zurück zum Zitat Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial Intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687–95.PubMedCrossRef Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial Intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687–95.PubMedCrossRef
44.
Zurück zum Zitat Ting DSW, Lee AY, Wong TY. An ophthalmologist’s guide to deciphering studies in artificial intelligence. Ophthalmology. 2019;126:1475–9.PubMedCrossRef Ting DSW, Lee AY, Wong TY. An ophthalmologist’s guide to deciphering studies in artificial intelligence. Ophthalmology. 2019;126:1475–9.PubMedCrossRef
45.
Zurück zum Zitat Liu Y, Chen P-HC, Krause J, Peng L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA. 2019;322:1806–16.PubMedCrossRef Liu Y, Chen P-HC, Krause J, Peng L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA. 2019;322:1806–16.PubMedCrossRef
46.
Zurück zum Zitat Ueda D, Matsumoto T, Ehara S, Yamamoto A, Walston SL, Ito A, et al. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit Health. 2023;5:e525–33.PubMedCrossRef Ueda D, Matsumoto T, Ehara S, Yamamoto A, Walston SL, Ito A, et al. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit Health. 2023;5:e525–33.PubMedCrossRef
47.
Zurück zum Zitat Ueda D, Katayama Y, Yamamoto A, Ichinose T, Arima H, Watanabe Y, et al. Deep learning-based angiogram generation model for cerebral angiography without misregistration artifacts. Radiology. 2021;299:675–81.PubMedCrossRef Ueda D, Katayama Y, Yamamoto A, Ichinose T, Arima H, Watanabe Y, et al. Deep learning-based angiogram generation model for cerebral angiography without misregistration artifacts. Radiology. 2021;299:675–81.PubMedCrossRef
48.
Zurück zum Zitat Yonezawa H, Ueda D, Yamamoto A, Kageyama K, Walston SL, Nota T, et al. Maskless 2-dimensional digital subtraction angiography generation model for abdominal vasculature using deep learning. J Vasc Interv Radiol. 2022;33:845-51.e8.PubMedCrossRef Yonezawa H, Ueda D, Yamamoto A, Kageyama K, Walston SL, Nota T, et al. Maskless 2-dimensional digital subtraction angiography generation model for abdominal vasculature using deep learning. J Vasc Interv Radiol. 2022;33:845-51.e8.PubMedCrossRef
49.
Zurück zum Zitat Ueda D, Ehara S, Yamamoto A, Iwata S, Abo K, Walston SL, et al. Development and validation of artificial intelligence-based method for diagnosis of mitral regurgitation from chest radiographs. Radiol Artif Intell. 2022;4: e210221.PubMedPubMedCentralCrossRef Ueda D, Ehara S, Yamamoto A, Iwata S, Abo K, Walston SL, et al. Development and validation of artificial intelligence-based method for diagnosis of mitral regurgitation from chest radiographs. Radiol Artif Intell. 2022;4: e210221.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Ueda D, Yamamoto A, Ehara S, Iwata S, Abo K, Walston SL, et al. Artificial intelligence-based detection of aortic stenosis from chest radiographs. Eur Heart J Digit Health. 2022;3:20–8.PubMedCrossRef Ueda D, Yamamoto A, Ehara S, Iwata S, Abo K, Walston SL, et al. Artificial intelligence-based detection of aortic stenosis from chest radiographs. Eur Heart J Digit Health. 2022;3:20–8.PubMedCrossRef
51.
Zurück zum Zitat Mitsuyama Y, Matsumoto T, Tatekawa H, Walston SL, Kimura T, Yamamoto A, et al. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. Lancet Healthy Longev. 2023;4:e478–86.PubMedCrossRef Mitsuyama Y, Matsumoto T, Tatekawa H, Walston SL, Kimura T, Yamamoto A, et al. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. Lancet Healthy Longev. 2023;4:e478–86.PubMedCrossRef
52.
Zurück zum Zitat Matsumoto T, Ehara S, Walston SL, Mitsuyama Y, Miki Y, Ueda D. Artificial intelligence-based detection of atrial fibrillation from chest radiographs. Eur Radiol. 2022;32:5890–7.PubMedCrossRef Matsumoto T, Ehara S, Walston SL, Mitsuyama Y, Miki Y, Ueda D. Artificial intelligence-based detection of atrial fibrillation from chest radiographs. Eur Radiol. 2022;32:5890–7.PubMedCrossRef
53.
Zurück zum Zitat Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19:453–73.PubMedCrossRef Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19:453–73.PubMedCrossRef
54.
Zurück zum Zitat Bradshaw TJ, Huemann Z, Hu J, Rahmim A. A guide to cross-validation for artificial intelligence in medical imaging. Radiol Artif Intell. 2023;5: e220232.PubMedPubMedCentralCrossRef Bradshaw TJ, Huemann Z, Hu J, Rahmim A. A guide to cross-validation for artificial intelligence in medical imaging. Radiol Artif Intell. 2023;5: e220232.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Walston SL, Matsumoto T, Miki Y, Ueda D. Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study. Br J Radiol. 2022;95:20220058.PubMedPubMedCentralCrossRef Walston SL, Matsumoto T, Miki Y, Ueda D. Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study. Br J Radiol. 2022;95:20220058.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ueda D, Yamamoto A, Takashima T, Onoda N, Noda S, Kashiwagi S, et al. Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. Jpn J Radiol. 2021;39:333–40.PubMedCrossRef Ueda D, Yamamoto A, Takashima T, Onoda N, Noda S, Kashiwagi S, et al. Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. Jpn J Radiol. 2021;39:333–40.PubMedCrossRef
57.
Zurück zum Zitat Ueda D, Yamamoto A, Onoda N, Takashima T, Noda S, Kashiwagi S, et al. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional data sets. PLoS One. 2022;17: e0265751.PubMedPubMedCentralCrossRef Ueda D, Yamamoto A, Onoda N, Takashima T, Noda S, Kashiwagi S, et al. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional data sets. PLoS One. 2022;17: e0265751.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130:515–24.PubMedCrossRef Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130:515–24.PubMedCrossRef
59.
Zurück zum Zitat Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KGM. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68:279–89.PubMedCrossRef Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KGM. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68:279–89.PubMedCrossRef
60.
Zurück zum Zitat Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.PubMedPubMedCentralCrossRef Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Ueda D, Yamamoto A, Takashima T, Onoda N, Noda S, Kashiwagi S, et al. Training, validation, and test of deep learning models for classification of receptor expressions in breast cancers from mammograms. JCO Precis Oncol. 2021;5:543–51.PubMedCrossRef Ueda D, Yamamoto A, Takashima T, Onoda N, Noda S, Kashiwagi S, et al. Training, validation, and test of deep learning models for classification of receptor expressions in breast cancers from mammograms. JCO Precis Oncol. 2021;5:543–51.PubMedCrossRef
62.
Zurück zum Zitat Takita H, Matsumoto T, Tatekawa H, Katayama Y, Nakajo K, Uda T, et al. AI-based virtual synthesis of methionine PET from contrast-enhanced MRI: development and external validation study. Radiology. 2023;308: e223016.PubMedCrossRef Takita H, Matsumoto T, Tatekawa H, Katayama Y, Nakajo K, Uda T, et al. AI-based virtual synthesis of methionine PET from contrast-enhanced MRI: development and external validation study. Radiology. 2023;308: e223016.PubMedCrossRef
Metadaten
Titel
Data set terminology of deep learning in medicine: a historical review and recommendation
verfasst von
Shannon L. Walston
Hiroshi Seki
Hirotaka Takita
Yasuhito Mitsuyama
Shingo Sato
Akifumi Hagiwara
Rintaro Ito
Shouhei Hanaoka
Yukio Miki
Daiju Ueda
Publikationsdatum
10.06.2024
Verlag
Springer Nature Singapore
Erschienen in
Japanese Journal of Radiology / Ausgabe 10/2024
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-024-01608-1

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.