Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2011

Open Access 01.12.2011 | Case report

De novo acute megakaryoblastic leukemia with p210 BCR/ABL and t(1;16) translocation but not t(9;22) Ph chromosome

verfasst von: Xiao Min, Zhang Na, Liu Yanan, Li Chunrui

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Acute megakaryoblastic leukemia (AMKL) is a type of acute myeloid leukemia (AML), in which majority of the blasts are megakaryoblastic. De novo AMKL in adulthood is rare, and carries very poor prognosis. We here report a 45-year-old woman with de novo AMKL with BCR/ABL rearrangement and der(16)t(1;16)(q21;q23) translocation but negative for t(9;22) Ph chromosome. Upon induction chemotherapy consisting of homoharringtonine, cytarabine and daunorubicin, the patient achieved partial hematological remission. The patient was then switched to imatinib plus one cycle of CAG regimen (low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor), and achieved complete remission (CR). The disease recurred after 40 days and the patient eventually died of infection. To the best of our knowledge, this is the first report of de novo AMKL with p210 BCR/ABL and der(16)t(1;16)(q21;q23) translocation but not t(9;22) Ph chromosome.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-8722-4-45) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

XM was responsible for data acquisition and analyses, as well as data interpretation. ZN participated in manuscript preparation and contributed significantly to the concept development. LYN participated in patient management, and also contributed to data interpretation. LCR was responsible of patient management and conceived the study. All authors read and approved the final manuscript.

Background

Acute megakaryoblastic leukemia (AMKL), also known as M7 under the French-American-British (FAB) classification, represents < 5% of acute myeloid leukemia (AML) [13]. In adults, AMKL constitutes only 0.5% - 1% of de novo AML cases [4]. Ph chromosome is a rare cytogenetic abnormality (≈ 1%) in AML [5, 6]. The incidence of t(9;22) in AMKL varies considerably in the literature: from < 20% to > 60%, possibly due to inconsistency in the inclusion/exclusion of blastic phase of chronic myeloid leukemia (CML)[79].
Here, we report a case of 45-year-old woman with de novo AMKL. Multiple reverse transcription-polymerase chain reaction (RT-PCR) and Fluorescence in situ hybridization (FISH) data indicating a BCR/ABL rearrangement, cytogenetics for der(16)t(1;16)(q21;q23) but not t(9;22) Ph chromosome. Upon induction chemotherapy consisting of homoharringtonine, cytarabine and daunorubicin, the patient achieved partial hematological remission. The patient then received imatinib plus one cycle of CAG regimen (low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor) [10], and achieved complete remission (CR). The disease recurred after 40 days and the patient eventually died of infection. The case diagnosis and management process, including the therapies, are summarized in Table 1.
Table 1
The clinical course of the patient
Time
Management process
d1
(3/20)
Diagnosis established;
Induction chemotherapy consisting of homoharringtonine, cytarabine and daunorubicin began.
d30
Bone marrow smear showed 20.4% megakaryoblasts and 24.8% promegakaryocytes (chemotherapy failure);
Second induction chemotherapy.
d60
Bone marrow smear showed 6% megakaryoblasts and 11% promegakaryocytes (partial remission);
Imatinib treatment started (600 mg/d) and CAG regimen
d67
WBC: 3.5 × 109/L.
d69
Imatinib reduced to 400 mg/d.
d75
Imatinib discontinued (WBC: 0.9 × 109/L).
d102
Imatinib restarted (200 mg/d);
WBC: 4.3 × 10 9 /L (d106)
d107
Imatinib increased to 400 mg/d
d110: complete hematological remission
WBC:3.2 × 109/L (d110); 3.5 × 109/L (d120); 4.2 × 109/L (d130)
d132
Imatinib discontinued (due to financial reasons)
d150
Relapse.
d177
Patient deceased.
Abbreviations: d, day; CAG regimen: cytarabine 30 mg/day for 14 days, aclarubicin 10 mg/day on days 1 - 8, and granulocyte colony-stimulating factor 300 μg/day on days 1 - 14; WBC, white blood cell count.

Case Presentation

A 45-year-old woman was hospitalized on May 16th, 2008 with two weeks of fatigue, dizziness and low fever. The body temperature was 37.9°C. On auscultation, a II/VI systolic murmur was noticed over the apical region. The liver was palpable at 2 cm below the ribcage. The spleen was palpable at 2 cm below the left costal margin. Abdominal ultrasound confirmed slight hepatosplenomegaly. The patient had no history of toxic substance exposure. Family history was non-remarkable.
Blood tests revealed a hemoglobin concentration of 63 g/L, a hematocrit of 23%, a platelet count of 138 × 109/L. White blood cell count was 24 × 109/L, with 54% megakaryoblasts, 17% promegakaryocytes, 10% myelocytes, 8% band forms, 7% neutrophils, 3% lymphocytes, and 1% monocytes. Plasma D-dimer and lactate dehydrogenase (LDH) were normal. A bone marrow smear showed 67.2% megakaryoblasts and 20.4% promegakaryocytes. The megakaryoblasts were medium to large-size with round, slightly irregular nuclei and one to three nucleoli (Figure 1a). The cytoplasm of promegakaryocytes was basophilic and might show distinct pseudopod formation (Figure 1b). Immunohistochemistry staining (Leukocyte Phenotyping Kit, Sun BioTech, China) of these cells revealed a total of 55% positivity for CD41 (Figure 1c) and 60% positivity for CD42b (Figure 1d), while CD13, CD14, CD68, MPO, HLA-DR, CD10, CD19, CD3, CD5, and CD7 were all negative A bone marrow biopsy indicated acute leukemia with myelofibrosis (Figure 1e &1f).
Cytogenetic analysis of trypsin R-banded chromosome preparations revealed 46, XX, der(16)t(1;16)(q21;q23)[8]/46,XX [12] (Figure 2). To identify fusion genes, multiplex reverse transcription-polymerase chain reaction (RT-PCR) was performed with 1~8 parallel nested (2-round) multiplex reactions in a thermocycler (Perkin-Elmer) to achieve maximal sensitivity, as described in a previous study [11]. The E2A mRNA was used as the internal positive control. The groups containing possible fusion genes were further characterized using split-out PCR to identify the fusion pattern as described previously [11]. The results suggested the presence of fusion among the following genes: BCR, ABL and TEL (Figure 3a). A split-out PCR analysis was performed using the individual primer sets BCR/ABL e1a2, BCR/ABL b2a2 or b3a2, TEL/ABL. The results revealed fused BCR/ABL b2a2 mRNA expression (Figure 3b). FISH analysis on interphase cells revealed an atypical signal pattern consisting of one green signal, two orange signals, and one orange/green (yellow) fusion signal in approximately 30% of the cells (Figure 3c).
On the basis of the above reported clinical and biological features, a diagnosis of de novo acute AMKL. The patient received induction had regimen consisting of: homoharringtonine (2 mg/m2/day on day 1 - 7), cytarabine (100 mg/m2/day on day 1 - 7) and daunorubicin (45 mg/m2/day on day 1 - 3). A bone marrow smear at one month later showed no improvement. A partial remission was achieved after the induction treatment was repeated. The patient then received imatinib (600 mg/d, p.o.) and one cycle of CAG regimen (cytarabine 30 mg/day for 14 days, aclarubicin 10 mg/day on days 1 - 8, and granulocyte colony-stimulating factor 300 μg/day on days 1 - 14). Imatinib was discontinued after 2 weeks due to severe bone marrow suppression. Plasma LDH and liver enzymes remained within the normal range during the treatment. A complete hematological response was achieved upon evaluation at 50 days after initiating imatinib treatment, and the patient was discharged. She was hospitalized for high fever and dyspnea after 40 days. Hemoglobin was 90 g/L. White blood cell count was 19 × 109/L, with 21% blast cells. Relapse was established with bone marrow smear. The patient was treated with cytarabine (2 g/m2/day on days 1 - 3) and daunorubicin (45 mg/m2/day on days 1 - 3), with no apparent improvement. She died of fungal infection after 27 days.

Conclusions

Although the first AMKL was described as early as 1931, reports have been sporadic because of both the rarity of the disease and the lack of well-established diagnostic criteria. In fact, precise diagnostic criteria were added to the French-American-British classification only in 1985 (FAB M7) [1]. The bone marrow aspirate shows a leukemic cell infiltrate that comprises 30% or more of all cells. These cells are identified as being of megakaryocyte lineage by platelet peroxidase reaction on electron microscopy or by tests with monoclonal or polyclonal platelet-specific antibodies (CD41a, CD42 or CD61). Myelofibrosis or increased bone marrow reticulin are a prominent aspect in most AMKL patients. In some cases, megakaryoblastic crisis could be the first presentation of CML, and not distinguishable from de novo AMKL [1216]. This case represents de novo AMKL in our opinion, because the patient had no basophilia and eosinophilia upon presentation, which are often seen in blast crisis of CML [17]. Basophilia, a frequent feature of blast crisis, is uncommon in acute leukemias [18]. Furthermore, our patient had only mild splenomegaly. Moderate or severe splenomegaly is common in blast crisis of CML [13, 16].
AMKL is associated with no specific cytogenetic abnormality, and the majority of cases present with a complex karyotype. In a recent study by Le Groupe Francais de Cytogenetique Hematologique (GFCH), complex karyotypes of unbalanced changes, such as -5/del5q or -7/del(7q), 3q21q26, dic(1;15)(p11;p11), inv(4)(p15q11), t(14;21)(q24;q22), der(7)t(7;17)(q11;q11) and t(6;13)(p22;q14), were common in adult de novo AMKL [8]. In addition, the t(X;16) translocation has also been reported in 2 adult de novo AMKL cases [8]. One translocation was 46,XY,t(16;21)(p11;q22), another was t(16;16)(p13;q22). The present case serves to identify a novel translocation der(16)t(1;16)(q21;q23), providing further insight into the heterogeneity of genomic rearrangement in this subset of AML.
Data concerning the incidence of the Ph chromosome or BCR/ABL rearrangement in de novo AMKL are scarce. The Ph chromosome is one of the most common chromosomal abnormalities associated with adult AMKL according the report of the GFCH [8]. For example, Ph chromosome was found in four out of a total of 23 AMKL cases (17%) [8]. In fact, only two cases were de novo AMKL (9%). In an early study of 14 AMKL patients with cytogenetic data, Ph chromosome was found in two cases of megakaryoblastic transformation of chronic myelogenous leukemia, but not in de novo AMKL [7]. Ohyashiki et al. reported three cases with AMKL, but none had Ph chromosome [9].
Reports of Ph chromosome or BCR/ABL rearrangement are summarized in Table 2. Cases were heterogeneous and the survival was from 1.9 to 96 months. The case reported by Kaloutsi et al. [20] was a 24-year-old male with de novo AMKL. Interestingly, cytogenetics revealed a t(10;22), which by FISH, was found to be a variant Philadelphia translocation involving chromosome 10q. The FISH result in our case revealed an atypical signal pattern: one yellow fusion signal with one green and two orange signals (Figure 3c). This result confirmed that the detected variant translocation involved fragments of two chromosomes: 9 and 22. The ABL orange signals occurred on both chromosomes 9 and on der(9)ins(22;9) and one BCR green signal on chromosomes 22 and one yellow fusion signal on der(22)ins(22;9).
Table 2
Literature review of Ph chromosome or BCR/ABL rearrangement in de novo acute megakaryoblastic leukemia
Case No.
Sex/Age (years)
Cytogenetic changes
BCR/ABL fusion transcripts
Survival (month)
Reference
1
F/58
47,XX,+8,t(9;22)(q34;q11)
P190 BCR/ABL
6
Balatzenko, et al[19]
2
F/72
46,XX,t(9;22)(q34;q11)[12]/(4n) 92,XXXX,t(9;22)x2 [10]/(8n)184,XXXXXXXX,t(9;22)x4 [4]
Not provided
27
Dastugue, et al [8]
3
F/51
46,XX,t(9;22)(q34;q11)[25]
Not provided
27
Dastugue, et al[8]
4
F/44
46,XX,inv(3)(q21q26)[4]/46,idem,t(9;22)(q34;q11)[15]
Not provided
1.9
Dastugue, et al [8]
5
M/24
46,XY,t(10;22)(q26;q11)
FISH: t(9;22);10q
Not provided
Not provided
Kaloutsi, et al[20]
6
M/53
46,XX,t(9;22)(q34;q11),del(18)(p10)[15]
BCR/ABL e6a2
96
Corm, et al [21]
7
M/39
t(9;22)(p24.1;q12.2)
t(8;17)(q23;q24.2).
Not provided
Not provided
Ahmad, et al[22]
To the best of our knowledge, this is the first report of de novo AMKL with rare variant of Philadelphia rearrangement and a novel translocation der(16)t(1;16)(q21;q23). Our case and the case reported by Kaloutsi et al. [20] suggested that the FISH should be considered for detection of variant Philadelphia rearrangement in de novo AMKL patients.
Written informed consent was obtained from the husband of the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Acknowledgements

This work was supported in part by the Nature Science Foundation Committee (#30800402).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

XM was responsible for data acquisition and analyses, as well as data interpretation. ZN participated in manuscript preparation and contributed significantly to the concept development. LYN participated in patient management, and also contributed to data interpretation. LCR was responsible of patient management and conceived the study. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C: Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985, 103: 460-462.CrossRefPubMed Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C: Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985, 103: 460-462.CrossRefPubMed
2.
Zurück zum Zitat San Miguel JF, Gonzalez M, Cañizo MC, Ojeda E, Orfao A, Caballero MD, Moro MJ, Fisac P, Lopez Borrasca A: Leukemias with megakaryoblastic involvement: clinical, hematologic, and immunologic characteristics. Blood. 1988, 72: 402-407.PubMed San Miguel JF, Gonzalez M, Cañizo MC, Ojeda E, Orfao A, Caballero MD, Moro MJ, Fisac P, Lopez Borrasca A: Leukemias with megakaryoblastic involvement: clinical, hematologic, and immunologic characteristics. Blood. 1988, 72: 402-407.PubMed
3.
Zurück zum Zitat Tallman MS, Neuberg D, Bennett JM, Francois CJ, Paietta E, Wiernik PH, Dewald G, Cassileth PA, Oken MM, Rowe JM: Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience. Blood. 2000, 96: 2405-2411.PubMed Tallman MS, Neuberg D, Bennett JM, Francois CJ, Paietta E, Wiernik PH, Dewald G, Cassileth PA, Oken MM, Rowe JM: Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience. Blood. 2000, 96: 2405-2411.PubMed
4.
Zurück zum Zitat Castoldi GL, Liso V, Fenu S, Vegna ML, Mandelli F: Reproducibility of the morphological diagnostic criteria for acute myeloid leukemia: the GIMEMA group experience. Ann Hematol. 1993, 66: 171-174. 10.1007/BF01703231.CrossRefPubMed Castoldi GL, Liso V, Fenu S, Vegna ML, Mandelli F: Reproducibility of the morphological diagnostic criteria for acute myeloid leukemia: the GIMEMA group experience. Ann Hematol. 1993, 66: 171-174. 10.1007/BF01703231.CrossRefPubMed
5.
Zurück zum Zitat Cuneo A, Ferrant A, Michaux JL, Demuynck H, Boogaerts M, Louwagie A, Doyen C, Stul M, Cassiman JJ, Dal Cin P, Castoldi G, Van den Berghe H: Philadelphia chromosome-positive acute myeloid leukemia: cytoimmunologic and cytogenetic features. Haematologica. 1996, 81: 423-427.PubMed Cuneo A, Ferrant A, Michaux JL, Demuynck H, Boogaerts M, Louwagie A, Doyen C, Stul M, Cassiman JJ, Dal Cin P, Castoldi G, Van den Berghe H: Philadelphia chromosome-positive acute myeloid leukemia: cytoimmunologic and cytogenetic features. Haematologica. 1996, 81: 423-427.PubMed
6.
Zurück zum Zitat Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000, 295: 139-145.PubMed Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000, 295: 139-145.PubMed
7.
Zurück zum Zitat Cuneo A, Mecucci C, Kerim S, Vandenberghe E, Dal Cin P, Van Orshoven A, Rodhain J, Bosly A, Michaux JL, Martiat P: Multipotent stem cell involvement in megakaryoblastic leukemia: cytologic and cytogenetic evidence in 15 patients. Blood. 1989, 74: 1781-1790.PubMed Cuneo A, Mecucci C, Kerim S, Vandenberghe E, Dal Cin P, Van Orshoven A, Rodhain J, Bosly A, Michaux JL, Martiat P: Multipotent stem cell involvement in megakaryoblastic leukemia: cytologic and cytogenetic evidence in 15 patients. Blood. 1989, 74: 1781-1790.PubMed
8.
Zurück zum Zitat Dastugue N, Lafage-Pochitaloff M, Pagès MP, Radford I, Bastard C, Talmant P, Mozziconacci MJ, Léonard C, Bilhou-Nabéra C, Cabrol C, Capodano AM, Cornillet-Lefebvre P, Lessard M, Mugneret F, Pérot C, Taviaux S, Fenneteaux O, Duchayne E, Berger R, Groupe Français d'Hematologie Cellulaire: Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2002, 100: 618-626. 10.1182/blood-2001-12-0241.CrossRefPubMed Dastugue N, Lafage-Pochitaloff M, Pagès MP, Radford I, Bastard C, Talmant P, Mozziconacci MJ, Léonard C, Bilhou-Nabéra C, Cabrol C, Capodano AM, Cornillet-Lefebvre P, Lessard M, Mugneret F, Pérot C, Taviaux S, Fenneteaux O, Duchayne E, Berger R, Groupe Français d'Hematologie Cellulaire: Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2002, 100: 618-626. 10.1182/blood-2001-12-0241.CrossRefPubMed
9.
Zurück zum Zitat Ohyashiki K, Ohyashiki JH, Hojo H, Ohtaka M, Toyama K, Sugita K, Nakazawa S, Sugiura K, Nakazawa K, Nagasawa T, Enomoto Y, Watanabe Y: Cytogenetic findings in adult acute leukemia and myeloproliferative disorders with an involvement of megakaryocyte lineage. Cancer. 1990, 65: 940-948. 10.1002/1097-0142(19900215)65:4<940::AID-CNCR2820650420>3.0.CO;2-W.CrossRefPubMed Ohyashiki K, Ohyashiki JH, Hojo H, Ohtaka M, Toyama K, Sugita K, Nakazawa S, Sugiura K, Nakazawa K, Nagasawa T, Enomoto Y, Watanabe Y: Cytogenetic findings in adult acute leukemia and myeloproliferative disorders with an involvement of megakaryocyte lineage. Cancer. 1990, 65: 940-948. 10.1002/1097-0142(19900215)65:4<940::AID-CNCR2820650420>3.0.CO;2-W.CrossRefPubMed
10.
Zurück zum Zitat Saito K, Nakamura Y, Aoyagi M, Waga K, Yamamoto K, Aoyagi A, Inoue F, Nakamura Y, Arai Y, Tadokoro J, Handa T, Tsurumi S, Arai H, Kawagoe Y, Gunnji H, Kitsukawa Y, Takahashi W, Furusawa S: Low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (CAG regimen) for previously treated patients with relapsed or primary resistant acute myelogenous leukemia (AML) and previously untreated elderly patients with AML, secondary AML, and refractory anemia with excess blasts in transformation. Int J Hematol. 2000, 71: 238-244.PubMed Saito K, Nakamura Y, Aoyagi M, Waga K, Yamamoto K, Aoyagi A, Inoue F, Nakamura Y, Arai Y, Tadokoro J, Handa T, Tsurumi S, Arai H, Kawagoe Y, Gunnji H, Kitsukawa Y, Takahashi W, Furusawa S: Low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (CAG regimen) for previously treated patients with relapsed or primary resistant acute myelogenous leukemia (AML) and previously untreated elderly patients with AML, secondary AML, and refractory anemia with excess blasts in transformation. Int J Hematol. 2000, 71: 238-244.PubMed
11.
Zurück zum Zitat Pallisgaard N, Hokland P, Riishøj DC, Pedersen B, Jørgensen P: Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood. 1998, 92: 574-588.PubMed Pallisgaard N, Hokland P, Riishøj DC, Pedersen B, Jørgensen P: Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood. 1998, 92: 574-588.PubMed
12.
Zurück zum Zitat Campiotti L, Grandi AM, Biotti MG, Ultori C, Solbiati F, Codari R, Venco A: Megakaryocytic blast crisis as first presentation of chronic myeloid leukemia. Am J Hematol. 2007, 82: 231-233. 10.1002/ajh.20797.CrossRefPubMed Campiotti L, Grandi AM, Biotti MG, Ultori C, Solbiati F, Codari R, Venco A: Megakaryocytic blast crisis as first presentation of chronic myeloid leukemia. Am J Hematol. 2007, 82: 231-233. 10.1002/ajh.20797.CrossRefPubMed
13.
Zurück zum Zitat Pelloso LA, Baiocchi OC, Chauffaille ML, Yamamoto M, Hungria VT, Bordin JO: Megakaryocytic blast crisis as a first presentation of chronic myeloid leukemia. Eur J Haematol. 2002, 69: 58-61. 10.1034/j.1600-0609.2002.01638.x.CrossRefPubMed Pelloso LA, Baiocchi OC, Chauffaille ML, Yamamoto M, Hungria VT, Bordin JO: Megakaryocytic blast crisis as a first presentation of chronic myeloid leukemia. Eur J Haematol. 2002, 69: 58-61. 10.1034/j.1600-0609.2002.01638.x.CrossRefPubMed
14.
Zurück zum Zitat Al-Shehri A, Al-Seraihy A, Owaidah TM, Belgaumi AF: Megakaryocytic blast crisis at presentation in a pediatric patient with chronic myeloid leukemia. Hematol Oncol Stem Cell Ther. 2010, 3: 42-46.CrossRefPubMed Al-Shehri A, Al-Seraihy A, Owaidah TM, Belgaumi AF: Megakaryocytic blast crisis at presentation in a pediatric patient with chronic myeloid leukemia. Hematol Oncol Stem Cell Ther. 2010, 3: 42-46.CrossRefPubMed
15.
Zurück zum Zitat Pullarkat ST, Vardiman JW, Slovak ML, Rao DS, Rao NP, Bedell V, Said JW: Megakaryocytic blast crisis as a presenting manifestation of chronic myeloid leukemia. Leuk Res. 2008, 32: 1770-1775. 10.1016/j.leukres.2008.02.025.CrossRefPubMed Pullarkat ST, Vardiman JW, Slovak ML, Rao DS, Rao NP, Bedell V, Said JW: Megakaryocytic blast crisis as a presenting manifestation of chronic myeloid leukemia. Leuk Res. 2008, 32: 1770-1775. 10.1016/j.leukres.2008.02.025.CrossRefPubMed
16.
Zurück zum Zitat Bryant BJ, Alperin JB, Elghetany MT: Paraplegia as the presenting manifestation of extramedullary megakaryoblastic transformation of previously undiagnosed chronic myelogenous leukemia. Am J Hematol. 2007, 82: 150-154. 10.1002/ajh.20777.CrossRefPubMed Bryant BJ, Alperin JB, Elghetany MT: Paraplegia as the presenting manifestation of extramedullary megakaryoblastic transformation of previously undiagnosed chronic myelogenous leukemia. Am J Hematol. 2007, 82: 150-154. 10.1002/ajh.20777.CrossRefPubMed
17.
Zurück zum Zitat Vardiman JW, Harris NL, Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002, 100: 2292-2302. 10.1182/blood-2002-04-1199.CrossRefPubMed Vardiman JW, Harris NL, Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002, 100: 2292-2302. 10.1182/blood-2002-04-1199.CrossRefPubMed
18.
Zurück zum Zitat Peterson LC, Bloomfield CD, Brunning RD: Blast crisis as an initial or terminal manifestation of chronic myeloid leukemia. A study of 28 patients. Am J Med. 1976, 60: 209-220. 10.1016/0002-9343(76)90430-7.CrossRefPubMed Peterson LC, Bloomfield CD, Brunning RD: Blast crisis as an initial or terminal manifestation of chronic myeloid leukemia. A study of 28 patients. Am J Med. 1976, 60: 209-220. 10.1016/0002-9343(76)90430-7.CrossRefPubMed
19.
Zurück zum Zitat Balatzenko G, Guenova M, Zechev J, Toshkov S: Acute megakaryoblastic leukaemia with extreme thrombocytosis and p190 (bcr/abl) rearrangement. Ann Hematol. 2004, 83: 381-385. 10.1007/s00277-003-0783-1.CrossRefPubMed Balatzenko G, Guenova M, Zechev J, Toshkov S: Acute megakaryoblastic leukaemia with extreme thrombocytosis and p190 (bcr/abl) rearrangement. Ann Hematol. 2004, 83: 381-385. 10.1007/s00277-003-0783-1.CrossRefPubMed
20.
Zurück zum Zitat Kaloutsi V, Hadjileontis C, Tsatalas C, Sambani C, Kostopoulos I, Papadimitriou C: Occurrence of a variant Philadelphia translocation, t(10;22), in de novo acute megakaryoblastic leukemia. Cancer Genet Cytogenet. 2004, 152: 52-55. 10.1016/j.cancergencyto.2003.08.022.CrossRefPubMed Kaloutsi V, Hadjileontis C, Tsatalas C, Sambani C, Kostopoulos I, Papadimitriou C: Occurrence of a variant Philadelphia translocation, t(10;22), in de novo acute megakaryoblastic leukemia. Cancer Genet Cytogenet. 2004, 152: 52-55. 10.1016/j.cancergencyto.2003.08.022.CrossRefPubMed
21.
Zurück zum Zitat Corm S, Renneville A, Rad-Quesnel E, Grardel N, Preudhomme C, Quesnel B: Successful treatment of imatinib-resistant acute megakaryoblastic leukemia with e6a2 BCR/ABL: use of dasatinib and reduced-conditioning stem-cell transplantation. Leukemia. 2007, 21: 2376-2377. 10.1038/sj.leu.2404792.CrossRefPubMed Corm S, Renneville A, Rad-Quesnel E, Grardel N, Preudhomme C, Quesnel B: Successful treatment of imatinib-resistant acute megakaryoblastic leukemia with e6a2 BCR/ABL: use of dasatinib and reduced-conditioning stem-cell transplantation. Leukemia. 2007, 21: 2376-2377. 10.1038/sj.leu.2404792.CrossRefPubMed
22.
Zurück zum Zitat Ahmad F, Dalvi R, Das BR, Mandava S: Novel t(8;17)(q23;q24.2) and t(9;22)(p24.1;q12.2) in acute megakaryoblastic leukemia AML-M7 subtype in an adult patient. Cancer Genet Cytogenet. 2009, 193: 112-115. 10.1016/j.cancergencyto.2009.04.018.CrossRefPubMed Ahmad F, Dalvi R, Das BR, Mandava S: Novel t(8;17)(q23;q24.2) and t(9;22)(p24.1;q12.2) in acute megakaryoblastic leukemia AML-M7 subtype in an adult patient. Cancer Genet Cytogenet. 2009, 193: 112-115. 10.1016/j.cancergencyto.2009.04.018.CrossRefPubMed
Metadaten
Titel
De novo acute megakaryoblastic leukemia with p210 BCR/ABL and t(1;16) translocation but not t(9;22) Ph chromosome
verfasst von
Xiao Min
Zhang Na
Liu Yanan
Li Chunrui
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2011
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-4-45

Weitere Artikel der Ausgabe 1/2011

Journal of Hematology & Oncology 1/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.