Skip to main content
Erschienen in: BMC Nephrology 1/2022

Open Access 01.12.2022 | Case report

A case of Gitelman syndrome with membranous nephropathy

verfasst von: Xiafei Guo, Shanshen Yu, Jia Sun, Lijun Mou

Erschienen in: BMC Nephrology | Ausgabe 1/2022

Abstract

Background

Gitelman syndrome (GS) is a rare autosomal recessive inherited salt-losing tubulopathy (SLT). Here, we report, for the first time, a case of GS overlapping nephrotic syndrome (NS) related to PLA2R-associated membranous nephropathy (MN).

Case presentation

We described a male patient had a 4-year history of recurrent fatigue. Serum biochemistry revealed hypokalemia with renal potassium wasting, hypomagnesemia, metabolic alkalosis, hyperreninemia, hypocalciuria, as well as nephrotic-range proteinuria, hypoalbuminemia, and elevated serum anti-phospholipase A2 receptor (PLA2R) antibody. Gene sequencing identified compound heterozygous mutations in SLC12A3 [c.536T > A(p.V179D) and c.1456G > A(p.D486N)]. The unusual association of SLTs and nephrotic-range glomerular proteinuria prompted us to perform a renal biopsy. Renal biopsy showed idiopathic MN. Due to the potential to activate the sodium-chloride co-transporter (NCC) and cause hyperkalemia, tacrolimus was selected to treat NS. Following treatment with potassium chloride, magnesium oxide, low-dose glucocorticoid combined with tacrolimus, the fatigue significantly improved, and concurrently hypokalemia, hypomagnesemia were corrected and NS was remitted.

Conclusions

Renal biopsy should be warranted for GS patients with moderate to nephrotic-range proteinuria. Tacrolimus was preferred to the management of GS patients with NS.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
GS
Gitelman syndrome
SLT
salt-losing tubulopathy
NS
nephrotic syndrome
MN
membranous nephropathy
PLA2R
anti-phospholipase A2 receptor
NCC
sodium-chloride co-transporter
NGS
next-generation sequencing
ACMG
American College of Medical Genetics
RAAS
renin-angiotensin-aldosterone
MCD
minimal change disease
FSGS
focal segmental glomerulosclerosis
TGF-β1
transforming growth factor-β1
KDIGO
Kidney Disease:Improving Global Results

Background

Gitelman syndrome (GS) is a rare autosomal recessive inherited salt-losing tubulopathy (SLT) because of the inactivating mutations in SLC12A3 gene, which encodes the sodium-chloride cotransporter of distal convoluted tubules. GS is characterized by chronic hypokalemia, metabolic alkalosis, hypomagnesemia and hypocalciuria. GS typically is not classically associated with proteinuria, especially nephrotic-range glomerular proteinuria [1, 2]. Therefore, when nephrotic-range proteinuria developed in patient with GS, overlapping glomerular diseases should be considered. PLA2R-associated membranous nephropathy (MN) is an auto-immune disease characterized by moderate to nephrotic-range proteinuria, a common cause of nephrotic syndrome (NS) in adults [3, 4]. Up to now, GS with concomitant MN has not been reported. We described one patient with GS overlapping MN. He was successfully treated with tacrolimus and glucocorticoid, potassium and magnesium supplementation.

Case presentation

A 24-year-old male patient was admitted to our hospital on Sep 1st, 2020 due to recurrent limb fatigue for four years and aggravating for one month. Four years ago, the patient presented limb weakness episode once sweating a lot in every summer, hypokalemia was revealed in a local hospital. Following potassium chloride supplement during hospitalization, fatigue was relieved. However, he stopped taking potassium chloride after discharge, and fatigue recurred following sweating in every summer.
One month ago, the patient suffered from limb weakness again after tooth extraction. Serum biochemistry in local hospital showed that potassium was 2.8mmol/L and albumin was 22 g/L; urinalysis demonstrated 3 + proteinuria. Therefore, he was admitted to our hospital. The patient denied taking diuretics, laxatives, diet pills and Chinese herbal medicines; His parents are healthy and non-consanguineous marriage; his two sisters are healthy.
Blood pressure after admission was 108/77mmHg.While this patient had no oedema and other physical examination abnormality. Laboratory tests showed hypokalemia due to renal potassium wasting, hypomagnesemia, hypochloridemia, metabolic alkalosis, hyperreninemia, hypocalciuria (Table 1), which were suggestive of GS. Thiazide test was performed according to the protocol described in the previous study [5]. The difference value between the chloride excretion fraction before and after the use of hydrochlorothiazide was 0.468%, indicating that he was no response to hydrochlorothiazide, which could be functionally diagnosed of GS. Therefore, Next-Generation sequencing(NGS)-based panel was performed to identify the exact type of SLTs. The method of gene sequencing was performed as previously reported [6]. Two missense heterozygous mutations[c.536T > A(p.V179D) and c.1456G > A(p.D486N)] in SLC12A3 were revealed. His father carries one mutation (c.536T > A) and his mother carries the other mutation (c.1456G > A), which are compatible with compound heterozygosity in this patient (Fig. 1). The mutation of SLC12A3 ( p.V179D) was predicted to be benign by PolyPhen-2, polymorphism by Mutation Taster, and damaging by SIFT. This mutation has been reported by Lee, et al. [7]. The mutation of p.D486N was predicted to be probably-damaging by PolyPhen-2, disease-causing by Mutation Taster, and damaging by SIFT. This mutation has been reported by Simon, et al [8]. Both mutations are classified as likely pathogenic according to American College of Medical Genetics(ACMG) guidelines. Eventually, GS was identified.
Table 1
Comparison of patients before and after treatment in laboratory tests
Examination item
2021.09.02
2021.03.07
Reference value
Serum biochemistry
 potassium(mmol/L)
3.00
4.09
3.50 ~ 5.50
 magnesium(mmol/L)
0.57
0.65
0.73 ~ 1.06
 calcium(mmol/L)
2.01
2.48
2.08 ~ 2.60
 sodium(mmol/L)
144.8
143.3
135.0 ~ 145.0
 chloride (mmol/L)
101.9
101.5
96.0 ~ 106.0
 creatinine (µmol/L)
63
93
40 ~ 106
 albumin (g/L)
24.5
44.9
35.0 ~ 52.0
 cholesterol(mmol/L)
5.21
5.47
3.0 ~ 5.7
 triglycerides(mmol/L)
4.70
1.86
< 1.7
 PLA2R (RU/mL)
25.4
2.1
< 20.0
 Upright plasma renin (uIU/mL)
294.1
-
4.4 ~ 46.1
 Upright plasma aldosterone (pg/mL)
108.0
-
30.0 ~ 353.0
Arterial blood gas analysis
 PH value
7.442
-
7.350 ~ 7.450
 Base excess (mmol/L)
6.3
-
-3.0 ~ 3.0
 HCO3 (mmol/L)
30.9
-
22.0 ~ 26.0
 PaCO2 (mmHg)
46
-
36.0 ~ 44.0
Urine analysis
 proteinuria (g/L)
2+
1+
negative
 hematuria (number/ul)
5
< 1
< 12
 Albumin to creatinine ratio (mg/g.Cr)
3083.3
356.3
< 25.0
 24 h proteinuria (mg/24 h)
4838.4
-
22.0 ~ 132.0
 24 h potassium (mmol/24 h)
57.60
-
25 ~ 100
 Spot urinay calcium/creatinine (mmol/mmol)
0.022
-
-
 Spot urinay potassium /creatinine (mmol/mmol)
8
-
-
24 h proteinuria showed nephrotic-range proteinuria, he also has hypoalbuminemia. Results of ANA, ENA, anti-dsDNA, anti-tiroid antibodies, imaging of chest/abdomen were negative. Taken together, nephrotic syndrome (NS) was identified. Therefore, renal biopsy was performed. Light microscopy showed 18 glomeruli, including 3 sclerotic ones, with thickened basement membrane, spike-like structures and subepithelial deposition of erythrophilic proteins.; The immunofluorescence results of renal biopsy showed that IgG (3+), IgG1 (3+), IgG4 (3+), C3 (+) and PLA2R (2+) were granular deposition along capillaries; Electron microscopy showed irregular thickening of glomerular basement membrane with the thickest part of 1500 nm, diffuse foot process effacement, and deposition of electron dense substance in subepithelial and basement membrane. The serum anti-phospholipase A2 receptor (PLA2R) antibody was also positive. Eventually, diagnosis of PLA2R-associated MN was established (Fig. 2).
According to the patient’s history, laboratory tests and gene sequencing findings, the final diagnosis was GS concomitant with MN. Following immunosuppressant with methylprednisolone tablets (12 mg once daily) plus tacrolimus (1 mg twice daily), electric supplement with potassium chloride tablets (3.0 g per day), magnesium oxide (300 mg magnesium per day), the level of serum potassium and magnesium increased, NS was partially remitted, anti-PLA2R titre reduced after 6 months (Table 1).

Discussion and conclusions

GS is a rare autosomal recessive inherited SLT. American doctor Gitelman first reported 3 cases of familial hypokalemia, hypomagnesemia, hypocalciuria and metabolic alkalosis in 1966. The cause of GS is the inactivating mutations of SLC12A3 gene, which encodes the sodium-chloride co-transporter of distal convoluted tubules [8]. GS are characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, hypocalciuria, secondary renin-angiotensin-aldosterone (RAAS) activation, normal or low blood pressure [9]. GS patients may manifest fatigue, salt craving, polydipsia, polyuria, and paroxysmal tetany triggered by hypomagnesemia [10]. It is suggested GS patient intake potassium and magnesium supplements and sodium chloride-containing food for life [11], as GS is caused by the deficiency of sodium-chloride co-transporter.
However, nephrotic-range glomerular proteinuria in GS patients is rare generally. At present, there are 6 cases of GS accompanied by moderate to nephrotic-range proteinuria [1217]. Two of the patients were female and four were male; Three patients presented with nephrotic syndrome, two of whom received glucocorticoid therapy; 5 patients underwent renal biopsy, including C1q nephropathy, minimal change disease (MCD), diabetic nephropathy and 2 cases of focal segmental glomerulosclerosis (FSGS) (Table 2).
Table 2
Basic information of 6 cases
Case
Sex
Age
Proteinuria
Serum albumin
Edema
Renal pathology
Use of glucocorticoids
Hanevold C, et al. [13]
Female
12
2.5 mg/mg
3.5 gm/dL
No
C1qN
Not used
Pandey DB, et al. [14]
Female
19
1.445gm/d
2.6 gm/dL
Yes
N/A
Glucocorticoid
Ceri M, et al. [15]
Male
32
1094 mg/d
N/A
NO
FSGS
Not used
Demoulin N, et al. [16]
Male
27
770 mg/d
N/A
N/A
FSGS
N/A
Chen Q, et al. [17]
Male
47
10.20 g/d
22 g/L
N/A
MCD
Glucocorticoid
Chen Q, et al. [12]
Male
40
2793 mg/d
N/A
N/A
DN
Not used
N/A Not applicable, C1qN C1q Nephropathy, FSGS Focal segmental glomerulosclerosis, MCD Minimal change disease, DN Diabetes nephropathy
Therefore, renal biopsy should be warranted for GS patients with moderate to nephrotic-range glomerular proteinuria. If there are primary glomerular diseases, glucocorticoid or other drugs may be added, in addition to potassium and magnesium supplements for GS [12, 17].
So is there a correlation between GS and glomerular proteinuria? It has been reported that the possible mechanisms between GS and glomerular proteinuria is the chronic activation of RAAS, leading to increased systemic and local levels of angiotensin-II and renin, may in turn cause podocyte lesions. Angiotensin II induced proteinuria through vascular endothelial growth factor and transforming growth factor-β1 (TGF-β1) [12, 16]. At present, abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes, as well as decreased expressions of nephrin and podocin, have been observed in transgenic mice overexpressing renin. TGF-β1 is considered the major pro-fibrotic agent in renal disease [18]. Nephrotic range proteinuria was also present in patients with Addison’s disease, a disease associated with hyperreninemia, and renal biopsy showed FSGS, nodular deposition of IgM, and C3 [19]. Severe intraglomerular detachment of podocytes was described in another case of GS before, which was also associated with decreased renal nephrin expression [20]. Chronic hypokalemia may also cause proteinuria, Reungjui et al. detected mild proteinuria in hypokalemic rat models with or without hydrochlorothiazide. For the same degree of hypokalemia, renal injury was more obvious in the hydrochlorothiazide treated group, which was attributed to the secondary hyperaldosteronism due to long-term volume depletion [21]. According to the above studies, there is similar RAAS activation caused by blood volume depletion in GS patients. Therefore, there may be a correlation between GS and FSGS.
PLA2R-associated MN is an auto-immune disease, characterized by non-inflammation mediated subepithelial immune complex deposition with diffuse thickening of glomerular basement membrane. Approximately 70-80% of patients with primary MN have circulating PLA2R antibodies [22]. Renal pathology of this patient we described was MN, with increased titer of serum PLA2R antibody. Therefore, it was an immune related disease rather than a metabolic related disease. By above knowable, we consider that FSGS may be related to the pathophysiological changes of GS in GS patients with nephrotic-rangeproteinuria, while other pathological changes may be irrelevant to GS, including PLA2R-associated MN, which involves an autoimmune response. In addition, GS is commonly diagnosed in children and young adults, such as the patient described, MN is untypical at the age of the patient, which still suggest the association between GS and PLA2R-associated MN is probably coincidental. At this time, renal biopsy is supposed to be necessary.
In the treatment, we chose a low-dose glucocorticoid with tacrolimus and supplements of potassium chloride and magnesium oxide. 2017 Kidney Disease: Improving Global Results (KDIGO) guidelines recommended that the initial dose of potassium chloride supplement for adults should be 40 mmol (equivalent to 3.0 g) per day, and suggests that the serum potassium and magnesium levels of GS patients should be maintained at 3.0 mmol/L and 0.6 mmol/L at least, respectively [23]. We gave the patient an initial dose of 3.0 g potassium chloride per day, the serum potassium easily increased to 4.09mmol/L consequently. We found that serum potassium of the patient exceeded the target value of KDIGO, and the proteinuria was effectively controlled through treatment. It has been reported that tacrolimus has the potential to increase the activity of phosphorylated NCC and NCC regulated kinases WNK3, WNK4 and SPAK, resulting in over activation of NCC, leading to hyperkalemia, similar to Gordon syndrome or familial hyperkalemic hypertension [24, 25]. This may explain why the patient’s serum potassium is easy to surpass the standard by far.
In conclusion, we report a case of GS concomitant with MN. Renal biopsy should be warranted for GS patients with moderate to nephrotic-range glomerular proteinuria in order to guide treatment. In addition, due to the potential to activate NCC and cause hyperkalemia, tacrolimus may have more advantages in the treatment of GS patients with NS secondary to PLA2R-associated MN.

Acknowledgements

Not applicable.

Declarations

Ethical approval was obtained from the ethics committee of Second Affiliated Hospital of Zhejiang University School of Medicine. All procedures in this study involving consent to participate were performed in accordance with the ethical standards of the institutional ethics and research committee. Written informed consent was obtained from the patient and his family members for participate in this study.
Written informed consent was obtained from the patient and his family members who participated in our study for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Competing interests

The authors declared that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Nakhoul F, Nakhoul N, Dorman E, Berger L, Skorecki K, Magen D. Gitelman’s syndrome: a pathophysiological and clinical update. Endocrine. 2012;41(1):53–7.CrossRef Nakhoul F, Nakhoul N, Dorman E, Berger L, Skorecki K, Magen D. Gitelman’s syndrome: a pathophysiological and clinical update. Endocrine. 2012;41(1):53–7.CrossRef
2.
Zurück zum Zitat Matsunoshita N, Nozu K, Shono A, Nozu Y, Fu X, Morisada N, et al. Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet medicine: official J Am Coll Med Genet. 2016;18(2):180–8.CrossRef Matsunoshita N, Nozu K, Shono A, Nozu Y, Fu X, Morisada N, et al. Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet medicine: official J Am Coll Med Genet. 2016;18(2):180–8.CrossRef
3.
Zurück zum Zitat Sethi S, Madden B, Debiec H, Morelle J, Charlesworth M, Gross L, et al. Protocadherin 7-Associated Membranous Nephropathy. J Am Soc Nephrology: JASN. 2021;32(5):1249–61.CrossRef Sethi S, Madden B, Debiec H, Morelle J, Charlesworth M, Gross L, et al. Protocadherin 7-Associated Membranous Nephropathy. J Am Soc Nephrology: JASN. 2021;32(5):1249–61.CrossRef
4.
Zurück zum Zitat von Groote T, Williams G, Au E, Chen Y, Mathew A, Hodson E, et al. Immunosuppressive treatment for primary membranous nephropathy in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2021;11:CD004293. von Groote T, Williams G, Au E, Chen Y, Mathew A, Hodson E, et al. Immunosuppressive treatment for primary membranous nephropathy in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2021;11:CD004293.
5.
Zurück zum Zitat Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syren ML, Borsa N, et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol. 2007;2(3):454–60.CrossRef Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syren ML, Borsa N, et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol. 2007;2(3):454–60.CrossRef
6.
Zurück zum Zitat Mou L, Wu F. Simultaneous Homozygous Mutations in SLC12A3 and CLCNKB in an Inbred Chinese Pedigree. Genes. 2021;12(3):369.CrossRef Mou L, Wu F. Simultaneous Homozygous Mutations in SLC12A3 and CLCNKB in an Inbred Chinese Pedigree. Genes. 2021;12(3):369.CrossRef
7.
Zurück zum Zitat Lee J, Lee J, Heo N, Cheong H, Han J. Mutations in SLC12A3 and CLCNKB and Their Correlation with Clinical Phenotype in Patients with Gitelman and Gitelman-like Syndrome. J Korean Med Sci. 2016;31(1):47–54.CrossRef Lee J, Lee J, Heo N, Cheong H, Han J. Mutations in SLC12A3 and CLCNKB and Their Correlation with Clinical Phenotype in Patients with Gitelman and Gitelman-like Syndrome. J Korean Med Sci. 2016;31(1):47–54.CrossRef
8.
Zurück zum Zitat Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet. 1996;12(1):24–30.CrossRef Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet. 1996;12(1):24–30.CrossRef
9.
Zurück zum Zitat Group GSCS. Expert consensus for the diagnosis and treatment of patients with Gitelman syndrome. Chin J Intern Med. 2017;56(9):712–6. Group GSCS. Expert consensus for the diagnosis and treatment of patients with Gitelman syndrome. Chin J Intern Med. 2017;56(9):712–6.
10.
Zurück zum Zitat Uzunlulu M, Dumanoğlu B. Gitelman syndrome presenting with hypomagnesemia, hypokalemia and hypocalciuria - a case report. Medeniyet Med J. 2019;34(3):314–7. Uzunlulu M, Dumanoğlu B. Gitelman syndrome presenting with hypomagnesemia, hypokalemia and hypocalciuria - a case report. Medeniyet Med J. 2019;34(3):314–7.
11.
Zurück zum Zitat Francini F, Gobbi L, Ravarotto V, Toniazzo S, Nalesso F, Spinella P, et al. The Dietary Approach to the Treatment of the Rare Genetic Tubulopathies Gitelman’s and Bartter’s Syndromes. Nutrients. 2021;13(9):2960.CrossRef Francini F, Gobbi L, Ravarotto V, Toniazzo S, Nalesso F, Spinella P, et al. The Dietary Approach to the Treatment of the Rare Genetic Tubulopathies Gitelman’s and Bartter’s Syndromes. Nutrients. 2021;13(9):2960.CrossRef
12.
Zurück zum Zitat Chen Q, Wang X, Min J, Wang L, Mou L. Kidney stones and moderate proteinuria as the rare manifestations of Gitelman syndrome. BMC Nephrol. 2021;22(1):12.CrossRef Chen Q, Wang X, Min J, Wang L, Mou L. Kidney stones and moderate proteinuria as the rare manifestations of Gitelman syndrome. BMC Nephrol. 2021;22(1):12.CrossRef
13.
Zurück zum Zitat Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol. 2006;21(12):1904–8.CrossRef Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol. 2006;21(12):1904–8.CrossRef
14.
Zurück zum Zitat Pandey D, Pednekar S, Chavan S, Korivi D, Shah A, Kulkarni U. A case of nephrotic syndrome with Gitelman’s syndrome. J Assoc Phys India. 2010;58:324–5. Pandey D, Pednekar S, Chavan S, Korivi D, Shah A, Kulkarni U. A case of nephrotic syndrome with Gitelman’s syndrome. J Assoc Phys India. 2010;58:324–5.
15.
Zurück zum Zitat Ceri M, Unverdi S, Altay M, Unverdi H, Kurultak I, Yılmaz R, et al. Focal segmental glomerulosclerosis in association with Gitelman syndrome. Int Urol Nephrol. 2011;43(3):905–7.CrossRef Ceri M, Unverdi S, Altay M, Unverdi H, Kurultak I, Yılmaz R, et al. Focal segmental glomerulosclerosis in association with Gitelman syndrome. Int Urol Nephrol. 2011;43(3):905–7.CrossRef
16.
Zurück zum Zitat Demoulin N, Aydin S, Cosyns J, Dahan K, Cornet G, Auberger I, et al. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction? Nephrol Dial Transplant. 2014;29 Suppl:iv117-120.CrossRef Demoulin N, Aydin S, Cosyns J, Dahan K, Cornet G, Auberger I, et al. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction? Nephrol Dial Transplant. 2014;29 Suppl:iv117-120.CrossRef
17.
Zurück zum Zitat Chen Q, Wu Y, Zhao J, Jia Y, Wang W. A case of hypokalemia and proteinuria with a new mutation in the SLC12A3 Gene. BMC Nephrol. 2018;19(1):275.CrossRef Chen Q, Wu Y, Zhao J, Jia Y, Wang W. A case of hypokalemia and proteinuria with a new mutation in the SLC12A3 Gene. BMC Nephrol. 2018;19(1):275.CrossRef
18.
Zurück zum Zitat Huby A, Rastaldi M, Caron K, Smithies O, Dussaule J, Chatziantoniou C. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE. 2009;4(8):e6721.CrossRef Huby A, Rastaldi M, Caron K, Smithies O, Dussaule J, Chatziantoniou C. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE. 2009;4(8):e6721.CrossRef
19.
Zurück zum Zitat Arrizabalaga P, Bergadá E, Solé M, Halperin I, Botey A. Focal segmental glomerular sclerosis in two patients with Addison’s disease: any more than fortuitous development of glomerular disease? Am J Nephrol. 2002;22(4):389–93.CrossRef Arrizabalaga P, Bergadá E, Solé M, Halperin I, Botey A. Focal segmental glomerular sclerosis in two patients with Addison’s disease: any more than fortuitous development of glomerular disease? Am J Nephrol. 2002;22(4):389–93.CrossRef
20.
Zurück zum Zitat Takahashi N, Kimura H, Mizuno S, Hara M, Hirayama Y, Kurosawa H, et al. Severe intraglomerular detachment of podocytes in a Gitelman syndrome patient. Clin Exp Nephrol. 2012;16(3):495–500.CrossRef Takahashi N, Kimura H, Mizuno S, Hara M, Hirayama Y, Kurosawa H, et al. Severe intraglomerular detachment of podocytes in a Gitelman syndrome patient. Clin Exp Nephrol. 2012;16(3):495–500.CrossRef
21.
Zurück zum Zitat Reungjui S, Hu H, Mu W, Roncal CA, Croker BP, Patel JM, et al. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int. 2007;72(12):1483–92.CrossRef Reungjui S, Hu H, Mu W, Roncal CA, Croker BP, Patel JM, et al. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int. 2007;72(12):1483–92.CrossRef
22.
Zurück zum Zitat Bobart S, Han H, Tehranian S, De Vriese A, Roman J, Sethi S, et al. Noninvasive Diagnosis of PLA2R-Associated Membranous Nephropathy: A Validation Study. Clinical journal of the American Society of Nephrology: CJASN; 2021.CrossRef Bobart S, Han H, Tehranian S, De Vriese A, Roman J, Sethi S, et al. Noninvasive Diagnosis of PLA2R-Associated Membranous Nephropathy: A Validation Study. Clinical journal of the American Society of Nephrology: CJASN; 2021.CrossRef
23.
Zurück zum Zitat Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017;91(1):24–33.CrossRef Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017;91(1):24–33.CrossRef
24.
Zurück zum Zitat Hoorn E, Walsh S, McCormick J, Fürstenberg A, Yang C, Roeschel T, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304–9.CrossRef Hoorn E, Walsh S, McCormick J, Fürstenberg A, Yang C, Roeschel T, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304–9.CrossRef
25.
Zurück zum Zitat Farouk S, Rein J. The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? Adv Chronic Kidney Dis. 2020;27(1):56–66.CrossRef Farouk S, Rein J. The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? Adv Chronic Kidney Dis. 2020;27(1):56–66.CrossRef
Metadaten
Titel
A case of Gitelman syndrome with membranous nephropathy
verfasst von
Xiafei Guo
Shanshen Yu
Jia Sun
Lijun Mou
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2022
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02875-8

Weitere Artikel der Ausgabe 1/2022

BMC Nephrology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.