Skip to main content
Erschienen in: European Radiology 12/2022

29.07.2022 | Oncology

A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks?

verfasst von: Yuhan Gao, Sihang Cheng, Liang Zhu, Qin Wang, Wenyi Deng, Zhaoyong Sun, Shitian Wang, Huadan Xue

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

We aimed to systematically evaluate the prognostic prediction accuracy of radiomics features extracted from pre-treatment imaging in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods

Radiomics literature on overall survival (OS) prediction of PDAC were all included in this systematic review. A further meta-analysis was performed on the effect size of first-order entropy. Methodological quality and risk of bias of the included studies were assessed by the radiomics quality score (RQS) and prediction model risk of bias assessment tool (PROBAST).

Results

Twenty-three studies were finally identified in this review. Two (8.7%) studies compared prognosis prediction ability between radiomics model and TNM staging model by C-index, and both showed a better performance of the radiomics. Twenty-one (91.3%) studies reported significant predictive values of radiomics features. Nine (39.1%) studies were included in the meta-analysis, and it showed a significant correlation between first-order entropy and OS (HR 1.66, 95%CI 1.18–2.34). RQS assessment revealed validation was only performed in 5 (21.7%) studies on internal datasets and 2 (8.7%) studies on external datasets. PROBAST showed that 22 (95.7%) studies have a high risk of bias in participants because of the retrospective study design.

Conclusion

First-order entropy was significantly associated with OS and might improve the accuracy of PDAC prognosis prediction. Existing studies were poorly validated, and it should be noted in future studies. Modification of PROBAST for radiomics studies is necessary since the strict requirements of prospective study design may not be applicable to the demand for a large sample size in the model construction stage.

Key Points

• Radiomics based on the primary lesion holds great potential for prognosis prediction. First-order entropy was significantly associated with the overall survival of PDAC and might improve the accuracy of current PDAC prognosis prediction.
• We strongly recommend that at least an internal validation should be conducted in any radiomics study. Attention should be paid to the complex relationships between radiomics features.
• Due to the close relationship between radiomics and big data, the strict requirement of prospective study design in PROABST may not be appropriate for radiomics studies. A balance between study types and sample sizes for radiomics studies needs to be found in the model construction stage.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Saad AM, Turk T, Al-Husseini MJ, Abdel-Rahman O (2018) Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 18:688 PubMedPubMedCentral Saad AM, Turk T, Al-Husseini MJ, Abdel-Rahman O (2018) Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 18:688 PubMedPubMedCentral
2.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33 PubMed Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33 PubMed
3.
Zurück zum Zitat Sun H, Ma H, Hong G, Sun H, Wang J (2014) Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 1981-2010. Sci Rep 4:6747 PubMedPubMedCentral Sun H, Ma H, Hong G, Sun H, Wang J (2014) Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 1981-2010. Sci Rep 4:6747 PubMedPubMedCentral
4.
Zurück zum Zitat Mahul B, Amin SBE, Greene FL, Byrd DR, Brookland RK (2017) In: Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Milburn Jessup J, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (eds) AJCC Cancer Staging Manual, 8th edn, Springer, Cham Mahul B, Amin SBE, Greene FL, Byrd DR, Brookland RK (2017) In: Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Milburn Jessup J, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (eds) AJCC Cancer Staging Manual, 8th edn, Springer, Cham
5.
Zurück zum Zitat Shi S, Hua J, Liang C et al (2019) Proposed Modification of the 8th Edition of the AJCC Staging System for Pancreatic Ductal Adenocarcinoma. Ann Surg 269:944–950 PubMed Shi S, Hua J, Liang C et al (2019) Proposed Modification of the 8th Edition of the AJCC Staging System for Pancreatic Ductal Adenocarcinoma. Ann Surg 269:944–950 PubMed
6.
Zurück zum Zitat Tol JA, Gouma DJ, Bassi C et al (2014) Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: a consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 156:591–600 PubMed Tol JA, Gouma DJ, Bassi C et al (2014) Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: a consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 156:591–600 PubMed
7.
Zurück zum Zitat Fu N, Wang W, Cheng D et al (2021) Original study: the rescue staging for pancreatic ductal adenocarcinoma with inadequate examined lymph nodes. Pancreatology 21:724–730 PubMed Fu N, Wang W, Cheng D et al (2021) Original study: the rescue staging for pancreatic ductal adenocarcinoma with inadequate examined lymph nodes. Pancreatology 21:724–730 PubMed
8.
Zurück zum Zitat Cros J, Raffenne J, Couvelard A, Pote N (2018) Tumor heterogeneity in pancreatic adenocarcinoma. Pathobiology 85:64–71 PubMed Cros J, Raffenne J, Couvelard A, Pote N (2018) Tumor heterogeneity in pancreatic adenocarcinoma. Pathobiology 85:64–71 PubMed
9.
Zurück zum Zitat Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117 PubMed Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117 PubMed
10.
Zurück zum Zitat Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334 PubMed Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334 PubMed
11.
Zurück zum Zitat Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892 PubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892 PubMedPubMedCentral
12.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, They Are Data. Radiology 278:563–577 PubMed Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, They Are Data. Radiology 278:563–577 PubMed
13.
Zurück zum Zitat Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762 CrossRefPubMed Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762 CrossRefPubMed
14.
Zurück zum Zitat Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642 PubMed Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642 PubMed
15.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012 PubMed Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012 PubMed
16.
Zurück zum Zitat Wolff RF, Moons KGM, Riley RD et al (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170:51–58 PubMed Wolff RF, Moons KGM, Riley RD et al (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170:51–58 PubMed
17.
Zurück zum Zitat Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558 PubMed Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558 PubMed
18.
Zurück zum Zitat Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, New York Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, New York
19.
Zurück zum Zitat Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463 PubMed Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463 PubMed
20.
Zurück zum Zitat Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163 PubMedPubMedCentral Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163 PubMedPubMedCentral
21.
Zurück zum Zitat Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31:1526–1535 PubMed Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31:1526–1535 PubMed
22.
Zurück zum Zitat Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174 PubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174 PubMed
23.
Zurück zum Zitat Cen C, Liu L, Li X et al (2021) Pancreatic ductal adenocarcinoma at CT: a combined nomogram model to preoperatively predict cancer stage and survival outcome. Front Oncol 11:594510 PubMedPubMedCentral Cen C, Liu L, Li X et al (2021) Pancreatic ductal adenocarcinoma at CT: a combined nomogram model to preoperatively predict cancer stage and survival outcome. Front Oncol 11:594510 PubMedPubMedCentral
24.
Zurück zum Zitat Cheng S-H, Cheng Y-J, Jin Z-Y, Xue H-D (2019) Unresectable pancreatic ductal adenocarcinoma: role of CT quantitative imaging biomarkers for predicting outcomes of patients treated with chemotherapy. Eur J Radiol 113:188–197 PubMed Cheng S-H, Cheng Y-J, Jin Z-Y, Xue H-D (2019) Unresectable pancreatic ductal adenocarcinoma: role of CT quantitative imaging biomarkers for predicting outcomes of patients treated with chemotherapy. Eur J Radiol 113:188–197 PubMed
25.
Zurück zum Zitat Choi MH, Lee YJ, Yoon SB, Choi J-I, Jung SE, Rha SE (2019) MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome. Abdom Radiol (NY) 44:122–130 Choi MH, Lee YJ, Yoon SB, Choi J-I, Jung SE, Rha SE (2019) MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome. Abdom Radiol (NY) 44:122–130
26.
Zurück zum Zitat Cozzi L, Comito T, Fogliata A et al (2019) Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One 14:e0210758 Cozzi L, Comito T, Fogliata A et al (2019) Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One 14:e0210758
27.
Zurück zum Zitat Cui Y, Song J, Pollom E et al (2016) Quantitative analysis of 18F-fluorodeoxyglucose positron emission tomography identifies novel prognostic imaging biomarkers in locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 96:102–109 PubMed Cui Y, Song J, Pollom E et al (2016) Quantitative analysis of 18F-fluorodeoxyglucose positron emission tomography identifies novel prognostic imaging biomarkers in locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 96:102–109 PubMed
28.
Zurück zum Zitat De Robertis R, Beleù A, Cardobi N et al (2020) Correlation of MR features and histogram-derived parameters with aggressiveness and outcomes after resection in pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 45:3809–3818 PubMed De Robertis R, Beleù A, Cardobi N et al (2020) Correlation of MR features and histogram-derived parameters with aggressiveness and outcomes after resection in pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 45:3809–3818 PubMed
29.
Zurück zum Zitat Eilaghi A, Baig S, Zhang Y et al (2017) CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 17:38 PubMedPubMedCentral Eilaghi A, Baig S, Zhang Y et al (2017) CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 17:38 PubMedPubMedCentral
30.
Zurück zum Zitat Hang J, Xu K, Yin R et al (2021) Role of CT texture features for predicting outcome of pancreatic cancer patients with liver metastases. J Cancer 12:2351–2358 PubMedPubMedCentral Hang J, Xu K, Yin R et al (2021) Role of CT texture features for predicting outcome of pancreatic cancer patients with liver metastases. J Cancer 12:2351–2358 PubMedPubMedCentral
31.
Zurück zum Zitat Healy GM, Salinas-Miranda E, Jain R et al (2021) Pre-operative radiomics model for prognostication in resectable pancreatic adenocarcinoma with external validation. Eur Radiol 32:2492–2505 Healy GM, Salinas-Miranda E, Jain R et al (2021) Pre-operative radiomics model for prognostication in resectable pancreatic adenocarcinoma with external validation. Eur Radiol 32:2492–2505
32.
Zurück zum Zitat Hyun SH, Kim HS, Choi SH et al (2016) Intratumoral heterogeneity of (18)F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 43:1461–1468 PubMed Hyun SH, Kim HS, Choi SH et al (2016) Intratumoral heterogeneity of (18)F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 43:1461–1468 PubMed
33.
Zurück zum Zitat Kaissis G, Ziegelmayer S, Lohöfer F et al (2019) A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging. Eur Radiol Exp 3:41 PubMedPubMedCentral Kaissis G, Ziegelmayer S, Lohöfer F et al (2019) A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging. Eur Radiol Exp 3:41 PubMedPubMedCentral
34.
Zurück zum Zitat Khalvati F, Zhang Y, Baig S et al (2019) Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma. Sci Rep 9:5449 PubMedPubMedCentral Khalvati F, Zhang Y, Baig S et al (2019) Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma. Sci Rep 9:5449 PubMedPubMedCentral
35.
Zurück zum Zitat Kim BR, Kim JH, Ahn SJ et al (2019) CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis. Eur Radiol 29:362–372 PubMed Kim BR, Kim JH, Ahn SJ et al (2019) CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis. Eur Radiol 29:362–372 PubMed
36.
Zurück zum Zitat Kim HS, Kim YJ, Kim KG, Park JS (2019) Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer. Sci Rep 9:17389 PubMedPubMedCentral Kim HS, Kim YJ, Kim KG, Park JS (2019) Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer. Sci Rep 9:17389 PubMedPubMedCentral
37.
Zurück zum Zitat Lee JW, Park SH, Ahn H, Lee SM, Jang SJ (2021) Predicting survival in patients with pancreatic cancer by integrating bone marrow fdg uptake and radiomic features of primary tumor in pet/ct. Cancers 13:3563 PubMedPubMedCentral Lee JW, Park SH, Ahn H, Lee SM, Jang SJ (2021) Predicting survival in patients with pancreatic cancer by integrating bone marrow fdg uptake and radiomic features of primary tumor in pet/ct. Cancers 13:3563 PubMedPubMedCentral
38.
Zurück zum Zitat Parr E, Du Q, Zhang C et al (2020) Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers 12:1051 PubMedPubMedCentral Parr E, Du Q, Zhang C et al (2020) Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers 12:1051 PubMedPubMedCentral
39.
Zurück zum Zitat Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M (2019) CT texture analysis of pancreatic cancer. Eur Radiol 29:1067–1073 PubMed Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M (2019) CT texture analysis of pancreatic cancer. Eur Radiol 29:1067–1073 PubMed
40.
Zurück zum Zitat Smeets EMM, Withaar DS, Grootjans W et al (2019) Optimal respiratory-gated [18F]FDG PET/CT significantly impacts the quantification of metabolic parameters and their correlation with overall survival in patients with pancreatic ductal adenocarcinoma. EJNMMI Res 9:24 PubMedPubMedCentral Smeets EMM, Withaar DS, Grootjans W et al (2019) Optimal respiratory-gated [18F]FDG PET/CT significantly impacts the quantification of metabolic parameters and their correlation with overall survival in patients with pancreatic ductal adenocarcinoma. EJNMMI Res 9:24 PubMedPubMedCentral
41.
Zurück zum Zitat Toyama Y, Hotta M, Motoi F, Takanami K, Minamimoto R, Takase K (2020) Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Sci Rep 10:17024 PubMedPubMedCentral Toyama Y, Hotta M, Motoi F, Takanami K, Minamimoto R, Takase K (2020) Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Sci Rep 10:17024 PubMedPubMedCentral
42.
Zurück zum Zitat Xie T, Wang X, Li M, Tong T, Yu X, Zhou Z (2020) Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection. Eur Radiol 30:2513–2524 PubMed Xie T, Wang X, Li M, Tong T, Yu X, Zhou Z (2020) Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection. Eur Radiol 30:2513–2524 PubMed
43.
Zurück zum Zitat Yoo M, Yoon Y-S, Md P et al (2020) Prognosis prediction of pancreatic cancer after curative intent surgery using imaging parameters derived from F-18 fluorodeoxyglucose positron emission tomography/computed tomography. Medicine (Baltimore) 99:e21829 PubMed Yoo M, Yoon Y-S, Md P et al (2020) Prognosis prediction of pancreatic cancer after curative intent surgery using imaging parameters derived from F-18 fluorodeoxyglucose positron emission tomography/computed tomography. Medicine (Baltimore) 99:e21829 PubMed
44.
Zurück zum Zitat Yoo SH, Kang SY, Cheon GJ, Oh D-Y, Bang Y-J (2020) Predictive role of temporal changes in intratumoral metabolic heterogeneity during palliative chemotherapy in patients with advanced pancreatic cancer: a prospective cohort study. J Nucl Med 61:33–39 Yoo SH, Kang SY, Cheon GJ, Oh D-Y, Bang Y-J (2020) Predictive role of temporal changes in intratumoral metabolic heterogeneity during palliative chemotherapy in patients with advanced pancreatic cancer: a prospective cohort study. J Nucl Med 61:33–39
45.
Zurück zum Zitat Yue Y, Osipov A, Fraass B et al (2017) Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients. J Gastrointest Oncol 8:127–138 PubMedPubMedCentral Yue Y, Osipov A, Fraass B et al (2017) Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients. J Gastrointest Oncol 8:127–138 PubMedPubMedCentral
46.
Zurück zum Zitat Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589 PubMedPubMedCentral Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589 PubMedPubMedCentral
47.
Zurück zum Zitat Yip C, Landau D, Kozarski R et al (2014) Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy. Radiology 270:141–148 PubMed Yip C, Landau D, Kozarski R et al (2014) Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy. Radiology 270:141–148 PubMed
48.
Zurück zum Zitat Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67:157–164 PubMed Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67:157–164 PubMed
49.
Zurück zum Zitat Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184 PubMed Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184 PubMed
50.
Zurück zum Zitat Ahn SY, Park CM, Park SJ et al (2015) Prognostic value of computed tomography texture features in non-small cell lung cancers treated with definitive concomitant chemoradiotherapy. Invest Radiol 50:719–725 Ahn SY, Park CM, Park SJ et al (2015) Prognostic value of computed tomography texture features in non-small cell lung cancers treated with definitive concomitant chemoradiotherapy. Invest Radiol 50:719–725
51.
Zurück zum Zitat Yu Y, Tan Y, Xie C et al (2020) Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw Open 3:e2028086 PubMedPubMedCentral Yu Y, Tan Y, Xie C et al (2020) Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw Open 3:e2028086 PubMedPubMedCentral
52.
Zurück zum Zitat Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol 14:1058–1068 PubMed Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol 14:1058–1068 PubMed
Metadaten
Titel
A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks?
verfasst von
Yuhan Gao
Sihang Cheng
Liang Zhu
Qin Wang
Wenyi Deng
Zhaoyong Sun
Shitian Wang
Huadan Xue
Publikationsdatum
29.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08922-0

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.