Skip to main content
Erschienen in: European Radiology 8/2022

19.02.2022 | Imaging Informatics and Artificial Intelligence

Accelerating susceptibility-weighted imaging with deep learning by complex-valued convolutional neural network (ComplexNet): validation in clinical brain imaging

verfasst von: Caohui Duan, Yongqin Xiong, Kun Cheng, Sa Xiao, Jinhao Lyu, Cheng Wang, Xiangbing Bian, Jing Zhang, Dekang Zhang, Ling Chen, Xin Zhou, Xin Lou

Erschienen in: European Radiology | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Susceptibility-weighted imaging (SWI) is crucial for the characterization of intracranial hemorrhage and mineralization, but has the drawback of long acquisition times. We aimed to propose a deep learning model to accelerate SWI, and evaluate the clinical feasibility of this approach.

Methods

A complex-valued convolutional neural network (ComplexNet) was developed to reconstruct high-quality SWI from highly accelerated k-space data. ComplexNet can leverage the inherently complex-valued nature of SWI data and learn richer representations by using complex-valued network. SWI data were acquired from 117 participants who underwent clinical brain MRI examination between 2019 and 2021, including patients with tumor, stroke, hemorrhage, traumatic brain injury, etc. Reconstruction quality was evaluated using quantitative image metrics and image quality scores, including overall image quality, signal-to-noise ratio, sharpness, and artifacts.

Results

The average reconstruction time of ComplexNet was 19 ms per section (1.33 s per participant). ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). Meanwhile, there was no significant difference between fully sampled and ComplexNet approaches in terms of overall image quality and artifacts (p > 0.05) at both acceleration rates. Furthermore, ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.

Conclusions

ComplexNet can effectively accelerate SWI while providing superior performance in terms of overall image quality and visualization of pathology for routine clinical brain imaging.

Key Points

• The complex-valued convolutional neural network (ComplexNet) allowed fast and high-quality reconstruction of highly accelerated SWI data, with an average reconstruction time of 19 ms per section.
• ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001).
• ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41CrossRef Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41CrossRef
2.
Zurück zum Zitat Conklin J, Longo MGF, Cauley SF et al (2019) Validation of highly accelerated wave–CAIPI SWI compared with conventional SWI and T2*-weighted gradient recalled-echo for routine clinical brain MRI at 3T. AJNR Am J Neuroradiol 40:2073–2080PubMedPubMedCentral Conklin J, Longo MGF, Cauley SF et al (2019) Validation of highly accelerated wave–CAIPI SWI compared with conventional SWI and T2*-weighted gradient recalled-echo for routine clinical brain MRI at 3T. AJNR Am J Neuroradiol 40:2073–2080PubMedPubMedCentral
3.
Zurück zum Zitat Haller S, Haacke EM, Thurnher MM, Barkhof F (2021) Susceptibility-weighted imaging: technical essentials and clinical neurologic applications. Radiology 299:3–26CrossRef Haller S, Haacke EM, Thurnher MM, Barkhof F (2021) Susceptibility-weighted imaging: technical essentials and clinical neurologic applications. Radiology 299:3–26CrossRef
4.
Zurück zum Zitat Bilgic B, Ye H, Wald LL, Setsompopa K (2017) Simultaneous time interleaved multislice (STIMS) for rapid susceptibility weighted acquisition. Neuroimage 155:577–586CrossRef Bilgic B, Ye H, Wald LL, Setsompopa K (2017) Simultaneous time interleaved multislice (STIMS) for rapid susceptibility weighted acquisition. Neuroimage 155:577–586CrossRef
5.
Zurück zum Zitat Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M (2020) Self-supervised learning of physics-guided reconstruction neural networks without fully-sampled reference data. Magn Reson Med 84:3172–3191CrossRef Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M (2020) Self-supervised learning of physics-guided reconstruction neural networks without fully-sampled reference data. Magn Reson Med 84:3172–3191CrossRef
6.
Zurück zum Zitat Cole E, Cheng J, Pauly J, Vasanawala S (2021) Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications. Magn Reson Med 86:1093–1109CrossRef Cole E, Cheng J, Pauly J, Vasanawala S (2021) Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications. Magn Reson Med 86:1093–1109CrossRef
7.
Zurück zum Zitat Chung MS, Lee EJ, Kim S, Kim SO, Byun JS (2020) Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Eur Radiol 30:2182–2190CrossRef Chung MS, Lee EJ, Kim S, Kim SO, Byun JS (2020) Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Eur Radiol 30:2182–2190CrossRef
8.
Zurück zum Zitat Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373CrossRef Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373CrossRef
9.
Zurück zum Zitat Duan C, Deng H, Xiao S et al (2019) Fast and accurate reconstruction of human lung gas MRI with deep learning. Magn Reson Med 82:2273–2285CrossRef Duan C, Deng H, Xiao S et al (2019) Fast and accurate reconstruction of human lung gas MRI with deep learning. Magn Reson Med 82:2273–2285CrossRef
10.
Zurück zum Zitat Shanbhogue K, Tong A, Smereka P et al (2021) Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning–based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence. Eur Radiol. https://doi.org/10.1007/s00330-021-08008-3 Shanbhogue K, Tong A, Smereka P et al (2021) Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning–based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence. Eur Radiol. https://​doi.​org/​10.​1007/​s00330-021-08008-3
11.
Zurück zum Zitat Dedmari MA, Conjeti S, Estrada S, Ehses P, Stöcker T, Reuter M (2018) Complex fully convolutional neural networks for MR image reconstruction. Proceedings of first international workshop, machine learning for medical image reconstruction (MLMIR), at MICCAI 30–38 Dedmari MA, Conjeti S, Estrada S, Ehses P, Stöcker T, Reuter M (2018) Complex fully convolutional neural networks for MR image reconstruction. Proceedings of first international workshop, machine learning for medical image reconstruction (MLMIR), at MICCAI 30–38
12.
Zurück zum Zitat Wang S, Cheng H, Ying L et al (2020) DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn Reson Imaging 68:136–147CrossRef Wang S, Cheng H, Ying L et al (2020) DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn Reson Imaging 68:136–147CrossRef
13.
Zurück zum Zitat El-Rewaidy H, Neisius U, Mancio J et al (2020) Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR Biomed 33:e4312CrossRef El-Rewaidy H, Neisius U, Mancio J et al (2020) Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR Biomed 33:e4312CrossRef
14.
Zurück zum Zitat Gao Y, Cloos M, Liu F, Crozier S, Pike GB, Sun H (2021) Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. Neuroimage 240:118404CrossRef Gao Y, Cloos M, Liu F, Crozier S, Pike GB, Sun H (2021) Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. Neuroimage 240:118404CrossRef
15.
Zurück zum Zitat Sun H, Cleary JO, Glarin R et al (2020) Extracting more for less: multi-echo MP2RAGE for simultaneous T1-weighted imaging, T1 mapping, R2* mapping, SWI, and QSM from a single acquisition. Magn Reson Med 83:1178–1191CrossRef Sun H, Cleary JO, Glarin R et al (2020) Extracting more for less: multi-echo MP2RAGE for simultaneous T1-weighted imaging, T1 mapping, R2* mapping, SWI, and QSM from a single acquisition. Magn Reson Med 83:1178–1191CrossRef
16.
Zurück zum Zitat Liu F, Samsonov A, Chen L, Kijowski R, Feng L (2019) SANTIS: Sampling-augmented neural network with incoherent structure for MR image reconstruction. Magn Reson Med 82:1890–1904CrossRef Liu F, Samsonov A, Chen L, Kijowski R, Feng L (2019) SANTIS: Sampling-augmented neural network with incoherent structure for MR image reconstruction. Magn Reson Med 82:1890–1904CrossRef
17.
Zurück zum Zitat Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2018) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37:491–503CrossRef Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2018) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37:491–503CrossRef
20.
Zurück zum Zitat Chan KS, Marques JP (2021) SEPIA-susceptibility mapping pipeline tool for phase images. Neuroimage 227:117611CrossRef Chan KS, Marques JP (2021) SEPIA-susceptibility mapping pipeline tool for phase images. Neuroimage 227:117611CrossRef
21.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef
22.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRef
23.
Zurück zum Zitat Chung MS, Lee EJ, Kim S, Kim SO, Byun JS (2020) Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Eur Radiol 30:2182–2190CrossRef Chung MS, Lee EJ, Kim S, Kim SO, Byun JS (2020) Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Eur Radiol 30:2182–2190CrossRef
24.
Zurück zum Zitat Gregoire S, Chaudhary U, Brown M et al (2009) The microbleed anatomical rating scale (MARS) reliability of a tool to map brain microbleeds. Neurology 73:1759–1766CrossRef Gregoire S, Chaudhary U, Brown M et al (2009) The microbleed anatomical rating scale (MARS) reliability of a tool to map brain microbleeds. Neurology 73:1759–1766CrossRef
25.
Zurück zum Zitat Ahn S, Park SH, Lee KH (2013) How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 267:328–338CrossRef Ahn S, Park SH, Lee KH (2013) How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 267:328–338CrossRef
26.
Zurück zum Zitat Tanenbaum LN, Tsiouris AJ, Johnson AN et al (2017) Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 38:1103–1110CrossRef Tanenbaum LN, Tsiouris AJ, Johnson AN et al (2017) Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 38:1103–1110CrossRef
27.
Zurück zum Zitat Antun V, Renna F, Poon C, Adcock B, Hansen AC (2020) On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci U S A 117:30088–30095CrossRef Antun V, Renna F, Poon C, Adcock B, Hansen AC (2020) On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci U S A 117:30088–30095CrossRef
28.
Zurück zum Zitat Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: from research to clinical practice with deep neural networks. IEEE Signal Process Mag 37:111–127CrossRef Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: from research to clinical practice with deep neural networks. IEEE Signal Process Mag 37:111–127CrossRef
29.
Zurück zum Zitat Liu S, Buch S, Chen Y et al (2017) Susceptibility-weighted imaging: current status and future directions. NMR Biomed 30:e3552CrossRef Liu S, Buch S, Chen Y et al (2017) Susceptibility-weighted imaging: current status and future directions. NMR Biomed 30:e3552CrossRef
30.
Zurück zum Zitat Zhang Z, Romero A, Muckley MJ, Vincent P, Yang L, Drozdzal M (2019) Reducing uncertainty in undersampled MRI reconstruction with active acquisition. Proceedings of the IEEE conference on computer vision and pattern recognition 2049–2058 Zhang Z, Romero A, Muckley MJ, Vincent P, Yang L, Drozdzal M (2019) Reducing uncertainty in undersampled MRI reconstruction with active acquisition. Proceedings of the IEEE conference on computer vision and pattern recognition 2049–2058
31.
Zurück zum Zitat Edupuganti V, Mardani M, Vasanawala S, Pauly J (2020) Uncertainty quantification in deep MRI reconstruction. IEEE Trans Med Imaging 40:239–250CrossRef Edupuganti V, Mardani M, Vasanawala S, Pauly J (2020) Uncertainty quantification in deep MRI reconstruction. IEEE Trans Med Imaging 40:239–250CrossRef
32.
Zurück zum Zitat Mardani M, Gong E, Cheng JY et al (2018) Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 38:167–179CrossRef Mardani M, Gong E, Cheng JY et al (2018) Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 38:167–179CrossRef
33.
Zurück zum Zitat Ledig C, Theis L, Huszár F, Caballero J, Cunningham A (2017) Photorealistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition 4681–4690 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A (2017) Photorealistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition 4681–4690
34.
Zurück zum Zitat Quan TM, Nguyen-Duc T, Jeong WK (2018) Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 37:1488–1497CrossRef Quan TM, Nguyen-Duc T, Jeong WK (2018) Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 37:1488–1497CrossRef
35.
Zurück zum Zitat Yang Q, Yan P, Zhang Y et al (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357CrossRef Yang Q, Yan P, Zhang Y et al (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357CrossRef
Metadaten
Titel
Accelerating susceptibility-weighted imaging with deep learning by complex-valued convolutional neural network (ComplexNet): validation in clinical brain imaging
verfasst von
Caohui Duan
Yongqin Xiong
Kun Cheng
Sa Xiao
Jinhao Lyu
Cheng Wang
Xiangbing Bian
Jing Zhang
Dekang Zhang
Ling Chen
Xin Zhou
Xin Lou
Publikationsdatum
19.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08638-1

Weitere Artikel der Ausgabe 8/2022

European Radiology 8/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.