Skip to main content
Erschienen in: European Radiology 11/2022

14.04.2022 | Chest

Automated quality assessment of chest radiographs based on deep learning and linear regression cascade algorithms

verfasst von: Yu Meng, Jingru Ruan, Bailin Yang, Yang Gao, Jianqiu Jin, Fangfang Dong, Hongli Ji, Linyang He, Guohua Cheng, Xiangyang Gong

Erschienen in: European Radiology | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Develop and evaluate the performance of deep learning and linear regression cascade algorithms for automated assessment of the image layout and position of chest radiographs.

Methods

This retrospective study used 10 quantitative indices to capture subjective perceptions of radiologists regarding image layout and position of chest radiographs, including the chest edges, field of view (FOV), clavicles, rotation, scapulae, and symmetry. An automated assessment system was developed using a training dataset consisting of 1025 adult posterior-anterior chest radiographs. The evaluation steps included: (i) use of a CNN framework based on ResNet - 34 to obtain measurement parameters for quantitative indices and (ii) analysis of quantitative indices using a multiple linear regression model to obtain predicted scores for the layout and position of chest radiograph. In the testing dataset (n = 100), the performance of the automated system was evaluated using the intraclass correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute difference (MAD), and mean absolute percentage error (MAPE).

Results

The stepwise regression showed a statistically significant relationship between the 10 quantitative indices and subjective scores (p < 0.05). The deep learning model showed high accuracy in predicting the quantitative indices (ICC = 0.82 to 0.99, r = 0.69 to 0.99, MAD = 0.01 to 2.75). The automatic system provided assessments similar to the mean opinion scores of radiologists regarding image layout (MAPE = 3.05%) and position (MAPE = 5.72%).

Conclusions

Ten quantitative indices correlated well with the subjective perceptions of radiologists regarding the image layout and position of chest radiographs. The automated system provided high performance in measuring quantitative indices and assessing image quality.

Key Points

• Objective and reliable assessment for image quality of chest radiographs is important for improving image quality and diagnostic accuracy.
• Deep learning can be used for automated measurements of quantitative indices from chest radiographs.
• Linear regression can be used for interpretation-based quality assessment of chest radiographs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mettler FA Jr, Mahesh M, Bhargavan-Chatfield M et al (2020) Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2016. Radiology 295:418–427CrossRef Mettler FA Jr, Mahesh M, Bhargavan-Chatfield M et al (2020) Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2016. Radiology 295:418–427CrossRef
2.
Zurück zum Zitat Tesselaar E, Dahlström N, Sandborg M (2016) Clinical audit of image quality in radiology using visual grading characteristics analysis. Radiat Prot Dosimetry 169:340–346CrossRef Tesselaar E, Dahlström N, Sandborg M (2016) Clinical audit of image quality in radiology using visual grading characteristics analysis. Radiat Prot Dosimetry 169:340–346CrossRef
3.
Zurück zum Zitat Whaley JS, Pressman BD, Wilson JR, Bravo L, Sehnert WJ, Foos DH (2013) Investigation of the variability in the assessment of digital chest X-ray image quality. J Digit Imaging 26:217–226CrossRef Whaley JS, Pressman BD, Wilson JR, Bravo L, Sehnert WJ, Foos DH (2013) Investigation of the variability in the assessment of digital chest X-ray image quality. J Digit Imaging 26:217–226CrossRef
4.
Zurück zum Zitat Andersen ER, Jorde J, Taoussi N, Yaqoob SH, Konst B, Seierstad T (2012) Reject analysis in direct digital radiography. Acta Radiol 53:174–178CrossRef Andersen ER, Jorde J, Taoussi N, Yaqoob SH, Konst B, Seierstad T (2012) Reject analysis in direct digital radiography. Acta Radiol 53:174–178CrossRef
5.
Zurück zum Zitat Miyata T, Yanagawa M, Hata A, Honda O, Tomiyama N (2020) Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT. European Radiology 30:3324–3333CrossRef Miyata T, Yanagawa M, Hata A, Honda O, Tomiyama N (2020) Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT. European Radiology 30:3324–3333CrossRef
6.
Zurück zum Zitat Hardy M, Scotland B, Herron L (2015) Assessing sagittal rotation on posteroanterior chest radiographs: the effect of body morphology on radiographic appearances. J Med Imaging Radiat Sci 46:365–371CrossRef Hardy M, Scotland B, Herron L (2015) Assessing sagittal rotation on posteroanterior chest radiographs: the effect of body morphology on radiographic appearances. J Med Imaging Radiat Sci 46:365–371CrossRef
7.
Zurück zum Zitat Vañó E, Guibelalde E, Morillo A, Alvarez-Pedrosa CS, Fernández JM (1995) Evaluation of the European image quality criteria for chest examinations. Br J Radiol 68:1349–1355CrossRef Vañó E, Guibelalde E, Morillo A, Alvarez-Pedrosa CS, Fernández JM (1995) Evaluation of the European image quality criteria for chest examinations. Br J Radiol 68:1349–1355CrossRef
8.
Zurück zum Zitat Cui S, Ming S, Lin Y et al (2020) Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep 10:13657CrossRef Cui S, Ming S, Lin Y et al (2020) Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep 10:13657CrossRef
9.
Zurück zum Zitat Ye Q, Shen Q, Yang W et al (2020) Development of automatic measurement for patellar height based on deep learning and knee radiographs. Eur Radiol 30:4974–4984CrossRef Ye Q, Shen Q, Yang W et al (2020) Development of automatic measurement for patellar height based on deep learning and knee radiographs. Eur Radiol 30:4974–4984CrossRef
10.
Zurück zum Zitat Xue J, Wang B, Ming Y et al (2020) Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol 22:505–514CrossRef Xue J, Wang B, Ming Y et al (2020) Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol 22:505–514CrossRef
11.
Zurück zum Zitat Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37:73–80CrossRef Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37:73–80CrossRef
12.
Zurück zum Zitat Satyananda Kashyap MM, Karargyris A, Wu JT, Morris M, Babak Saboury ES, Syeda-Mahmood T (2019) Artificial intelligence for point of care radiograph quality assessment. Conference: SPIE Medical Imaging 2019 At: San Diego Satyananda Kashyap MM, Karargyris A, Wu JT, Morris M, Babak Saboury ES, Syeda-Mahmood T (2019) Artificial intelligence for point of care radiograph quality assessment. Conference: SPIE Medical Imaging 2019 At: San Diego
13.
Zurück zum Zitat Nousiainen K, Mäkelä T, Piilonen A, Peltonen JI (2021) Automating chest radiograph imaging quality control. Phys Med 83:138–145CrossRef Nousiainen K, Mäkelä T, Piilonen A, Peltonen JI (2021) Automating chest radiograph imaging quality control. Phys Med 83:138–145CrossRef
15.
Zurück zum Zitat Commission of the European Communities (1996) European guidelines on quality criteria for diagnostic radiographic images, EUR 16260, Brussels Commission of the European Communities (1996) European guidelines on quality criteria for diagnostic radiographic images, EUR 16260, Brussels
16.
Zurück zum Zitat Ganten M, Radeleff B, Kampschulte A, Daniels MD, Kauffmann GW, Hansmann J (2003) Comparing image quality of flat-panel chest radiography with storage phosphor radiography and film-screen radiography. AJR Am J Roentgenol 181:171–176CrossRef Ganten M, Radeleff B, Kampschulte A, Daniels MD, Kauffmann GW, Hansmann J (2003) Comparing image quality of flat-panel chest radiography with storage phosphor radiography and film-screen radiography. AJR Am J Roentgenol 181:171–176CrossRef
17.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer International Publishing, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer International Publishing, Cham, pp 234–241
18.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp 770–778
19.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines vinod nairproceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines vinod nairproceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel
22.
Zurück zum Zitat Abadi M, Barham P, Chen J et al (2016) Tensorflow: a system for large-scale machine learning12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pp 265-283 Abadi M, Barham P, Chen J et al (2016) Tensorflow: a system for large-scale machine learning12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pp 265-283
25.
Zurück zum Zitat Payer C, Štern D, Bischof H, Urschler M (2019) Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal 54:207–219CrossRef Payer C, Štern D, Bischof H, Urschler M (2019) Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal 54:207–219CrossRef
26.
Zurück zum Zitat Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef
27.
Zurück zum Zitat Amdisen A (1987) Pearson’s correlation coefficient, p-value, and lithium therapy. Biol Psychiatry 22:926–928CrossRef Amdisen A (1987) Pearson’s correlation coefficient, p-value, and lithium therapy. Biol Psychiatry 22:926–928CrossRef
28.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
29.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRef Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRef
30.
Zurück zum Zitat Krupinski EA (2010) Current perspectives in medical image perception. Atten Percept Psychophys 72:1205–1217CrossRef Krupinski EA (2010) Current perspectives in medical image perception. Atten Percept Psychophys 72:1205–1217CrossRef
31.
Zurück zum Zitat Båth M, Sund P, Månsson LG (2002) Evaluation of the imaging properties of two generations of a CCD-based system for digital chest radiography. Med Phys 29:2286–2297CrossRef Båth M, Sund P, Månsson LG (2002) Evaluation of the imaging properties of two generations of a CCD-based system for digital chest radiography. Med Phys 29:2286–2297CrossRef
32.
Zurück zum Zitat Bier B, Goldmann F, Zaech JN et al (2019) Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int J Comput Assist Radiol Surg 14:1463–1473CrossRef Bier B, Goldmann F, Zaech JN et al (2019) Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int J Comput Assist Radiol Surg 14:1463–1473CrossRef
33.
Zurück zum Zitat Berg JV, Krnke S, Gooen A, Bystrov DB, Young S (2020) Robust chest x-ray quality assessment using convolutional neural networks and atlas regularization. Proc. SPIE 11313, Medical Imaging 2020: Image Processing, 113131L (10 March 2020). https://doi.org/10.1117/12.2549541 Berg JV, Krnke S, Gooen A, Bystrov DB, Young S (2020) Robust chest x-ray quality assessment using convolutional neural networks and atlas regularization. Proc. SPIE 11313, Medical Imaging 2020: Image Processing, 113131L (10 March 2020). https://​doi.​org/​10.​1117/​12.​2549541
34.
Zurück zum Zitat Hou W, Gao X, Tao D, Li X (2015) Blind image quality assessment via deep learning. IEEE Trans Neural Netw Learn Syst 26:1275–1286CrossRef Hou W, Gao X, Tao D, Li X (2015) Blind image quality assessment via deep learning. IEEE Trans Neural Netw Learn Syst 26:1275–1286CrossRef
35.
Zurück zum Zitat Stępień I, Obuchowicz R, Piórkowski A, Oszust M (2021) Fusion of deep convolutional neural networks for no-reference magnetic resonance image quality assessment. Sensors (Basel) 21:1043CrossRef Stępień I, Obuchowicz R, Piórkowski A, Oszust M (2021) Fusion of deep convolutional neural networks for no-reference magnetic resonance image quality assessment. Sensors (Basel) 21:1043CrossRef
Metadaten
Titel
Automated quality assessment of chest radiographs based on deep learning and linear regression cascade algorithms
verfasst von
Yu Meng
Jingru Ruan
Bailin Yang
Yang Gao
Jianqiu Jin
Fangfang Dong
Hongli Ji
Linyang He
Guohua Cheng
Xiangyang Gong
Publikationsdatum
14.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 11/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08771-x

Weitere Artikel der Ausgabe 11/2022

European Radiology 11/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.