Skip to main content
Erschienen in: European Radiology 9/2022

08.04.2022 | Cardiac

Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography

verfasst von: Yiming Li, Yu Wu, Jingjing He, Weili Jiang, Jianyong Wang, Yong Peng, Yuheng Jia, Tianyuan Xiong, Kaiyu Jia, Zhang Yi, Mao Chen

Erschienen in: European Radiology | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Coronary computed tomography angiography (CCTA) has rapidly developed in the coronary artery disease (CAD) field. However, manual coronary artery tree segmentation and reconstruction are time-consuming and tedious. Deep learning algorithms have been successfully developed for medical image analysis to process extensive data. Thus, we aimed to develop a deep learning tool for automatic coronary artery reconstruction and an automated CAD diagnosis model based on a large, single-centre retrospective CCTA cohort.

Methods

Automatic CAD diagnosis consists of two subtasks. One is a segmentation task, which aims to extract the region of interest (ROI) from original images with U-Net. The second task is an identification task, which we implemented using 3DNet. The coronary artery tree images and clinical parameters were input into 3DNet, and the CAD diagnosis result was output.

Results

We built a coronary artery segmentation model based on CCTA images with the corresponding labelling. The segmentation model had a mean Dice value of 0.771 ± 0.021. Based on this model, we built an automated diagnosis model (classification model) for CAD. The average accuracy and area under the receiver operating characteristic curve (AUC) were 0.750 ± 0.056 and 0.737, respectively.

Conclusion

Herein, using a deep learning algorithm, we realized the rapid classification and diagnosis of CAD from CCTA images in two steps. Our deep learning model can automatically segment the coronary artery quickly and accurately and can deliver a diagnosis of ≥ 50% coronary artery stenosis. Artificial intelligence methods such as deep learning have the potential to elevate the efficiency in CCTA image analysis considerably.

Key Points

• The deep learning model rapidly achieved a high Dice value (0.771 ± 0.0210) in the autosegmentation of coronary arteries using CCTA images.
• Based on the segmentation model, we built a CAD autoclassifier with the 3DNet algorithm, which achieved a good diagnostic performance (AUC) of 0.737.
• The deep neural network could be used in the image postprocessing of coronary computed tomography angiography to achieve a quick and accurate diagnosis of CAD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Joseph P, Leong D, McKee M et al (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694CrossRef Joseph P, Leong D, McKee M et al (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694CrossRef
2.
Zurück zum Zitat Campeau L (1989) Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn 16:3–7CrossRef Campeau L (1989) Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn 16:3–7CrossRef
3.
Zurück zum Zitat Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732CrossRef Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732CrossRef
4.
Zurück zum Zitat Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRef Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRef
5.
Zurück zum Zitat Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477CrossRef Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477CrossRef
6.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef
7.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
8.
Zurück zum Zitat Ring F (2018) Deep learning for coronary artery segmentation in cta images, Ring F (2018) Deep learning for coronary artery segmentation in cta images,
9.
Zurück zum Zitat Chen M, Wang X, Hao G et al (2020) Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease. Br J Radiol 93:20191028CrossRef Chen M, Wang X, Hao G et al (2020) Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease. Br J Radiol 93:20191028CrossRef
10.
Zurück zum Zitat Huang W, Huang L, Lin Z et al (2018) Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images. 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 608-611 Huang W, Huang L, Lin Z et al (2018) Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images. 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 608-611
11.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentationInternational. Conference on Medical image computing and computer-assisted intervention. Springer, pp 234-241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentationInternational. Conference on Medical image computing and computer-assisted intervention. Springer, pp 234-241
12.
Zurück zum Zitat Braspenning PJ, Thuijsman F, Weijters AJMM (1995) Artificial neural networks: an introduction to ANN theory and practice. Springer Science & Business MediaCrossRef Braspenning PJ, Thuijsman F, Weijters AJMM (1995) Artificial neural networks: an introduction to ANN theory and practice. Springer Science & Business MediaCrossRef
13.
Zurück zum Zitat Imambi S, Prakash KB, Kanagachidambaresan G (2021) PyTorchProgramming with TensorFlow. Springer, pp 87–104CrossRef Imambi S, Prakash KB, Kanagachidambaresan G (2021) PyTorchProgramming with TensorFlow. Springer, pp 87–104CrossRef
14.
Zurück zum Zitat Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:1–28CrossRef Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:1–28CrossRef
15.
Zurück zum Zitat Yeghiazaryan V, Voiculescu ID (2018) Family of boundary overlap metrics for the evaluation of medical image segmentation. J Med Imaging 5:015006CrossRef Yeghiazaryan V, Voiculescu ID (2018) Family of boundary overlap metrics for the evaluation of medical image segmentation. J Med Imaging 5:015006CrossRef
16.
Zurück zum Zitat Ling CX, Huang J, Zhang H (2003) AUC: a statistically consistent and more discriminating measure than accuracy. Ijcai, pp 519–524 Ling CX, Huang J, Zhang H (2003) AUC: a statistically consistent and more discriminating measure than accuracy. Ijcai, pp 519–524
17.
Zurück zum Zitat Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning–based image restoration algorithm for coronary CT angiography. Eur Radiol 29:5322–5329CrossRef Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning–based image restoration algorithm for coronary CT angiography. Eur Radiol 29:5322–5329CrossRef
18.
Zurück zum Zitat Oktay O, Schlemper J, Folgoc LL et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:180403999 Oktay O, Schlemper J, Folgoc LL et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:180403999
19.
Zurück zum Zitat Raff GL, Abidov A, Achenbach S et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3:122–136CrossRef Raff GL, Abidov A, Achenbach S et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3:122–136CrossRef
20.
Zurück zum Zitat Denzinger F, Wels M, Ravikumar N et al (2019) Coronary artery plaque characterization from CCTA scans using deep learning and radiomics. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 593-601 Denzinger F, Wels M, Ravikumar N et al (2019) Coronary artery plaque characterization from CCTA scans using deep learning and radiomics. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 593-601
21.
Zurück zum Zitat Moon JH, Cha WC, Chung MJ, Lee K-S, Cho BH, Choi JH (2021) Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Prog Biomed 198:105819CrossRef Moon JH, Cha WC, Chung MJ, Lee K-S, Cho BH, Choi JH (2021) Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Prog Biomed 198:105819CrossRef
22.
Zurück zum Zitat Isensee F, Petersen J, Klein A et al (2018) nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486 Isensee F, Petersen J, Klein A et al (2018) nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486
23.
Zurück zum Zitat Wohlkinger W, Aldoma A, Rusu RB, Vincze M (2012) 3dnet: large-scale object class recognition from cad models. 2012 IEEE international conference on robotics and automation. IEEE, pp 5384-5391 Wohlkinger W, Aldoma A, Rusu RB, Vincze M (2012) 3dnet: large-scale object class recognition from cad models. 2012 IEEE international conference on robotics and automation. IEEE, pp 5384-5391
24.
Zurück zum Zitat Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotationInternational conference on medical image computing and computer-assisted intervention. Springer, pp 424–432 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotationInternational conference on medical image computing and computer-assisted intervention. Springer, pp 424–432
25.
Zurück zum Zitat Baskaran L, Maliakal G, Al’Aref SJ et al (2020) Identification and quantification of cardiovascular structures from CCTA: an end-to-end, rapid, pixel-wise, deep-learning method. Cardiovasc Imaging 13:1163–1171 Baskaran L, Maliakal G, Al’Aref SJ et al (2020) Identification and quantification of cardiovascular structures from CCTA: an end-to-end, rapid, pixel-wise, deep-learning method. Cardiovasc Imaging 13:1163–1171
26.
Zurück zum Zitat Kumamaru KK, Fujimoto S, Otsuka Y et al (2020) Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart J-Cardiovasc Imaging 21:437–445PubMed Kumamaru KK, Fujimoto S, Otsuka Y et al (2020) Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart J-Cardiovasc Imaging 21:437–445PubMed
27.
Zurück zum Zitat Lee MCH, Petersen K, Pawlowski N, Glocker B, Schaap M (2019) TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans Med Imaging 38:2596–2606CrossRef Lee MCH, Petersen K, Pawlowski N, Glocker B, Schaap M (2019) TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans Med Imaging 38:2596–2606CrossRef
28.
Zurück zum Zitat Choi AD, Marques H, Kumar V et al (2021) CT evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (CLARIFY): a multi-center, international study. J Cardiovasc Comput Tomogr 15:470–476CrossRef Choi AD, Marques H, Kumar V et al (2021) CT evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (CLARIFY): a multi-center, international study. J Cardiovasc Comput Tomogr 15:470–476CrossRef
Metadaten
Titel
Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography
verfasst von
Yiming Li
Yu Wu
Jingjing He
Weili Jiang
Jianyong Wang
Yong Peng
Yuheng Jia
Tianyuan Xiong
Kaiyu Jia
Zhang Yi
Mao Chen
Publikationsdatum
08.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08761-z

Weitere Artikel der Ausgabe 9/2022

European Radiology 9/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.