Skip to main content
Erschienen in: Cardiovascular Toxicology 8/2022

14.06.2022

Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16

verfasst von: Jialin Zheng, Xinjin Zhang, Wenfeng Cai, Yawei Yang, Tao Guo, Jianmei Li, Hualei Dai

Erschienen in: Cardiovascular Toxicology | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

An increasing amount of evidence has suggested that microRNA (miR) plays a role in myocardial infarction (MI). Our study aimed to discuss the impact of exosomal miR-29b-3p in MI by regulating A Disintegrin and Metalloproteinase with Thrombospondin Motifs 16 (ADAMTS16). Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). In a rat model of MI, myocardial angiogenesis and ventricular remodeling-related factors, as well as myocardial fibrosis, collagen volume fraction (CVF), capillary density, level of vascular endothelial growth factor (VEGF), and apoptosis of cardiomyocytes, were tested. ADAMTS16 and miR-29b-3p levels in the myocardial tissue of MI rats were tested. miR-29b-3p expression was decreased and ADAMTS16 expression was increased in the myocardial tissue of MI rats. ADAMTS16 was a target gene of miR-29b-3p. Upregulated miR-29b-3p delivered by BMSC-derived exosomes improved myocardial angiogenesis and ventricular remodeling, reduced myocardial fibrosis and CVF, increased capillary density and VEGF expression, and suppressed apoptosis of cardiomyocytes in MI rats. ADAMTS16 overexpression accelerated MI in rats, and ADAMTS16 upregulation reversed the protective effects of miR-29b-3p upregulation on MI rats. Our study provides evidence that upregulated miR-29b-3p delivered by BMSC-secreted exosomes can improve myocardial angiogenesis and ventricular remodeling in rats with MI by targeting ADAMTS16.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ghartavol, M. M., Aziz, S.G.-G., Babaei, G., Farjah, G. H., & Ansari, M. H. K. (2019). The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Molecular Genetics and Genomics, 7(4), e00579.CrossRef Ghartavol, M. M., Aziz, S.G.-G., Babaei, G., Farjah, G. H., & Ansari, M. H. K. (2019). The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Molecular Genetics and Genomics, 7(4), e00579.CrossRef
2.
Zurück zum Zitat Yang, S., Fan, T., Hu, Q., Xu, W., Yang, J., Xu, C., Zhang, B., Chen, J., & Jiang, H. (2018). Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Molecular Genetics and Genomics, 293(4), 883–894.CrossRef Yang, S., Fan, T., Hu, Q., Xu, W., Yang, J., Xu, C., Zhang, B., Chen, J., & Jiang, H. (2018). Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Molecular Genetics and Genomics, 293(4), 883–894.CrossRef
3.
Zurück zum Zitat Yang, J., Brown, M. E., Zhang, H., Martinez, M., Zhao, Z., Bhutani, S., Yin, S., Trac, D., Xi, J. J., & Davis, M. E. (2017). High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 312(5), H1002–H1012.CrossRef Yang, J., Brown, M. E., Zhang, H., Martinez, M., Zhao, Z., Bhutani, S., Yin, S., Trac, D., Xi, J. J., & Davis, M. E. (2017). High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 312(5), H1002–H1012.CrossRef
4.
Zurück zum Zitat Stromback, U., Engstrom, A., & Walivaara, B. M. (2019). Realising the seriousness—The experience of suffering a second myocardial infarction: A qualitative study. Intensive and Critical Care Nursing, 51, 1–6.CrossRef Stromback, U., Engstrom, A., & Walivaara, B. M. (2019). Realising the seriousness—The experience of suffering a second myocardial infarction: A qualitative study. Intensive and Critical Care Nursing, 51, 1–6.CrossRef
5.
Zurück zum Zitat Chen, P., Pan, J., Zhang, X., Shi, Z., & Yang, X. (2018). The role of microRNA-181a in myocardial fibrosis following myocardial infarction in a rat model. Medical Science Monitor, 24, 4121–4127.CrossRef Chen, P., Pan, J., Zhang, X., Shi, Z., & Yang, X. (2018). The role of microRNA-181a in myocardial fibrosis following myocardial infarction in a rat model. Medical Science Monitor, 24, 4121–4127.CrossRef
6.
Zurück zum Zitat Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., Wang, Z., Liu, Y., & Zhang, Y. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry, 44(4), 1497–1508.CrossRef Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., Wang, Z., Liu, Y., & Zhang, Y. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry, 44(4), 1497–1508.CrossRef
7.
Zurück zum Zitat He, J. G., Li, H. R., Li, B. B., Xie, Q. L., Yan, D., & Wang, X. J. (2019). Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion, 34(8), 696–704.CrossRef He, J. G., Li, H. R., Li, B. B., Xie, Q. L., Yan, D., & Wang, X. J. (2019). Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion, 34(8), 696–704.CrossRef
8.
Zurück zum Zitat Yu, X., Odenthal, M., & Fries, J. W. (2016). Exosomes as miRNA carriers: Formation-function-future. International Journal of Molecular Sciences, 17(12), 2028.CrossRef Yu, X., Odenthal, M., & Fries, J. W. (2016). Exosomes as miRNA carriers: Formation-function-future. International Journal of Molecular Sciences, 17(12), 2028.CrossRef
9.
Zurück zum Zitat Zhang, C. S., Shao, K., Liu, C. W., Li, C. J., & Yu, B. T. (2019). Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. European Review for Medical and Pharmacological Sciences, 23(15), 6691–6699.PubMed Zhang, C. S., Shao, K., Liu, C. W., Li, C. J., & Yu, B. T. (2019). Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. European Review for Medical and Pharmacological Sciences, 23(15), 6691–6699.PubMed
10.
Zurück zum Zitat Li, Q., Du, X., Liu, L., Pan, Z., Cao, S., & Li, Q. (2019). MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 711, 143953.CrossRef Li, Q., Du, X., Liu, L., Pan, Z., Cao, S., & Li, Q. (2019). MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 711, 143953.CrossRef
11.
Zurück zum Zitat Rong, W., Yang, L., Li, C. Y., Wu, X. T., Zhou, Z. D., Zhu, W. L., & Yan, Y. (2020). MiR-29 inhibits neuronal apoptosis in rats with cerebral infarction through regulating Akt signaling pathway. European Review for Medical and Pharmacological Sciences, 24(2), 843–850.PubMed Rong, W., Yang, L., Li, C. Y., Wu, X. T., Zhou, Z. D., Zhu, W. L., & Yan, Y. (2020). MiR-29 inhibits neuronal apoptosis in rats with cerebral infarction through regulating Akt signaling pathway. European Review for Medical and Pharmacological Sciences, 24(2), 843–850.PubMed
12.
Zurück zum Zitat Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113(1), 128–134.PubMed Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113(1), 128–134.PubMed
13.
Zurück zum Zitat Khanna, S., Rink, C., Ghoorkhanian, R., Gnyawali, S., Heigel, M., Wijesinghe, D. S., Chalfant, C. E., Chan, Y. C., Banerjee, J., Huang, Y., Roy, S., & Sen, C. K. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. Journal of Cerebral Blood Flow & Metabolism, 33(8), 1197–1206.CrossRef Khanna, S., Rink, C., Ghoorkhanian, R., Gnyawali, S., Heigel, M., Wijesinghe, D. S., Chalfant, C. E., Chan, Y. C., Banerjee, J., Huang, Y., Roy, S., & Sen, C. K. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. Journal of Cerebral Blood Flow & Metabolism, 33(8), 1197–1206.CrossRef
14.
Zurück zum Zitat Ni, H., Li, W., Zhuge, Y., Xu, S., Wang, Y., Chen, Y., Shen, G., & Wang, F. (2019). Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. International Journal of Cardiology, 292, 188–196.CrossRef Ni, H., Li, W., Zhuge, Y., Xu, S., Wang, Y., Chen, Y., Shen, G., & Wang, F. (2019). Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. International Journal of Cardiology, 292, 188–196.CrossRef
15.
Zurück zum Zitat Yao, Y., Hu, C., Song, Q., Li, Y., Da, X., Yu, Y., Li, H., Clark, I. M., Chen, Q., & Wang, Q. K. (2020). ADAMTS16 activates latent TGF-beta, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovascular Research, 116(5), 956–969.CrossRef Yao, Y., Hu, C., Song, Q., Li, Y., Da, X., Yu, Y., Li, H., Clark, I. M., Chen, Q., & Wang, Q. K. (2020). ADAMTS16 activates latent TGF-beta, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovascular Research, 116(5), 956–969.CrossRef
16.
Zurück zum Zitat Gopalakrishnan, K., Kumarasamy, S., Abdul-Majeed, S., Kalinoski, A. L., Morgan, E. E., Gohara, A. F., Nauli, S. M., Filipiak, W. E., Saunders, T. L., & Joe, B. (2012). Targeted disruption of Adamts16 gene in a rat genetic model of hypertension. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20555–20559.CrossRef Gopalakrishnan, K., Kumarasamy, S., Abdul-Majeed, S., Kalinoski, A. L., Morgan, E. E., Gohara, A. F., Nauli, S. M., Filipiak, W. E., Saunders, T. L., & Joe, B. (2012). Targeted disruption of Adamts16 gene in a rat genetic model of hypertension. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20555–20559.CrossRef
17.
Zurück zum Zitat Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30, 3–22.CrossRef Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30, 3–22.CrossRef
18.
Zurück zum Zitat Zhang, D., Wang, B., Ma, M., Yu, K., Zhang, Q., & Zhang, X. (2019). lncRNA HOTAIR protects myocardial infarction rat by sponging miR-519d-3p. Journal of Cardiovascular Translational Research, 12(3), 171–183.CrossRef Zhang, D., Wang, B., Ma, M., Yu, K., Zhang, Q., & Zhang, X. (2019). lncRNA HOTAIR protects myocardial infarction rat by sponging miR-519d-3p. Journal of Cardiovascular Translational Research, 12(3), 171–183.CrossRef
19.
Zurück zum Zitat Jiang, B., Li, Z., Zhang, W., Wang, H., Zhi, X., Feng, J., Chen, Z., Zhu, Y., Yang, L., Xu, H., & Xu, Z. (2014). miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. Journal of Gastroenterology, 49(6), 1011–1025.CrossRef Jiang, B., Li, Z., Zhang, W., Wang, H., Zhi, X., Feng, J., Chen, Z., Zhu, Y., Yang, L., Xu, H., & Xu, Z. (2014). miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. Journal of Gastroenterology, 49(6), 1011–1025.CrossRef
20.
Zurück zum Zitat Sugiyama, A., Mitsui, A., Okada, M., & Yamawaki, H. (2019). Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. Journal of Veterinary Medical Science, 81(4), 522–531.CrossRef Sugiyama, A., Mitsui, A., Okada, M., & Yamawaki, H. (2019). Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. Journal of Veterinary Medical Science, 81(4), 522–531.CrossRef
21.
Zurück zum Zitat Mao, Q., Liang, X. L., Zhang, C. L., Pang, Y. H., & Lu, Y. X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138–5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 393.CrossRef Mao, Q., Liang, X. L., Zhang, C. L., Pang, Y. H., & Lu, Y. X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138–5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 393.CrossRef
22.
Zurück zum Zitat Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., Qian, J., Zou, Y., & Ma, J. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11(1), 224.CrossRef Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., Qian, J., Zou, Y., & Ma, J. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11(1), 224.CrossRef
23.
Zurück zum Zitat Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., Cheng, K., Qian, L., & Yang, Y. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.CrossRef Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., Cheng, K., Qian, L., & Yang, Y. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.CrossRef
24.
Zurück zum Zitat Peng, Y., Zhao, J. L., Peng, Z. Y., Xu, W. F., & Yu, G. L. (2020). Exosomal miR-25–3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death & Disease, 11(5), 317.CrossRef Peng, Y., Zhao, J. L., Peng, Z. Y., Xu, W. F., & Yu, G. L. (2020). Exosomal miR-25–3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death & Disease, 11(5), 317.CrossRef
25.
Zurück zum Zitat Xue, Y., Fan, X., Yang, R., Jiao, Y., & Li, Y. (2020). miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Bioscience Reports, 40(9). Xue, Y., Fan, X., Yang, R., Jiao, Y., & Li, Y. (2020). miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Bioscience Reports, 40(9).
26.
Zurück zum Zitat Hou, K., Li, G., Zhao, J., Xu, B., Zhang, Y., Yu, J., & Xu, K. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.CrossRef Hou, K., Li, G., Zhao, J., Xu, B., Zhang, Y., Yu, J., & Xu, K. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.CrossRef
27.
Zurück zum Zitat Li, Z., Yi, N., Chen, R., Meng, Y., Wang, Y., Liu, H., Cao, W., Hu, Y., Gu, Y., Tong, C., Lu, M., Li, L., & Peng, L. (2020). miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cellular Signalling, 74, 109716.CrossRef Li, Z., Yi, N., Chen, R., Meng, Y., Wang, Y., Liu, H., Cao, W., Hu, Y., Gu, Y., Tong, C., Lu, M., Li, L., & Peng, L. (2020). miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cellular Signalling, 74, 109716.CrossRef
28.
Zurück zum Zitat Cai, Y., & Li, Y. (2019). Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cellular & Molecular Biology Letters, 24, 27.CrossRef Cai, Y., & Li, Y. (2019). Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cellular & Molecular Biology Letters, 24, 27.CrossRef
29.
Zurück zum Zitat Liang, J. N., Zou, X., Fang, X. H., Xu, J. D., Xiao, Z., Zhu, J. N., Li, H., Yang, J., Zeng, N., Yuan, S. J., Pan, R., Fu, Y. H., Zhang, M., Luo, J. F., Wang, S., & Shan, Z. X. (2019). The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. BBA Molecular Basis of Disease, 1865(9), 2441–2450.CrossRef Liang, J. N., Zou, X., Fang, X. H., Xu, J. D., Xiao, Z., Zhu, J. N., Li, H., Yang, J., Zeng, N., Yuan, S. J., Pan, R., Fu, Y. H., Zhang, M., Luo, J. F., Wang, S., & Shan, Z. X. (2019). The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. BBA Molecular Basis of Disease, 1865(9), 2441–2450.CrossRef
30.
Zurück zum Zitat Zhou, S., Lei, D., Bu, F., Han, H., Zhao, S., & Wang, Y. (2019). MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. Journal of Cardiovascular Translational Research, 12(4), 358–365.CrossRef Zhou, S., Lei, D., Bu, F., Han, H., Zhao, S., & Wang, Y. (2019). MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. Journal of Cardiovascular Translational Research, 12(4), 358–365.CrossRef
31.
Zurück zum Zitat Drummond, C. A., Fan, X., Haller, S. T., Kennedy, D. J., Liu, J., & Tian, J. (2018). Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS ONE, 13(5), e0197688.CrossRef Drummond, C. A., Fan, X., Haller, S. T., Kennedy, D. J., Liu, J., & Tian, J. (2018). Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS ONE, 13(5), e0197688.CrossRef
Metadaten
Titel
Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16
verfasst von
Jialin Zheng
Xinjin Zhang
Wenfeng Cai
Yawei Yang
Tao Guo
Jianmei Li
Hualei Dai
Publikationsdatum
14.06.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 8/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09745-7

Weitere Artikel der Ausgabe 8/2022

Cardiovascular Toxicology 8/2022 Zur Ausgabe