Skip to main content
Erschienen in: BMC Infectious Diseases 1/2021

Open Access 01.12.2021 | Research article

Campylobacter-associated hospitalisations in an Australian provincial setting

verfasst von: Cameron R. M. Moffatt, Karina J. Kennedy, Linda Selvey, Martyn D. Kirk

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2021

Abstract

Background

Campylobacter spp. infections are a globally important cause of enterocolitis, causing substantial morbidity. Capturing accurate information on hospitalisations is challenging and limited population-level data exist to describe the clinico-epidemiological characteristics of hospitalised cases.

Methods

Hospital administrative and laboratory datasets were linked to identify Campylobacter-associated hospitalisations between 2004 and 2013. Accuracy of morbidity coding was assessed using laboratory diagnosis as a gold standard, with health department surveillance data used to calculate population-based rates. Additional patient-level data were collected via review of medical records. Descriptive statistics were used to assess changes in rates and proportions and to assess relationships between key variables including age, length of stay, comorbidity and complications.

Results

In total 685 Campylobacter-associated hospital admissions were identified, with the sensitivity of morbidity coding 52.8% (95% CI 48.9–56.7%). The mean annual rate of hospitalisation was 13.6%. Hospitalisation rates were higher for females across most age-groups, while for both genders marked increases were observed for those aged ≥60 years. Median admission age was 39.5 years, with an average length of stay of 3.5 days. Comorbidities were present in 34.5% (237/685) of admissions, with these patients more likely to develop electrolyte disturbances, hypotension, renal impairment or acute confusion (all p < 0.001). Bacteraemia and acute kidney injury were observed in 4.1% (28/685) and 3.6% (23/685) of admissions, respectively. Inpatient mortality was low (0.15%).

Conclusion

Under reporting of Campylobacter-associated hospitalisations is substantial but can be improved through data linkage. We observed demographic differences among those hospitalised but further work is needed to determine risk factors and predictors for hospitalisation.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACT
Australian Capital Territory
AKI
Acute Kidney Injury
CCI
Charlson Comorbidity Index
ED
Emergency Department
GP
General Practitioner
ICD
International Classification of Diseases
LOS
Length of Stay
NSW
New South Wales
UR
Unit Record
US
United States

Background

In high-income settings, Campylobacter spp. are the most frequently reported bacterial enteric pathogen, with increasing disease incidence observed in the United States (US), European Union and Australia [13]. Campylobacteriosis typically presents as an acute enterocolitis, characterized by profuse diarrhoea and abdominal pain, along with nonspecific symptoms including fever, myalgia and lethargy [4]. While uncommon, complications including bacteraemia and post-infectious sequelae such as reactive arthritis and Guillain-Barré syndrome also occur [57].
National (and provincial-level) enteric surveillance systems are frequently passive, capturing only limited data on outcomes such as hospitalisation and death [8]. Consequently, estimating hospitalisation has become an established method for describing foodborne-related disease burden [810]. Nevertheless, differences in data sources and the assumptions underpinning these methods make intercountry comparison of hospitalisation rates challenging [8].
Given increasing disease incidence and concerns regarding accuracy of estimates, it is important to re-examine Campylobacter, with the aim of this study to quantify associated hospitalisations and describe their epidemiological and clinical characteristics, including the spectrum of illness, risk factors and associated outcomes.

Methods

Setting

The Australian Capital Territory (ACT) is a self-governing territory in south-eastern Australia, surrounded by the state of New South Wales (NSW). It contains the national capital Canberra, with an estimated population of 410,000 [11]. Two public hospitals service the ACT. Canberra Hospital, an acute care teaching facility of approximately 600 beds, acts as the tertiary referral centre to both the ACT and surrounding parts of NSW, while Calvary Public Hospital, is a smaller acute care teaching facility of approximately 250 beds. Both hospitals support around 550,000 people in the ACT and surrounding NSW. Three private hospitals operate within the ACT but only the two public hospitals have emergency departments (EDs).

Outcome definition and objectives

A Campylobacter-associated admission was defined as any inpatient episode clinically and temporally linked to a hospital-derived Campylobacter isolate. Our study objectives included examining admission counts and calculating hospitalisation rates, describing the clinical and demographic characteristics of admissions and assessing the impact of admission characteristics, including age, gender and comorbidity, on outcomes including length of stay (LOS) and time to admission.

Data sources and data collection

Hospital administrative data

We obtained public hospital admissions data between 01 January 2004 and 31 December 2013, where the International Classification of Diseases (ICD) morbidity code ‘A045 Campylobacter enteritis’ was recorded as a primary or secondary diagnosis. Included were unit record (UR) and admission numbers, birth dates, gender, admission and discharge dates, admission sources, admission units and discharge destinations. LOS was calculated by subtracting admission from discharge dates, with reporting in whole days. Same day admissions and discharges received a LOS of 1 day. Private hospital admissions were not sought due to the acute nature of campylobacteriosis and absence of private hospital EDs.

Hospital microbiology data

Hospital microbiology data for the period 01 January 2004 to 31 December 2013 were used to identify admissions where Campylobacter spp. were isolated from clinical samples but where ICD code ‘A045’ was not assigned. UR and admission numbers, birth dates, gender, isolation dates, specimen type (e.g. faeces, blood), and hospital, ward and unit identifiers were provided, facilitating linkage with administrative data. All Campylobacter diagnoses were made via culture, with routine speciation not performed before 2013. Details on concurrent isolation or detection of additional enteric pathogens were also provided.

Medical record data

Medical records were reviewed to confirm admissions and retrieve details unavailable via administrative data sets. This included the presence or absence of signs and symptoms, onset dates (defined as the date of earliest diarrhoea), time to admission (defined as difference in whole days between the onset and admission date), travel history, comorbidities, complications and discharge summaries. Time to admission was calculated for initial acute admissions and not for readmissions or inter-state hospital transfers.
Key signs of infection sought included tachycardia (resting heartrate ≥110 bpm), hypotension (systolic blood pressure < 90 mmHg), electrolyte imbalance (levels outside of typical reference range for serum sodium of 135–145 mmol/L and/or potassium of 3.5–5.2 mmol/L) and acute renal impairment (levels above typical reference range for serum creatinine in males of 60–110 μmol/L and females of 45–90 μmol/L and/or urea of 3.0–8.0 μmol/L). Charlson Co-morbidity Index (CCI) scores [12] were calculated as a marker of comorbidity.

ACT surveillance notifications and emergency presentation data

Campylobacter notification data between 01 January 2004 and 31 December 2013 were obtained from the ACT Government Health Directorate. After identifying ACT resident Campylobacter-associated admissions, we sought to link these back to notification data using birth date, gender, postcode and specimen collection date. This enabled calculation of a hospitalisation rate for ACT campylobacteriosis cases. Hospital-generated microbiology data also enabled matching of non-admitted ED presentations to notification data to calculate an ED presentation rate for ACT residents.

Exclusions

Admissions were excluded if additional enteric pathogens were detected or isolated from a sample, if diarrhoeal symptoms commenced ≥48 h after admission and if Campylobacter spp. were isolated during a planned or elective admission. The exception to this was for planned admissions involving bone marrow or stem cell transplantation. Given the importance of microbial translocation and overgrowth in patients being treated for haematological malignancies [13], we postulated this patient group had underlying Campylobacter spp. carriage at the time of admission.

Analysis

Hospitalisation and non-admitted ED presentation rates were calculated using ACT resident admission and surveillance data. Sensitivity, specificity, positive and negative predictive values for ICD coding using laboratory diagnosis as the gold standard were calculated. Age and gender specific rates of hospitalisation were calculated for ACT residents. Changes in rates and proportions over time were assessed using linear tests for trend, while two-sample tests of proportions were used to assess equality between groups. Relationships between outcome and independent variables were assessed using Pearson’s chi-squared or Fisher’s exact tests. Equality of median tests and Spearman’s correlations were used to analyse non-normally distributed continuous data including age, LOS, CCI score and time to admission.

Results

Linking hospital administrative data to laboratory data

We identified 685 Campylobacter-associated admissions during the study period (Fig. 1). Hospital administrative data identified 52% (359/685) of admissions, laboratory data 45% (310/685) with the remaining 16 admissions identified via medical record review. For admissions identified via administrative data, 84% (300/359) had Campylobacter enteritis recorded as a primary diagnosis code. For admissions identified via laboratory data, primary diagnosis codes were available for 81% (250/310), with two-thirds (168/250) assigned a non-specific gastroenteritis code. Sensitivity of morbidity coding using laboratory diagnosis as the standard was 52.8% (95% CI 48.9–56.7%), and specificity was 57.1% (95% CI 37.2–75.5%). The positive and negative predictive values were 96.7% (95% CI 94.2–98.3%) and 4.9% (95% CI 2.8–7.8%).
ACT residents comprised 86% (593/685) of admissions, with a hospitalisation rate of 13.6% (593/4361) (Fig. 2). EDs were the admission source for 94% (555/593) of ACT resident admissions, with a further 10% (436/4361) of ACT Campylobacter notifications linked to at least one non-admitted ED presentation. No trends over time were observed in the proportions of Campylobacter-associated admissions or non-admitted ED presentations. Admissions did not appear to show any obvious seasonal pattern (data not shown).

Descriptive characteristics

Age and sex characteristics

Age and sex characteristics are shown in Table 1. Males were older (M = 41.2 years, range < 1 to 92.3) than females (M = 38.5, range < 1.0 to 92.3) but this difference was not significant. For ACT resident admissions, the median age was 38.4 years (range < 1.0 to 92.3 years), compared with 31 years (range < 1.0 year to 99.0 years) among ACT community cases (Χ2 = 17.7, p < 0.001). Non-ACT residents were significantly older (M = 50.8, range < 1 year, maximum 90.8 years, Χ2 = 5.5, p = 0.02). Hospitalisation rates increased noticeably among patients aged ≥60 years. The proportion of females admitted across most age-groups was higher than for males, although these differences were small and non-significant (Fig. 3).
Table 1
Demographic and clinical characteristics of 685 Campylobacter-associated admissions in Australian Capital Territory (ACT) public hospitals, 2004–2013
Gender
 Male (n, %)
350 (51.0)
 Female
335 (49.0)
ACT resident (%)
593 (86.6)
Median (M) age in years for all admissions (range)
39.7 (< 1.0–92.3)
Indigenous Australian (%)
7 (1.0)
Age-groups % (hospitalisation rate per 100,000 populationa)
 0–9 years (n = 30)
4.38 (5.67)
 10–19 years (n = 67)
9.78 (11.91)
 20–29 years (n = 158)
23.07 (23.72)
 30–39 years (n = 93)
13.58 (15.58)
 40–49 years (n = 67)
9.78 (11.91)
 50–59 years (n = 57)
8.32 (11.17)
 60–69 years (n = 68)
9.93 (19.53)
 70–79 years (n = 74)
10.80 (39.40)
 80+ years (n = 71)
10.36 (65.35)
Acute care admission (%)
673 (98.3)
Average length of stay (range)
3.5 days (1.0–38.0)
 Same day acute admissions (n = 268)
1.0 day
 Non-same day acute admissions (n = 405)
4.9 days (2.0–38.0)
 Other separation types (n = 12)
8.6 days (1.0–23.0)
Median (M) length of stay (range)
2.0 days (1.0–38.0)
 Non-same day acute admissions (n = 405)
4.0 days (2.0–38.0)
Comorbidity as per Charlson Comorbidity Index (CCI) (count, (percentage))
237 (34.5)
CCI score (n, %)
 1
86 (36.3)
 2
81 (34.2)
  > 2 (%, range)
70 (29.5, 3–12)
Median (M) time to admission from illness onset for acute admissions b (range)
3.0 days (< 1.0–23.0)
Key signs of infection c
 Electrolyte disturbance (n, %)
410 (60.2)
 Tachycardia
241 (35.4)
 Renal impairment
127 (18.7)
 Hypotension
87 (12.8)
History of recent overseas travel (n, %)
11 (1.6)
Re-admission ≤28 days related to campylobacteriosis, including non-acute status changes (n, %)
38 (5.6)
Intensive care unit admission (n, %)
10 (1.5)
Surgical or invasive diagnostic procedure related to campylobacteriosis (n, %)
45 (6.6)
Death during admission or ≤ 28 days post discharge (n, %)
5 (0.7)
Blood sample taken for culture (percentage Campylobacter positive)
333 (7.5)
Antimicrobial therapy during admission (n, %)
219 (32.0)
aACT residents only b636 observations c681 observations
 

Prior care, source of admission and admitting unit

Twenty-seven percent (187/684) of admissions consulted a general practitioner (GP) prior to hospitalisation, while 13.4% (92/685) were hospitalised after an earlier non-admitted ED presentation. There were 29 admissions (4.2%) preceded by both GP consultations and non-admitted ED presentations. EDs were the admission source for 91.8% (629/685) of admissions, with the remainder via community or outpatient admissions, inter-hospital transfers or care type changes.
Length of stay (LOS)
The median LOS for Campylobacter-associated admissions was 2.0 days (range 1.0–38.0), with no gender or residency differences observed. Exclusion of same day Emergency Medicine unit admissions (n = 180), markedly increased the median LOS (M = 3.0 days, range 1.0–38.0) and average LOS (Table 1). A moderately positive correlation between age and LOS was observed (Spearman’s = 0.3557, p = < 0.001). Higher median LOS were observed for units including Oncology, Haematology, and Geriatrics, while significant correlations between increasing age and LOS, were observed among General Medicine, Renal Medicine and Gastroenterology admissions (data not shown).

Comorbidities

Comorbidities were documented in 34.6% (237/685) of admissions. The most prevalent were diabetes 30.8% (73/237), malignancies (including solid and disseminated tumours, blood and lymphatic cancers) 27.4% (65/237), chronic kidney disease 19.0% (45/237), cerebrovascular disease 17.3% (41/237) and history of myocardial infarction 13.1% (31/237). The median CCI score was 2 (range 1 to 12). Males comprised 53.6% (127/237) of admissions with comorbidities but no gender differences in CCI score were observed. Admissions with comorbidities were older, having a median age of 66.7 years (range 3.5 to 92.3 years) versus 28.8 years (range < 1.0 to 92.3) (Χ2 202.0, p < 0.001). A positive correlation between increasing age and CCI scores was observed (rs = 0.18, n = 237, p < 0.001). LOS were longer in admissions with comorbidities, with a median of 4.0 days (range 1.00 to 38.0 days) versus 1.0 day (range 1.0 to 22.0, Χ2 68.93, p < 0.001). A positive correlation between increasing LOS and CCI scores was demonstrated (rs = 0.25, n = 237, p < 0.001), while a larger proportion of admissions with comorbidities had times to admission greater than the 3 day median (Χ2 4.55, p = 0.03).

Time to admission

The median time between onset and hospitalisation for initial acute admissions (n = 662) was 3.0 days (range < 1.0 to 24.0). A higher proportion of females had times to admission greater than the median compared to males (Χ2 6.03, p = 0.01). A positive correlation between increasing age and time to admission was observed (rs = 0.15, n = 662, p < 0.001).

Key signs of infection

These were observed in 74.5% (510/685) of admissions (Table 1), with electrolyte imbalance being the most commonly reported. Renal impairment was associated with any CCI-linked comorbidity (Χ2 = 128.30, p < 0.001) along with male gender (Χ2 = 12.56, p < 0.001). Hypotension (Χ2 = 27.91, p < 0.001) and electrolyte imbalances (Χ2 = 22.24, p < 0.001) were also associated with underlying comorbidities. Correlations between the presence of multiple signs of infection (including electrolyte imbalance, tachycardia, renal impairment and hypotension), and increasing age (rs = 0.32, n = 682, p < 0.001) and LOS (rs = 0.22, n = 682, p < 0.001) were observed. Admissions without comorbidities were more likely to have bloody diarrhoea, self-reported fevers, abdominal pain and headaches documented, while key signs of infection and Campylobacter-associated readmissions occurred more frequently in admissions with comorbidities (Table 2).
Table 2
Comparison of signs, symptoms, and other outcomes among Campylobacter-associated admissions with and without documented comorbidities (as per Charlson Co-morbidity Index)
 
Comorbidity present (n = 237)
 
Signs and symptoms associated with enterocolitis
Yes
%
No
%
Total
Χ2
p-value
 Diarrhoea
231
98.7
444
99.1
675
0.23
0.63
 Bloody diarrhoea
28
18.7
121
35.2
149
13.51
< 0.001
 Self-reported fever
129
58.1
341
78.0
470
28.57
< 0.001
 Fever (≥38 °C)
114
50.0
224
51.4
338
0.11
0.74
 Abdominal pain
161
81.7
403
95.7
564
33.00
< 0.001
 Nausea
142
79.8
311
87.6
453
5.70
0.02
 Vomiting
114
58.8
234
56.5
348
0.27
0.60
 Myalgia / arthralgia
35
76.1
122
87.1
157
3.22
0.07
 Malaise
102
91.9
152
96.8
254
3.18
0.07
 Headache
53
66.3
149
89.8
202
20.31
< 0.001
Key signs and symptoms of infection
 Hypotension
52
22.3
35
7.8
87
27.94
< 0.001
 Tachycardia
89
38.2
152
33.9
241
1.22
0.27
 Electrolyte imbalance
169
72.5
241
53.8
410
22.46
< 0.001
 Renal impairment
98
42.1
29
6.5
127
127.95
< 0.001
 Acute confusion
34
14.6
4
0.9
38
54.60
< 0.001
 Bacteraemia
17
7.2
11
2.5
28
8.80
< 0.01
Other outcomes
 ICU admission
10
4.2
0
10
 
< 0.001a
 Death within 28 days of discharge
5
2.1
0
5
 
< 0.01a
Campylobacter-associated readmission
22
9.3
16
3.6
38
9.65
0.002
a Fisher’s exact test

Complications and other outcomes

A diversity of complications were documented at discharge, with systemic disease and acute kidney injury the most frequently recorded (Table 3). The median age for admissions with systemic disease was 60.8 years (range 12.0 to 90.1) compared to 38.6 years (range < 1.0 to 92.3) among other Campylobacter-associated admissions (Χ2 9.60, p = 0.002). The median LOS was 3.5 days (range 1.0 to 28.0), being significantly greater than other admissions (M 2.0 days, range 1.0 to 38.0, Χ2 = 7.70, p < 0.01). An association between comorbidity per se and systemic illness was observed (Χ2 8.80, p < 0.01) with individual associations seen for admissions with liver disease (Χ2 = 50.78, p < 0.001) and leukaemia (Χ2 = 5.67 p = 0.02).
Table 3
Complications recorded at discharge among Campylobacter-associated hospital admissions in the Australian Capital Territory, 2004–2013
 
Frequency (%)
Extra-intestinal / systemic disease
 Bacteraemia (laboratory proven)
28 (4.1%)
 Sepsis (discharge diagnosis)
19 (2.8%)
Intestinal complications
 Appendicitis (histologically confirmed)
8 (1.2%)
 Mesenteric adenitis
6 (0.9%)
 Acute pancreatitis
4 (0.6%)
 Acute cholecystitis
1 (0.2%)
Other significant complication
 Acute kidney injury
23 (3.4%)
 Acute myocardial infarction
6 (0.9%)
 Delirium
3 (0.4%)
 Metabolic acidosis
3 (0.4%)
 Atrial fibrillation
2 (0.3%)
 Rhabdomyolysis
2 (0.3%)
 Febrile seizure
1 (0.2%)
 Hypovolemic shock
1 (0.2%)
 Spontaneous abortion
1 (0.2%)
 Perforated diverticulum
1 (0.2%)
 Peritonitis
1 (0.2%)
 Pulmonary embolism
1 (0.2%)
 Thrombocytopaenia
1 (0.2%)
 Transient Ischaemic Attack
1 (0.2%)
Reactive complication
 Guillan-Barré Syndrome
2 (0.3%)
 Myopericarditis
2 (0.3%)
 Reactive arthritis
1 (0.2%)
 IgA nephropathy
1 (0.2%)
Unnecessary surgery
 Appendicectomy (normal histology)
8 (1.2%)
Acute Kidney Injury (AKI) was diagnosed among 3.4% (23/685) of admissions. These were significantly older (M 73.9 years, range 33.2 to 87.5, median test Χ2 = 19.92, p < 0.001), and took longer to present following symptom onset (M 5.0 days, range < 1.0 to 14, Χ2 = 16.87, p < 0.001). No differences in gender, LOS or CCI score were observed among acute admissions without AKI. Renal impairment was observed in 18.7% (123/672) of acute admissions. This group was also older (M 73.8 years, range 23.7 to 92.3, Χ2 = 101.51, p < 0.001), had longer LOS (M 4.0 days, range 1.0 to 31.0, Χ2 = 27.91, p < 0.001), and a greater proportion of admissions with CCI scores > 2 (M 2, range 1 to 12, Χ2 = 29.57, p < 0.001). A significant association with male gender was observed (Χ2 = 12.43, p < 0.001).
Readmissions ≤28 days after discharge occurred among 9.6% (66/685) of admissions, with 57.6% (38/66) being Campylobacter-associated. These included 27 admissions for ongoing enterocolitis and 11 for non-acute care. The median age and LOS for acute readmissions were 36.9 years (range 10.1 to 85.6) and 1 day (range 1 to 7 days). No gender-based associations were observed.
Surgical or invasive diagnostic procedures (n = 52) were performed during 6.6% (45/685) of admissions. Colonoscopies accounted for 46% (24/52), appendectomies 31% (16/52) and gastroscopies 19% (10/52) of procedures. The median age of those undergoing procedures was 28.8 years (range 12.0 to 81.4), significantly lower than for other acute admissions (M = 40.1 years, range < 1.0 to 92.3, Χ2 = 8.54, p < 0.01), while median LOS was 4 days (range 1 to 22), being compared to 2 days (range 1 to 38 days, Χ2 = 20.70, p < 0.001).

Discussion

In this study, only one out of every two Campylobacter infections was identified via hospital discharge data. While hospitalisation is considered a marker of severity for foodborne bacterial infections [14], estimating enteric pathogen hospitalisations is challenging given concerns regarding the completeness of surveillance data and the accuracy of pathogen-specific diagnoses and morbidity coding [15]. By identifying all hospital-derived Campylobacter isolates and linking these to inpatient admissions and surveillance data we calculated the sensitivity of morbidity coding associated with Campylobacter infection to be 52%, indicating substantial measurement error. This has been demonstrated in similar settings with US [15] and Swedish [16] studies reporting appropriate use of ICD coding among hospitalised campylobacteriosis cases to be 43 and 51% respectively.
The 14% hospitalisation rate we reported is high, reflecting Campylobacter-associated morbidity in Australia [3, 9]. Intercountry comparisons of hospitalisations however reflect differences in incidence and data capture. In New Zealand, 12.6% of cases were reported as hospitalised (although data was complete for only 62.2% of cases) [17] while in Germany, where hospitalisation status is routinely collated, the rate was 10% [18]. Elsewhere hospitalisation rates have ranged from estimates of 5.1% in Canada [19] to 26.9% in a Swedish study [16].
Population characteristics of campylobacteriosis in developed settings are typified by increased disease incidence in males and a bimodal age-distribution, with peaks in children aged < 5 years and adults < 45 years [20]. We observed higher female admission rates across all age groupings, a finding reported in a number of studies examining hospitalisation for enteric infections [21, 22]. Reasons for this remain uncertain but inadequate social support for older women has been proposed as a contributing factor [21], while our study suggests females may delay seeking care. The increase in admissions aged 20–29 years reflects higher case numbers, with Campylobacter-associated hospitalisation rates increasing most dramatically after 60 years. These observations are consistent with reported changes in the population structure for campylobacteriosis in Australia and similar settings [3, 23], highlighting the potential hospitalisation costs for the elderly and necessitating a need for age-specific interventions [24].
Signs and symptoms observed were typical of campylobacteriosis, with most admissions having diarrhoea and abdominal pain recorded [4]. Reports suggest older campylobacteriosis cases may report some signs and symptoms, including bloody diarrhoea, abdominal pain, vomiting and fevers less frequently [25]. Our data support this juxtaposition, although it seems unlikely that age-related differences in presentation would impact a Campylobacter diagnosis due to the proclivity of stool testing.
Reported LOS vary dependent upon the measures of central tendency used. We reported mean and median LOS of 3.5 and 2.0 days, while for acute non-same day admissions the mean and median LOS were 4.9 and 4.0 days. These appear comparable to findings elsewhere [19, 26]. Similarly we observed cases with bacteraemia or underlying comorbidities to have longer LOS [27, 28]. Notably 40% of admissions involved same day care, illustrating the spectrum of hospitalisation, while linkage of surveillance and laboratory data revealed 10% of non-hospitalised cases presented to EDs for non-admitted acute care. Reasons for this ED burden might include perceived symptom severity and lack of access to a GP [29].
One third of patients had a comorbidity, a proportion similar to studies describing hospitalisations for infectious gastroenteritis [27]. These patients were generally older, took longer to present and had longer LOS. Diabetes was the most frequently recorded comorbidity, followed by malignancies and chronic kidney disease. While some evidence suggest diabetes and chronic kidney disease increase risk for Campylobacter enterocolitis [30, 31], relationships between Campylobacter infection and malignancies are more well established [32, 33]. Admissions with comorbidities experienced electrolyte imbalances, renal impairment, hypotension, acute confusion and acute readmission more frequently.
Half of acute admissions had blood cultures, with a positivity rate of 7.5%. These admissions involved older patients with higher comorbidity levels, although associated mortality was low, features consistent with findings elsewhere [28, 34]. Although no deaths occurred among blood culture positive cases, there was one death in a case diagnosed with blood culture negative sepsis.
Our study suggests renal impairment may occur more frequently in patients’ hospitalised with campylobacteriosis. This is supported by studies describing increased renal dysfunction among hospitalised gastroenteritis cases [30, 35, 36]. Furthermore comorbidities including kidney disease, hypertension, diabetes and a history of organ transplantation have been shown to increase AKI risk among patients with infectious diarrhoea [30].
Around 7% of admissions underwent surgical or invasive diagnostic procedures, with appendectomies and colonoscopies most frequently performed. Among appendix specimens, 50% showed histological evidence of inflammation, although specimens were not microbiologically tested. The issue of Campylobacter-associated appendicitis remains contentious, with a study re-examining archived appendices using nucleic acid testing detecting C. jejuni in 22% of specimens [37].
Limitations with our study include the cross-sectional design and generalisability of findings given the small provincial source population [38]. Local epidemiology is also an important consideration, with ACT campylobacteriosis rates higher than most other Australian states [3]. Differences in health care utilisation also require consideration [39]. We assumed hospitalisation would most likely occur in the public sector, with the extent of private hospital admissions being uncertain. Given the size and role of private hospitals in Australia’s health care system [40], our calculated rate of hospitalisation for ACT residents may be an underestimation. We were unable to estimate predictors of hospitalisation, however access to integrated Australian hospital and primary care data is lacking [41], making comparisons challenging. While plausible, our findings regarding AKI and renal impairment require further assessment. AKI diagnoses were not validated against a standard, e.g. Kidney Disease: Improving Global Outcomes (KDIGO) criteria [42], while our assessment of renal impairment via serum creatinine levels was simplified.

Conclusion

Hospitalisation data provides an important indicator of the burden and severity of campylobacteriosis. Improving the accuracy and completeness of Campylobacter-associated hospitalisation data, in conjunction with detailed clinico-epidemiological characterisation is of tangible benefit to clinicians and public health decision makers. Undertaking observational studies, including genomic assessment of virulence factors, would improve understanding of patient and pathogen specific predictors of hospitalisation.

Acknowledgments

We would like to thank the following: ACT Pathology for provision of data on public hospital-generated Campylobacter isolates; ACT Health Protection Service for provision of surveillance data for campylobacteriosis in the ACT; hospital data services staff provision of administrative data for Campylobacter-associated admissions and medical records staff for facilitating access to case medical records identified via morbidity coding and/or data linkage.
Ethics approvals were obtained from the Human Research Ethics Committee of the ACT Government Health Directorate (Ref. ETHLR.14.121) Calvary Health Care (Bruce) (Ref. 22–2014) and the Australian National University (Ref. 2014/223). These approvals included permission to access inpatient medical records subject to the study dataset being anonymised before use. Individual consent to participate was not required.
Not applicable.

Competing interests

The authors declare they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSa J. 2018;16(12):e05500.CrossRef European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSa J. 2018;16(12):e05500.CrossRef
2.
Zurück zum Zitat Geissler AL, Bustos Carrillo F, Swanson K, et al. Increasing campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clin Infect Dis. 2017;65(10):1624–31.PubMedCrossRef Geissler AL, Bustos Carrillo F, Swanson K, et al. Increasing campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clin Infect Dis. 2017;65(10):1624–31.PubMedCrossRef
3.
Zurück zum Zitat Moffatt CR, Glass K, Stafford R, D'Este C, Kirk MD. The campylobacteriosis conundrum - examining the incidence of infection with Campylobacter sp. in Australia, 1998-2013. Epidemiol Infect. 2017;145(4):839–47.PubMedCrossRef Moffatt CR, Glass K, Stafford R, D'Este C, Kirk MD. The campylobacteriosis conundrum - examining the incidence of infection with Campylobacter sp. in Australia, 1998-2013. Epidemiol Infect. 2017;145(4):839–47.PubMedCrossRef
4.
Zurück zum Zitat Blaser MJ, Engberg J. Clinical aspects of campylobacter jejuni and campylobacter coli infections. Campylobacter, Third Edition: American Society of Microbiology; 2008. p. 99–121. Blaser MJ, Engberg J. Clinical aspects of campylobacter jejuni and campylobacter coli infections. Campylobacter, Third Edition: American Society of Microbiology; 2008. p. 99–121.
5.
Zurück zum Zitat Louwen R, van Baarlen P, van Vliet AH, van Belkum A, Hays JP, Endtz HP. Campylobacter bacteremia: a rare and under-reported event? Eur J Microbiol Immunol (Bp). 2012;2(1):76–87.CrossRef Louwen R, van Baarlen P, van Vliet AH, van Belkum A, Hays JP, Endtz HP. Campylobacter bacteremia: a rare and under-reported event? Eur J Microbiol Immunol (Bp). 2012;2(1):76–87.CrossRef
6.
Zurück zum Zitat Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM. Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum. 2007;37(1):48–55.PubMedPubMedCentralCrossRef Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM. Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum. 2007;37(1):48–55.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Poropatich KO, Walker CL, Black RE. Quantifying the association between campylobacter infection and Guillain-Barre syndrome: a systematic review. J Health Popul Nutr. 2010;28(6):545–52.PubMedPubMedCentralCrossRef Poropatich KO, Walker CL, Black RE. Quantifying the association between campylobacter infection and Guillain-Barre syndrome: a systematic review. J Health Popul Nutr. 2010;28(6):545–52.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Thomas MK, Murray R, Flockhart L, et al. Estimates of foodborne illness-related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathog Dis. 2015;12(10):820–7.PubMedPubMedCentralCrossRef Thomas MK, Murray R, Flockhart L, et al. Estimates of foodborne illness-related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathog Dis. 2015;12(10):820–7.PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Australian Bureau of Statistics (ABS). Australian Demographic Statistics, June Quarter 2017. Accessed 12 Sept. Australian Bureau of Statistics (ABS). Australian Demographic Statistics, June Quarter 2017. Accessed 12 Sept.
12.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.CrossRef Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.CrossRef
13.
Zurück zum Zitat Ellis M. Preventing microbial translocation in haematological malignancy. Br J Haematol. 2004;125(3):282–93.PubMedCrossRef Ellis M. Preventing microbial translocation in haematological malignancy. Br J Haematol. 2004;125(3):282–93.PubMedCrossRef
14.
Zurück zum Zitat Helms M, Simonsen J, Molbak K. Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis. 2006;42(4):498–506.PubMedCrossRef Helms M, Simonsen J, Molbak K. Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis. 2006;42(4):498–506.PubMedCrossRef
15.
Zurück zum Zitat Scallan E, Griffin PM, McLean HQ, Mahon BE. Hospitalisations due to bacterial gastroenteritis: a comparison of surveillance and hospital discharge data. Epidemiol Infect. 2018;146(8):954–60.PubMedCrossRef Scallan E, Griffin PM, McLean HQ, Mahon BE. Hospitalisations due to bacterial gastroenteritis: a comparison of surveillance and hospital discharge data. Epidemiol Infect. 2018;146(8):954–60.PubMedCrossRef
16.
Zurück zum Zitat Harvala H, Rosendal T, Lahti E, et al. Epidemiology of Campylobacter jejuni infections in Sweden, November 2011–October 2012: is the severity of infection associated with C. jejuni sequence type? Infect Ecol Epidemiol. 2016;6:31079.PubMed Harvala H, Rosendal T, Lahti E, et al. Epidemiology of Campylobacter jejuni infections in Sweden, November 2011–October 2012: is the severity of infection associated with C. jejuni sequence type? Infect Ecol Epidemiol. 2016;6:31079.PubMed
17.
Zurück zum Zitat The Institute of Environmental Science and Research Ltd. Notifiable Diseases In New Zealand: Annual Report 2017. Porirua, New Zealand, 2019. The Institute of Environmental Science and Research Ltd. Notifiable Diseases In New Zealand: Annual Report 2017. Porirua, New Zealand, 2019.
18.
Zurück zum Zitat Schielke A, Rosner BM, Stark K. Epidemiology of campylobacteriosis in Germany - insights from 10 years of surveillance. BMC Infect Dis. 2014;14:30.PubMedPubMedCentralCrossRef Schielke A, Rosner BM, Stark K. Epidemiology of campylobacteriosis in Germany - insights from 10 years of surveillance. BMC Infect Dis. 2014;14:30.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Ruzante JM, Majowicz SE, Fazil A, Davidson VJ. Hospitalization and deaths for select enteric illnesses and associated sequelae in Canada, 2001-2004. Epidemiol Infect. 2011;139(6):937–45.PubMedCrossRef Ruzante JM, Majowicz SE, Fazil A, Davidson VJ. Hospitalization and deaths for select enteric illnesses and associated sequelae in Canada, 2001-2004. Epidemiol Infect. 2011;139(6):937–45.PubMedCrossRef
20.
Zurück zum Zitat Olson CK, Ethelberg S, van Pelt W, Tauxe RV. Epidemiology of campylobacter jejuni infections in industrialized nations. Campylobacter, Third Edition: American Society of Microbiology; 2008. p. 163–89. Olson CK, Ethelberg S, van Pelt W, Tauxe RV. Epidemiology of campylobacter jejuni infections in industrialized nations. Campylobacter, Third Edition: American Society of Microbiology; 2008. p. 163–89.
21.
Zurück zum Zitat Chen Y, Liu BC, Glass K, Kirk MD. High incidence of hospitalisation due to infectious gastroenteritis in older people associated with poor self-rated health. BMJ Open. 2015;5(12):e010161.PubMedPubMedCentralCrossRef Chen Y, Liu BC, Glass K, Kirk MD. High incidence of hospitalisation due to infectious gastroenteritis in older people associated with poor self-rated health. BMJ Open. 2015;5(12):e010161.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Christensen KL, Holman RC, Steiner CA, Sejvar JJ, Stoll BJ, Schonberger LB. Infectious disease hospitalizations in the United States. Clin Infect Dis. 2009;49(7):1025–35.PubMedCrossRef Christensen KL, Holman RC, Steiner CA, Sejvar JJ, Stoll BJ, Schonberger LB. Infectious disease hospitalizations in the United States. Clin Infect Dis. 2009;49(7):1025–35.PubMedCrossRef
23.
Zurück zum Zitat Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2(4). Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2(4).
25.
Zurück zum Zitat White AE, Ciampa N, Chen Y, et al. Characteristics of campylobacter and Salmonella infections and acute gastroenteritis in older adults in Australia, Canada, and the United States. Clin Infect Dis. 2019;69(9):1545–52.PubMedPubMedCentralCrossRef White AE, Ciampa N, Chen Y, et al. Characteristics of campylobacter and Salmonella infections and acute gastroenteritis in older adults in Australia, Canada, and the United States. Clin Infect Dis. 2019;69(9):1545–52.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Samuel MC, Vugia DJ, Shallow S, et al. Epidemiology of sporadic campylobacter infection in the United States and declining trend in incidence, FoodNet 1996-1999. Clin Infect Dis. 2004;38(Suppl 3):S165–74.PubMedCrossRef Samuel MC, Vugia DJ, Shallow S, et al. Epidemiology of sporadic campylobacter infection in the United States and declining trend in incidence, FoodNet 1996-1999. Clin Infect Dis. 2004;38(Suppl 3):S165–74.PubMedCrossRef
27.
Zurück zum Zitat Jansen A, Stark K, Kunkel J, et al. Aetiology of community-acquired, acute gastroenteritis in hospitalised adults: a prospective cohort study. BMC Infect Dis. 2008;8:143.PubMedPubMedCentralCrossRef Jansen A, Stark K, Kunkel J, et al. Aetiology of community-acquired, acute gastroenteritis in hospitalised adults: a prospective cohort study. BMC Infect Dis. 2008;8:143.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Nielsen H, Hansen K, Gradel K, et al. Bacteraemia as a result of campylobacter species: a population-based study of epidemiology and clinical risk factors. Clin Microbiol Infect. 2010;16(1):57–61.PubMedCrossRef Nielsen H, Hansen K, Gradel K, et al. Bacteraemia as a result of campylobacter species: a population-based study of epidemiology and clinical risk factors. Clin Microbiol Infect. 2010;16(1):57–61.PubMedCrossRef
29.
Zurück zum Zitat Kraaijvanger N, Rijpsma D, van Leeuwen H, Edwards M. Self-referrals in the emergency department: reasons why patients attend the emergency department without consulting a general practitioner first-a questionnaire study. Int J Emerg Med. 2015;8(1):46.PubMedPubMedCentralCrossRef Kraaijvanger N, Rijpsma D, van Leeuwen H, Edwards M. Self-referrals in the emergency department: reasons why patients attend the emergency department without consulting a general practitioner first-a questionnaire study. Int J Emerg Med. 2015;8(1):46.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Bradshaw C, Zheng Y, Silver SA, Chertow GM, Long J, Anand S. Acute kidney injury due to diarrheal illness requiring hospitalization: data from the National Inpatient Sample. J Gen Intern Med. 2018;33(9):1520–7.PubMedPubMedCentralCrossRef Bradshaw C, Zheng Y, Silver SA, Chertow GM, Long J, Anand S. Acute kidney injury due to diarrheal illness requiring hospitalization: data from the National Inpatient Sample. J Gen Intern Med. 2018;33(9):1520–7.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Neal KR, Slack RC. Diabetes mellitus, anti-secretory drugs and other risk factors for campylobacter gastro-enteritis in adults: a case-control study. Epidemiol Infect. 1997;119(3):307–11.PubMedPubMedCentralCrossRef Neal KR, Slack RC. Diabetes mellitus, anti-secretory drugs and other risk factors for campylobacter gastro-enteritis in adults: a case-control study. Epidemiol Infect. 1997;119(3):307–11.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Gradel KO, Schonheyder HC, Dethlefsen C, Kristensen B, Ejlertsen T, Nielsen H. Morbidity and mortality of elderly patients with zoonotic Salmonella and campylobacter: a population-based study. J Inf Secur. 2008;57(3):214–22. Gradel KO, Schonheyder HC, Dethlefsen C, Kristensen B, Ejlertsen T, Nielsen H. Morbidity and mortality of elderly patients with zoonotic Salmonella and campylobacter: a population-based study. J Inf Secur. 2008;57(3):214–22.
33.
Zurück zum Zitat Pacanowski J, Lalande V, Lacombe K, et al. Campylobacter bacteremia: clinical features and factors associated with fatal outcome. Clin Infect Dis. 2008;47(6):790–6.PubMedCrossRef Pacanowski J, Lalande V, Lacombe K, et al. Campylobacter bacteremia: clinical features and factors associated with fatal outcome. Clin Infect Dis. 2008;47(6):790–6.PubMedCrossRef
34.
Zurück zum Zitat Hussein K, Raz-Pasteur A, Shachor-Meyouhas Y, et al. Campylobacter bacteraemia: 16 years of experience in a single Centre. Infect Dis (Lond). 2016;48(11–12):796–9.CrossRef Hussein K, Raz-Pasteur A, Shachor-Meyouhas Y, et al. Campylobacter bacteraemia: 16 years of experience in a single Centre. Infect Dis (Lond). 2016;48(11–12):796–9.CrossRef
35.
Zurück zum Zitat Ena J, Afonso-Carrillo RG, Bou-Collado M, et al. Epidemiology of severe acute diarrhea in patients requiring hospital admission. J Emerg Med. 2019;57(3):290–8.PubMedCrossRef Ena J, Afonso-Carrillo RG, Bou-Collado M, et al. Epidemiology of severe acute diarrhea in patients requiring hospital admission. J Emerg Med. 2019;57(3):290–8.PubMedCrossRef
36.
Zurück zum Zitat Janssen van Doorn K, Pierard D, Spapen H. Acute renal dysfunction in Salmonella gastroenteritis. J Clin Gastroenterol. 2006;40(10):910–2.PubMedCrossRef Janssen van Doorn K, Pierard D, Spapen H. Acute renal dysfunction in Salmonella gastroenteritis. J Clin Gastroenterol. 2006;40(10):910–2.PubMedCrossRef
37.
Zurück zum Zitat Campbell LK, Havens JM, Scott MA, Lamps LWJMP. Molecular detection of Campylobacter jejuni in archival cases of acute appendicitis 2006; 19(8): 1042–1046. Campbell LK, Havens JM, Scott MA, Lamps LWJMP. Molecular detection of Campylobacter jejuni in archival cases of acute appendicitis 2006; 19(8): 1042–1046.
39.
Zurück zum Zitat Ailes E, Scallan E, Berkelman RL, Kleinbaum DG, Tauxe RV, Moe CL. Do differences in risk factors, medical care seeking, or medical practices explain the geographic variation in campylobacteriosis in foodborne diseases active surveillance network (FoodNet) sites? Clin Infect Dis. 2012;54(Suppl 5):S464–71.PubMedCrossRef Ailes E, Scallan E, Berkelman RL, Kleinbaum DG, Tauxe RV, Moe CL. Do differences in risk factors, medical care seeking, or medical practices explain the geographic variation in campylobacteriosis in foodborne diseases active surveillance network (FoodNet) sites? Clin Infect Dis. 2012;54(Suppl 5):S464–71.PubMedCrossRef
40.
Zurück zum Zitat Australian Institute of Health and Welfare (AIHW). Australia's health 2014. Canberra: AIHW. p. 2014. Australian Institute of Health and Welfare (AIHW). Australia's health 2014. Canberra: AIHW. p. 2014.
41.
Zurück zum Zitat Canaway R, Boyle DI, Manski-Nankervis JE, et al. Gathering data for decisions: best practice use of primary care electronic records for research. Med J Aust. 2019;210(Suppl 6):S12–S6.PubMedPubMedCentral Canaway R, Boyle DI, Manski-Nankervis JE, et al. Gathering data for decisions: best practice use of primary care electronic records for research. Med J Aust. 2019;210(Suppl 6):S12–S6.PubMedPubMedCentral
42.
Zurück zum Zitat Kellum JA, Lameire N, Aspelin P, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO Clin Practice Guideline Acute Kidney Injury. 2012;2(1):1–138. Kellum JA, Lameire N, Aspelin P, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO Clin Practice Guideline Acute Kidney Injury. 2012;2(1):1–138.
Metadaten
Titel
Campylobacter-associated hospitalisations in an Australian provincial setting
verfasst von
Cameron R. M. Moffatt
Karina J. Kennedy
Linda Selvey
Martyn D. Kirk
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2021
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05694-0

Weitere Artikel der Ausgabe 1/2021

BMC Infectious Diseases 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.