Skip to main content
Erschienen in: European Radiology 12/2022

24.06.2022 | Chest

Can deep learning improve image quality of low-dose CT: a prospective study in interstitial lung disease

verfasst von: Ruijie Zhao, Xin Sui, Ruiyao Qin, Huayang Du, Lan Song, Duxue Tian, Jinhua Wang, Xiaoping Lu, Yun Wang, Wei Song, Zhengyu Jin

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To investigate whether deep learning reconstruction (DLR) could keep image quality and reduce radiation dose in interstitial lung disease (ILD) patients compared with HRCT reconstructed with hybrid iterative reconstruction (hybrid-IR).

Methods

Seventy ILD patients were prospectively enrolled and underwent HRCT (120 kVp, automatic tube current) and LDCT (120 kVp, 30 mAs) scans. HRCT images were reconstructed with hybrid-IR (Adaptive Iterative Dose Reduction 3-Dimensional [AIDR3D], standard-setting); LDCT images were reconstructed with DLR (Advanced Intelligence Clear-IQ Engine [AiCE], lung/bone, mild/standard/strong setting). Image noise, streak artifact, overall image quality, and visualization of normal and abnormal features of ILD were evaluated.

Results

The mean radiation dose of LDCT was 38% of HRCT. Objective image noise of reconstructed LDCT images was 33.6 to 111.3% of HRCT, and signal-to-noise ratio (SNR) was 0.9 to 3.1 times of the latter (p < 0.001). LDCT-AiCE was not significantly different from or even better than HRCT in overall image quality and visualization of normal lung structures. LDCT-AiCE (lung, mild/standard/strong) showed progressively better recognition of ground glass opacity than HRCT-AIDR3D (p < 0.05, p < 0.01, p < 0.001), and LDCT-AiCE (lung, mild/standard/strong; bone, mild) was superior to HRCT-AIDR3D in visualization of architectural distortion (p < 0.01, p < 0.01, p < 0.01; p < 0.05). LDCT-AiCE (bone, strong) was better than HRCT-AIDR3D in the assessment of bronchiectasis and/or bronchiolectasis (p < 0.05). LDCT-AiCE (bone, mild/standard/strong) was significantly better at the visualization of honeycombing than HRCT-AIDR3D (p < 0.05, p < 0.05, p < 0.01).

Conclusion

Deep learning reconstruction could effectively reduce radiation dose and keep image quality in ILD patients compared to HRCT with hybrid-IR.

Key Points

• Deep learning reconstruction was a novel image reconstruction algorithm based on deep convolutional neural networks. It was applied in chest CT studies and received auspicious results.
• HRCT plays an essential role in the whole process of diagnosis, treatment efficacy evaluation, and follow-ups for interstitial lung disease patients. However, cumulative radiation exposure could increase the risks of cancer.
• Deep learning reconstruction method could effectively reduce the radiation dose and keep the image quality compared with HRCT reconstructed with hybrid iterative reconstruction in patients with interstitial lung disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Xu X, Sui X, Song L et al (2019) Feasibility of low-dose CT with spectral shaping and third-generation iterative reconstruction in evaluating interstitial lung diseases associated with connective tissue disease: an intra-individual comparison study. Eur Radiol 29(9):4529–4537 CrossRefPubMed Xu X, Sui X, Song L et al (2019) Feasibility of low-dose CT with spectral shaping and third-generation iterative reconstruction in evaluating interstitial lung diseases associated with connective tissue disease: an intra-individual comparison study. Eur Radiol 29(9):4529–4537 CrossRefPubMed
2.
Zurück zum Zitat Sodickson A, Baeyens PF, Andriole KP et al (2019) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251(1):175–184 CrossRef Sodickson A, Baeyens PF, Andriole KP et al (2019) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251(1):175–184 CrossRef
3.
Zurück zum Zitat Niemann T, Zbinden I, Roser HW et al (2013) Computed tomography for pulmonary embolism: assessment of a 1-year cohort and estimated cancer risk associated with diagnostic irradiation. Acta Radiol 54(7):778–784 CrossRefPubMed Niemann T, Zbinden I, Roser HW et al (2013) Computed tomography for pulmonary embolism: assessment of a 1-year cohort and estimated cancer risk associated with diagnostic irradiation. Acta Radiol 54(7):778–784 CrossRefPubMed
4.
Zurück zum Zitat Ohno Y, Yaguchi A, Okazaki T et al (2016) Comparative evaluation of newly developed model-based and commercially available hybrid-type iterative reconstruction methods and filter back projection method in terms of accuracy of computer-aided volumetry (CADv) for low-dose CT protocols in phantom study. Eur J Radiol 85(8):1375–1382 CrossRefPubMed Ohno Y, Yaguchi A, Okazaki T et al (2016) Comparative evaluation of newly developed model-based and commercially available hybrid-type iterative reconstruction methods and filter back projection method in terms of accuracy of computer-aided volumetry (CADv) for low-dose CT protocols in phantom study. Eur J Radiol 85(8):1375–1382 CrossRefPubMed
5.
Zurück zum Zitat Laqmani A, Regier M, Veldhoen S et al (2014) Improved image quality and low radiation dose with hybrid iterative reconstruction with 80 kV CT pulmonary angiography. Eur J Radiol 83(10):1962–1969 CrossRefPubMed Laqmani A, Regier M, Veldhoen S et al (2014) Improved image quality and low radiation dose with hybrid iterative reconstruction with 80 kV CT pulmonary angiography. Eur J Radiol 83(10):1962–1969 CrossRefPubMed
6.
Zurück zum Zitat McCollough CH, Yu L, Kofler JM et al (2015) Degradation of CT low-contrast spatial resolution due to the use of iterative reconstruction and reduced dose levels. Radiology 276(2):499–506 CrossRefPubMed McCollough CH, Yu L, Kofler JM et al (2015) Degradation of CT low-contrast spatial resolution due to the use of iterative reconstruction and reduced dose levels. Radiology 276(2):499–506 CrossRefPubMed
7.
Zurück zum Zitat Minamishima K, Sugisawa K, Yamada Y et al (2018) Quantitative and qualitative evaluation of hybrid iterative reconstruction, with and without noise power spectrum models: a phantom study. J Appl Clin Med Phys 19(3):318–325 CrossRefPubMedPubMedCentral Minamishima K, Sugisawa K, Yamada Y et al (2018) Quantitative and qualitative evaluation of hybrid iterative reconstruction, with and without noise power spectrum models: a phantom study. J Appl Clin Med Phys 19(3):318–325 CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Millon D, Vlassenbroek A, Van Maanen AG et al (2017) Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study. Eur Radiol 27(3):927–937 CrossRefPubMed Millon D, Vlassenbroek A, Van Maanen AG et al (2017) Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study. Eur Radiol 27(3):927–937 CrossRefPubMed
9.
Zurück zum Zitat Euler A, Stieltjes B, Szucs-Farkas Z et al (2017) Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol 27(12):5252–5259 CrossRefPubMed Euler A, Stieltjes B, Szucs-Farkas Z et al (2017) Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol 27(12):5252–5259 CrossRefPubMed
10.
Zurück zum Zitat Nishizawa M, Tanaka H, Watanabe Y et al (2015) Model-based iterative reconstruction for detection of subtle hypoattenuation in early cerebral infarction: a phantom study. Jpn J Radiol 33(1):26–32 CrossRefPubMed Nishizawa M, Tanaka H, Watanabe Y et al (2015) Model-based iterative reconstruction for detection of subtle hypoattenuation in early cerebral infarction: a phantom study. Jpn J Radiol 33(1):26–32 CrossRefPubMed
11.
Zurück zum Zitat Yasaka K, Furuta T, Kubo T et al (2017) Full and hybrid iterative reconstruction to reduce artifacts in abdominal CT for patients scanned without arm elevation. Acta Radiol 58(9):1085–1093 CrossRefPubMed Yasaka K, Furuta T, Kubo T et al (2017) Full and hybrid iterative reconstruction to reduce artifacts in abdominal CT for patients scanned without arm elevation. Acta Radiol 58(9):1085–1093 CrossRefPubMed
12.
Zurück zum Zitat Higaki T, Tatsugami F, Fujioka C et al (2017) Visualization of simulated small vessels on computed tomography using a model-based iterative reconstruction technique. Data Brief 13:437–443 CrossRefPubMedPubMedCentral Higaki T, Tatsugami F, Fujioka C et al (2017) Visualization of simulated small vessels on computed tomography using a model-based iterative reconstruction technique. Data Brief 13:437–443 CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Singh R, Digumarthy SR, Muse VV et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 214(3):566–573 CrossRefPubMed Singh R, Digumarthy SR, Muse VV et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 214(3):566–573 CrossRefPubMed
14.
Zurück zum Zitat Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29(11):6163–6171 CrossRefPubMed Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29(11):6163–6171 CrossRefPubMed
15.
Zurück zum Zitat Lenfant M, Chevallier O, Comby PO et al (2020) Deep learning versus iterative reconstruction for CT pulmonary angiography in the emergency setting: improved image quality and reduced radiation dose. Diagnostics 10(8):558 CrossRefPubMedPubMedCentral Lenfant M, Chevallier O, Comby PO et al (2020) Deep learning versus iterative reconstruction for CT pulmonary angiography in the emergency setting: improved image quality and reduced radiation dose. Diagnostics 10(8):558 CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29(10):5322–5329 CrossRefPubMed Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29(10):5322–5329 CrossRefPubMed
17.
Zurück zum Zitat Cheng Y, Han Y, Li J et al (2021) Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography. Br J Radiol 94(1120):20201291 CrossRefPubMedPubMedCentral Cheng Y, Han Y, Li J et al (2021) Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography. Br J Radiol 94(1120):20201291 CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Anthimopoulos M, Christodoulidis S, Ebner L et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216 CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216 CrossRefPubMed
19.
Zurück zum Zitat Guha I, Nadeem SA, You C, et al (2020) Deep learning based high-resolution reconstruction of trabecular bone microstructures from low-resolution CT scans using GAN-CIRCLE. Proceedings of SPIE--the International Society for Optical Engineering 11317 Guha I, Nadeem SA, You C, et al (2020) Deep learning based high-resolution reconstruction of trabecular bone microstructures from low-resolution CT scans using GAN-CIRCLE. Proceedings of SPIE--the International Society for Optical Engineering 11317
20.
Zurück zum Zitat Rodriguez A, Ranallo FN, Judy PF, Fain SB (2017) The effects of iterative reconstruction and kernel selection on quantitative computed tomography measures of lung density. Med Phys 44(6):2267–2280 CrossRefPubMedPubMedCentral Rodriguez A, Ranallo FN, Judy PF, Fain SB (2017) The effects of iterative reconstruction and kernel selection on quantitative computed tomography measures of lung density. Med Phys 44(6):2267–2280 CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Pontana F, Billard AS, Duhamel A et al (2016) Effect of iterative reconstruction on the detection of systemic sclerosis-related interstitial lung disease: clinical experience in 55 patients. Radiology 279(1):297–305 CrossRefPubMed Pontana F, Billard AS, Duhamel A et al (2016) Effect of iterative reconstruction on the detection of systemic sclerosis-related interstitial lung disease: clinical experience in 55 patients. Radiology 279(1):297–305 CrossRefPubMed
22.
Zurück zum Zitat Studler U, Gluecker T, Bongartz G et al (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. AJR Am J Roentgenol 185(3):602–607 CrossRefPubMed Studler U, Gluecker T, Bongartz G et al (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. AJR Am J Roentgenol 185(3):602–607 CrossRefPubMed
25.
Zurück zum Zitat Svanholm H, Starklint H, Gundersen HJ et al (1989) Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 97(8):689–698 CrossRefPubMed Svanholm H, Starklint H, Gundersen HJ et al (1989) Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 97(8):689–698 CrossRefPubMed
26.
Zurück zum Zitat Higaki T, Nakamura Y, Tatsugami F et al (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37(1):73–80 CrossRefPubMed Higaki T, Nakamura Y, Tatsugami F et al (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37(1):73–80 CrossRefPubMed
27.
Zurück zum Zitat Vardhanabhuti V, Ilyas S, Gutteridge C et al (2013) Comparison of image quality between filtered back-projection and the adaptive statistical and novel model-based iterative reconstruction techniques in abdominal CT for renal calculi. Insights Imaging 4(5):661–669 CrossRefPubMedPubMedCentral Vardhanabhuti V, Ilyas S, Gutteridge C et al (2013) Comparison of image quality between filtered back-projection and the adaptive statistical and novel model-based iterative reconstruction techniques in abdominal CT for renal calculi. Insights Imaging 4(5):661–669 CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22(8):1613–1623 CrossRefPubMed Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22(8):1613–1623 CrossRefPubMed
29.
Zurück zum Zitat Liu L (2014) Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging Radiat Sci 45(2):131–136 CrossRefPubMed Liu L (2014) Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging Radiat Sci 45(2):131–136 CrossRefPubMed
30.
Zurück zum Zitat Kim Y, Kim YK, Lee BE et al (2015) Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. AJR Am J Roentgenol 204(6):1197–1202 CrossRefPubMed Kim Y, Kim YK, Lee BE et al (2015) Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. AJR Am J Roentgenol 204(6):1197–1202 CrossRefPubMed
32.
Zurück zum Zitat McLeavy CM, Chunara MH, Gravell RJ et al (2021) The future of CT: deep learning reconstruction. Clin Radiol 76(6):407–415 CrossRefPubMed McLeavy CM, Chunara MH, Gravell RJ et al (2021) The future of CT: deep learning reconstruction. Clin Radiol 76(6):407–415 CrossRefPubMed
33.
Zurück zum Zitat Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27(1):82–87 CrossRefPubMed Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27(1):82–87 CrossRefPubMed
34.
Zurück zum Zitat Kim JH, Yoon HJ, Lee E et al (2021) Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol 22(1):131–138 CrossRefPubMed Kim JH, Yoon HJ, Lee E et al (2021) Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol 22(1):131–138 CrossRefPubMed
35.
Zurück zum Zitat Greffier J, Dabli D, Frandon J et al (2021) Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: a phantom study. Med Phys 48(10):5743–5755 CrossRefPubMed Greffier J, Dabli D, Frandon J et al (2021) Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: a phantom study. Med Phys 48(10):5743–5755 CrossRefPubMed
36.
Zurück zum Zitat Li D, Mikela Vilmun B, Frederik Carlsen J et al (2019) The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI: a systematic review. Diagnostics 9(4):207 CrossRefPubMedPubMedCentral Li D, Mikela Vilmun B, Frederik Carlsen J et al (2019) The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI: a systematic review. Diagnostics 9(4):207 CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Shan H, Padole A, Homayounieh F et al (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1(6):269–276 CrossRefPubMedPubMedCentral Shan H, Padole A, Homayounieh F et al (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1(6):269–276 CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Christner JA, Braun NN, Jacobsen MC et al (2012) Size-specific dose estimates for adult patients at CT of the torso. Radiology 265(3):841–847 CrossRefPubMed Christner JA, Braun NN, Jacobsen MC et al (2012) Size-specific dose estimates for adult patients at CT of the torso. Radiology 265(3):841–847 CrossRefPubMed
Metadaten
Titel
Can deep learning improve image quality of low-dose CT: a prospective study in interstitial lung disease
verfasst von
Ruijie Zhao
Xin Sui
Ruiyao Qin
Huayang Du
Lan Song
Duxue Tian
Jinhua Wang
Xiaoping Lu
Yun Wang
Wei Song
Zhengyu Jin
Publikationsdatum
24.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08870-9

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.