Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2017

Open Access 01.12.2017 | Case report

Chemotherapy for primary mediastinal yolk sac tumor in a patient undergoing chronic hemodialysis: a case report

verfasst von: Haruki Hirakawa, Chiho Nakashima, Tomomi Nakamura, Masanori Masuda, Taro Funakoshi, Shunsaku Nakagawa, Takahiro Horimatsu, Kazuo Matsubara, Manabu Muto, Shinya Kimura, Naoko Sueoka-Aragane

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2017

Abstract

Background

The safety and efficacy of chemotherapy for patients undergoing concomitant hemodialysis have not been fully established and optimal doses of anti-cancer drugs and best timing of hemodialysis remains unclear. Although chemosensitive cancers, such as germ cell tumors, treated with chemotherapy should have sufficient dose intensity maintained to achieve the desired effect, many patients with cancer undergoing hemodialysis might be under-treated because the pharmacokinetics of anti-cancer drugs in such patients remains unknown.

Case presentation

We describe a 31-year-old Japanese man with a mediastinal yolk sac tumor treated with surgery followed by five cycles of chemotherapy containing cisplatin and etoposide while concomitantly undergoing hemodialysis. The doses of these agents used in the first cycle were 50% of the standard dose of cisplatin (10 mg/m2) and 60% of the standard dose of etoposide (60 mg/m2) on days 1 through to 5; the doses were subsequently escalated to 75% with both agents. Hemodialysis was started 1 hour after infusions of these agents. Severe hematological toxicities were observed despite successful treatment. During treatment with concurrent hemodialysis, pharmacokinetic analysis of cisplatin was performed and its relationship with adverse effects was assessed. Compared with patients with normal renal function, the maximum drug concentration was higher, and concentration increased in the interval between hemodialysis and the subsequent cisplatin infusion, resulting in a higher area under the curve despite a reduction in the dose to 75% of the standard regimen.

Conclusions

Because of the altered pharmacokinetics pharmacodynamics status of patients with renal dysfunction undergoing hemodialysis, pharmacokinetics pharmacodynamics analysis is deemed to be helpful for effective and safe management of chemotherapy in patients undergoing hemodialysis.
Abkürzungen
AFP
Alpha-fetoprotein
AUC
Area under the curve
BEP
Bleomycin, etoposide, and cisplatin
β-hCG
Beta-human chorionic gonadotropin
BUN
Blood urea nitrogen
CK
Cytokeratin
Cmax
Maximum concentration
Cr
Creatinine
CT
Computed tomography
G-CSF
Granulocyte-colony stimulating factor
HD
Hemodialysis
IGCCC
International Germ Cell Consensus Classification
IHC
Immunohistochemistry
PD
Pharmacodynamics
PK
Pharmacokinetics
PLAP
Placental alkaline phosphatase
VIP
Ifosfamide, etoposide, and cisplatin

Background

Germ cell tumors of extragonadal origin have been reported to make up from 1 to 5% of all germ cell tumors. The most common site is the mediastinum, constituting 50 to 70% [1, 2]. In general, germ cell tumors are sensitive to platinum-based chemotherapy and patients have a favorable prognosis. However, response of mediastinal non-seminomatous germ cell tumors to therapy is less than favorable, so these tumors have been classified into the poor prognosis group [3, 4]. It has been reported that 40 to 54% of patients with mediastinal non-seminomatous germ cell tumor treated with platinum-based chemotherapy followed by surgical resection achieved long-term disease-free survival, but patients who relapsed after initial treatment experienced dismal outcomes with only 10% long-term survival [57]. Therefore, it is important to accomplish successful initial chemotherapy with an adequate dose.
Recently, the number of patients with end-stage renal failure undergoing hemodialysis (HD) is increasing, and patients undergoing HD are potentially at high risk of cancer [8]. However, the safety and efficacy of chemotherapy for patients undergoing concomitant HD have not been fully established and optimal doses of anti-cancer drugs and best timing of HD remains unclear. Many patients with cancer undergoing HD might be under-treated because the pharmacokinetics (PK) of anti-cancer drugs in such patients remains unknown and severe adverse effects are feared. However, chemosensitive cancers such as germ cell tumors treated with chemotherapy should have sufficient dose intensity maintained to achieve the desired effect.
In this article, we report the case of a patient with mediastinal yolk sac tumor who was successfully treated with cisplatin and etoposide while concomitantly undergoing HD. We carried out a PK analysis of cisplatin as part of a multicenter study and carefully considered the relationship between adverse effects and blood concentration of cisplatin.

Case presentation

A 31-year-old Japanese man was referred to our hospital with renal dysfunction in April 2014. He had a history of hypertension, hyperuricemia, and pituitary dwarfism, but had not taken any medications. He was 159.4 cm in height and 42.6 kg in weight (body surface area 1.398 m2). Initial blood tests showed anemia and renal dysfunction: blood urea nitrogen (BUN) 64.6 mg/dl, creatinine (Cr) 5.66 mg/dl. A chest X-ray performed to evaluate cardiomegaly revealed a mediastinal tumor in his right thorax; a computed tomography (CT) scan confirmed the mass to be a well-defined, homogeneous solid tumor (53×35 mm) in his anterior mediastinum (Fig. 1). An additional blood examination showed a high level, 322.6 ng/ml, of alpha-fetoprotein (AFP, normal <9 ng/ml), but his beta-human chorionic gonadotropin (β-hCG) level was within normal range. A CT-guided biopsy of the mediastinal tumor showed the presence of tumor cells with mixed sinusoidal-like, cystic, and papillary structures (Fig. 2a) and Schiller–Duval body (Fig. 2b), which was positive by immunohistochemistry (IHC) for cytokeratin (CK) AE1/AE3 and AFP, and negative for placental alkaline phosphatase (PLAP), β-hCG, and CD30 (Fig. 2c, d), resulting in a diagnosis of primary mediastinal yolk sac tumor. Because of the complication of end-stage renal insufficiency, surgery was selected as the first treatment; following surgery, his AFP level decreased to the normal range. Subsequently, chemotherapy with cisplatin (10 mg/m2) and etoposide (60 mg/m2) was conducted daily from day 1 through to day 5. HD was started 1 hour after infusions of these agents. Appendicitis with grade 4 neutropenia occurred, so an appendectomy was performed after the first cycle. In addition, grade 3 anemia and grade 4 neutropenia appeared under prophylactic treatment with granulocyte-colony stimulating factor (G-CSF). Because severe hematological toxicities occurred, we conducted chemotherapy without dose escalation on the second cycle. In contrast to the first cycle, toxicities were admissible with 10 mg/m2 cisplatin and 60 mg/m2 etoposide in the second cycle. To elevate the dose intensity, the doses were escalated from the third to the fifth cycles: cisplatin to 15 mg/m2 and etoposide to 75 mg/m2. Grade 4 neutropenia and thrombocytopenia as well as grade 3 anemia were sustained over 7 days in spite of prophylactic treatment with G-CSF. After five cycles of chemotherapy, his AFP level remained in the normal range and there has been no recurrence for 1 year.
During the third and fourth cycles, free cisplatin blood concentrations were measured as part of a multicenter study. Venous blood samples were collected five times each day: (1) before cisplatin infusion, (2) immediately after infusion, (3) before HD, (4) after HD, and (5) 4 hours after HD on days 1 to 5. In addition, blood was collected before HD on day 8 once in each course (Fig. 3). The time-concentration curve in the third cycle is shown in Fig. 4. Our patient was administered 15 mg/m2 cisplatin, and maximum concentration (Cmax) of free cisplatin was 0.8 to 0.9 μg/mL. Just before treatment with cisplatin, the concentration had not recovered to the level observed after the previous HD. The concentration before infusion of cisplatin gradually increased each day during the 5 days of treatment, and this phenomenon was observed until 8 days after the start of chemotherapy. During the fourth cycle, chemotherapy was administered using the same doses used in the third cycle, and PK was similar to that of the third cycle.

Discussion

In the International Germ Cell Consensus Classification (IGCCC), primary mediastinal yolk sac tumor is classified into the poor prognosis group, and standard treatment consists of induction chemotherapy such as BEP (bleomycin, etoposide, and cisplatin) or VIP (ifosfamide, etoposide, and cisplatin) regimens followed by radical operation [4]. In our case, it was considered likely that standard chemotherapy would not be efficacious because of end-stage renal insufficiency, so surgery was selected as the first treatment so as not to miss the opportunity for complete tumor resection. In addition, bleomycin and active metabolite of ifosfamide are known not to be sufficiently removed by HD, resulting in enhanced toxicities such as pulmonary fibrosis, disturbance of consciousness, and convulsions [914]. Therefore, we selected combination chemotherapy with cisplatin and etoposide, and doses of these agents used in the first cycle were 50% of the standard dose of cisplatin (10 mg/m2) and 60% of the standard dose of etoposide (60 mg/m2) on days 1 through 5 according to previous reports, and the doses were subsequently escalated to 75% with both agents [14]. However, the rationale for using these dosages, especially that of cisplatin, has not been elucidated because of a paucity of PK studies involving patients with HD. Froehner et al. reported that they started the treatment from 50% reduction of cisplatin according to guidelines on testicular cancer, and then escalated to 100% of standard dose after monitoring adverse effects [14].
In this case, we obtained PK results for cisplatin during cycles 3 and 4 in cooperation with Kyoto University. The findings are as follows, compared with patients with normal renal function administered 100% standard doses of cisplatin [15]: (1) the Cmax of free cisplatin was higher, and (2) concentration gradually increased after HD up to the subsequent infusion of cisplatin (Fig. 4). The higher Cmax might be related to our patient’s low volume of distribution caused by pituitary dwarfism rather than renal insufficiency. Immediately after HD, the concentrations were lower, equivalent to those in patients with normal renal function based on previous reports [15]. However, his free cisplatin concentration rose 4 hours after HD, and gradual accumulation of free cisplatin was observed up until the subsequent treatment with cisplatin. Pronounced elevation of free cisplatin concentration may be due to redistribution from peripheral tissues and reduced excretion of free cisplatin, resulting in an elevated area under the curve (AUC) of free cisplatin leading to severe hematological toxicity [1518]. Although nephrotoxicity has not been thought to be a limitation in HD patients, dose-related adverse effects are often observed [19], and dose reduction is inevitable just as in our case. Because of the altered PK pharmacodynamics (PD) status of patients with renal dysfunction undergoing HD, determination of cisplatin dosage should be based on monitored concentration to conduct effective and safe chemotherapy.

Conclusions

Malignancies sensitive to chemotherapy require careful maintenance of dose intensity, but this should be performed safely. PK analysis is deemed to be useful for appropriate chemotherapy in patients undergoing HD. Additional evidence from other similar patients is needed to establish suitable chemotherapy regimens for patients with concomitant renal insufficiency.

Acknowledgements

We wish to thank our patient and his parents for consenting to the publication of this case report.

Funding

There is no financial support for this case report.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

HH, CN, TN, SK, and NSA contributed to patient treatment and collection of venous blood samples for PK PD analysis. MMa contributed to pathological diagnosis. TF, SN, TH, KM, and MMu contributed measurement of free cisplatin blood concentration and PK PD analysis. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of written consent is available for review by the Editor-in-Chief of this journal.
The protocol of this multicenter study was approved by the Clinical Research Ethics Committees of Saga University. This patient gave informed consent for blood collection and PK PD analysis according to the Declaration of Helsinki.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol. 2007;14:69–92.CrossRefPubMed McKenney JK, Heerema-McKenney A, Rouse RV. Extragonadal germ cell tumors: a review with emphasis on pathologic features, clinical prognostic variables, and differential diagnostic considerations. Adv Anat Pathol. 2007;14:69–92.CrossRefPubMed
2.
Zurück zum Zitat Dehner LP. Germ cell tumors of the mediastinum. Germ cell tumors of the mediastinum. Semin Diagn Pathol. 1990;7:266–84.PubMed Dehner LP. Germ cell tumors of the mediastinum. Germ cell tumors of the mediastinum. Semin Diagn Pathol. 1990;7:266–84.PubMed
3.
Zurück zum Zitat International Germ Cell Cancer Collaborative Group. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. J Clin Oncol. 1997;15:594–603. International Germ Cell Cancer Collaborative Group. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. J Clin Oncol. 1997;15:594–603.
4.
Zurück zum Zitat Schmoll HJ, Souchon R, Krege S, Albers P, Beyer J, Kollmannsberger C, European Germ Cell Cancer Consensus Group, et al. European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG). Ann Oncol. 2004;15:1377–99.CrossRefPubMed Schmoll HJ, Souchon R, Krege S, Albers P, Beyer J, Kollmannsberger C, European Germ Cell Cancer Consensus Group, et al. European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG). Ann Oncol. 2004;15:1377–99.CrossRefPubMed
5.
Zurück zum Zitat Albany C, Einhorn LH. Extragonadal germ cell tumors: clinical presentation and management. Curr Opin Oncol. 2013;25:261–5.PubMed Albany C, Einhorn LH. Extragonadal germ cell tumors: clinical presentation and management. Curr Opin Oncol. 2013;25:261–5.PubMed
6.
Zurück zum Zitat Bokemeyer C, Nichols CR, Droz JP, Schmoll HJ, Horwich A, Gerl A, et al. Extragonadal germ cell tumors of the mediastinum and retroperitoneum: results from an international analysis. J Clin Oncol. 2002;20:1864–73.CrossRefPubMed Bokemeyer C, Nichols CR, Droz JP, Schmoll HJ, Horwich A, Gerl A, et al. Extragonadal germ cell tumors of the mediastinum and retroperitoneum: results from an international analysis. J Clin Oncol. 2002;20:1864–73.CrossRefPubMed
7.
Zurück zum Zitat Rodney AJ, Tannir NM, Siefker-Radtke AO, Liu P, Walsh GL, Millikan RE, et al. Survival outcomes for men with mediastinal germ-cell tumors: the University of Texas M. D. Anderson Cancer Center experience. Urol Oncol. 2012;30:879–85.CrossRefPubMed Rodney AJ, Tannir NM, Siefker-Radtke AO, Liu P, Walsh GL, Millikan RE, et al. Survival outcomes for men with mediastinal germ-cell tumors: the University of Texas M. D. Anderson Cancer Center experience. Urol Oncol. 2012;30:879–85.CrossRefPubMed
8.
Zurück zum Zitat Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G, Lowenfels AB, et al. Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet. 1999;354:93–9.CrossRefPubMed Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G, Lowenfels AB, et al. Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet. 1999;354:93–9.CrossRefPubMed
9.
Zurück zum Zitat Superfin D, Iannucci AA, Davies AM. Commentary: Oncologic drugs in patients with organ dysfunction: a summary. Oncologist. 2007;12:1070–83.CrossRefPubMed Superfin D, Iannucci AA, Davies AM. Commentary: Oncologic drugs in patients with organ dysfunction: a summary. Oncologist. 2007;12:1070–83.CrossRefPubMed
10.
Zurück zum Zitat Eneman JD, Philips GK. Cancer management in patients with end-stage renal disease. Oncology (Williston Park). 2005;19:1199–214. Eneman JD, Philips GK. Cancer management in patients with end-stage renal disease. Oncology (Williston Park). 2005;19:1199–214.
11.
Zurück zum Zitat Crooke ST, Luft F, Broughton A, Strong J, Casson K, Einhorn L. Bleomycin serum pharmacokinetics as determined by a radioimmunoassay and a microbiologic assay in a patient with compromised renal function. Cancer. 1977;39:1430–4.CrossRefPubMed Crooke ST, Luft F, Broughton A, Strong J, Casson K, Einhorn L. Bleomycin serum pharmacokinetics as determined by a radioimmunoassay and a microbiologic assay in a patient with compromised renal function. Cancer. 1977;39:1430–4.CrossRefPubMed
12.
Zurück zum Zitat Tomita M, Aoki Y, Tanaka K. Effect of haemodialysis on the pharmacokinetics of antineoplastic drugs. Clin Pharmacokinet. 2004;43:515–27.CrossRefPubMed Tomita M, Aoki Y, Tanaka K. Effect of haemodialysis on the pharmacokinetics of antineoplastic drugs. Clin Pharmacokinet. 2004;43:515–27.CrossRefPubMed
13.
Zurück zum Zitat Carlson L, Goren MP, Bush DA, Griener JC, Quigley R, Tkaczewski I, et al. Toxicity, pharmacokinetics, and in vitro hemodialysis clearance of ifosfamide and metabolites in an anephric pediatric patient with Wilms’ tumor. Cancer Chemother Pharmacol. 1998;41:140–6.CrossRefPubMed Carlson L, Goren MP, Bush DA, Griener JC, Quigley R, Tkaczewski I, et al. Toxicity, pharmacokinetics, and in vitro hemodialysis clearance of ifosfamide and metabolites in an anephric pediatric patient with Wilms’ tumor. Cancer Chemother Pharmacol. 1998;41:140–6.CrossRefPubMed
14.
Zurück zum Zitat Froehner M, Passauer J, Schuler U, Hakenberg OW, Wirth MP. Successful chemotherapy for advanced nonseminomatous germ-cell tumor in a patient undergoing chronic hemodialysis. J Clin Oncol. 2007;10:1282–4.CrossRef Froehner M, Passauer J, Schuler U, Hakenberg OW, Wirth MP. Successful chemotherapy for advanced nonseminomatous germ-cell tumor in a patient undergoing chronic hemodialysis. J Clin Oncol. 2007;10:1282–4.CrossRef
15.
Zurück zum Zitat Ikeda K, Terashima M, Kawamura H, Takiyama I, Koeda K, Takagane A, et al. Pharmacokinetics of cisplatin in combined cisplatin and 5-fluorouracil therapy: a comparative study of three different schedules of cisplatin administration. Jpn J Clin Oncol. 1998;28:168–75.CrossRefPubMed Ikeda K, Terashima M, Kawamura H, Takiyama I, Koeda K, Takagane A, et al. Pharmacokinetics of cisplatin in combined cisplatin and 5-fluorouracil therapy: a comparative study of three different schedules of cisplatin administration. Jpn J Clin Oncol. 1998;28:168–75.CrossRefPubMed
16.
Zurück zum Zitat Yamada Y, Ikuta Y, Nosaka K, Miyanari N, Hayashi N, Mitsuya H, et al. Successful treatment of Cisplatin overdose with plasma exchange. Case Rep Med. 2010;2010:802312.PubMedPubMedCentral Yamada Y, Ikuta Y, Nosaka K, Miyanari N, Hayashi N, Mitsuya H, et al. Successful treatment of Cisplatin overdose with plasma exchange. Case Rep Med. 2010;2010:802312.PubMedPubMedCentral
17.
Zurück zum Zitat Chu G, Mantin R, Shen YM, Baskett G, Sussman H. Massive cisplatin overdose by accidental substitution for carboplatin. Toxic Manag Cancer. 1993;72:3707–14. Chu G, Mantin R, Shen YM, Baskett G, Sussman H. Massive cisplatin overdose by accidental substitution for carboplatin. Toxic Manag Cancer. 1993;72:3707–14.
18.
Zurück zum Zitat Schellens JH, Ma J, Planting AS, van der Burg ME, van Meerten E, de Boer-Dennert M, et al. Relationship between the exposure to cisplatin, DNA-adduct formation in leucocytes and tumour response in patients with solid tumours. Br J Cancer. 1996;73:1569–75.CrossRefPubMedPubMedCentral Schellens JH, Ma J, Planting AS, van der Burg ME, van Meerten E, de Boer-Dennert M, et al. Relationship between the exposure to cisplatin, DNA-adduct formation in leucocytes and tumour response in patients with solid tumours. Br J Cancer. 1996;73:1569–75.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Janus N, Thariat J, Boulanger H, Deray G, Launay-Vacher V. Proposal for dosage adjustment and timing of chemotherapy in hemodialyzed patients. Ann Oncol. 2010;21:1395–403.CrossRefPubMed Janus N, Thariat J, Boulanger H, Deray G, Launay-Vacher V. Proposal for dosage adjustment and timing of chemotherapy in hemodialyzed patients. Ann Oncol. 2010;21:1395–403.CrossRefPubMed
Metadaten
Titel
Chemotherapy for primary mediastinal yolk sac tumor in a patient undergoing chronic hemodialysis: a case report
verfasst von
Haruki Hirakawa
Chiho Nakashima
Tomomi Nakamura
Masanori Masuda
Taro Funakoshi
Shunsaku Nakagawa
Takahiro Horimatsu
Kazuo Matsubara
Manabu Muto
Shinya Kimura
Naoko Sueoka-Aragane
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2017
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-017-1213-7

Weitere Artikel der Ausgabe 1/2017

Journal of Medical Case Reports 1/2017 Zur Ausgabe