Skip to main content
Erschienen in: Inflammation Research 9/2022

28.07.2022 | COVID-19 | Review

Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics

verfasst von: Leena Sapra, Chaman Saini, Bhavuk Garg, Ranjan Gupta, Bhupendra Verma, Pradyumna K. Mishra, Rupesh K. Srivastava

Erschienen in: Inflammation Research | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper—Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells—DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts—OBs and osteoclasts—OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002–2004 revealed the long-term negative impact (decreased bone mineral density—BMDs) of these infections on bone health.

Methodology

We used the keywords “immunopathogenesis of SARS-CoV-2,” “SARS-CoV-2 and bone cells,” “factors influencing bone health and COVID-19,” “GUT microbiota,” and “COVID-19 and Bone health” to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus.

Conclusion

Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota—GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.
Literatur
1.
Zurück zum Zitat Guntur AR, Rosen CJ. Bone Endocrine Organ. 2012;18:758–62. Guntur AR, Rosen CJ. Bone Endocrine Organ. 2012;18:758–62.
2.
Zurück zum Zitat Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50:568–75.PubMedCrossRef Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50:568–75.PubMedCrossRef
3.
Zurück zum Zitat Booth SL, Centi A, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol. 2013;9:43–55.PubMedCrossRef Booth SL, Centi A, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol. 2013;9:43–55.PubMedCrossRef
4.
Zurück zum Zitat Arrieta F, Martinez-Vaello V, Bengoa N, Rosillo M, de Pablo A, Voguel C, et al. Stress hyperglycemia and osteocalcin in COVID-19 critically III patients on artificial nutrition. Nutrients. 2021;13:3010.PubMedPubMedCentralCrossRef Arrieta F, Martinez-Vaello V, Bengoa N, Rosillo M, de Pablo A, Voguel C, et al. Stress hyperglycemia and osteocalcin in COVID-19 critically III patients on artificial nutrition. Nutrients. 2021;13:3010.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cell Develop. 2020;29:747–54.CrossRef Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cell Develop. 2020;29:747–54.CrossRef
6.
Zurück zum Zitat Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-Cell-Med Regul Osteoclastogenesis Sig Cross-Talk Between RANKL IFN-γ. 2000;408:600–5. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-Cell-Med Regul Osteoclastogenesis Sig Cross-Talk Between RANKL IFN-γ. 2000;408:600–5.
7.
Zurück zum Zitat Sapra L, Azam Z, Rani L, Saini C, Bhardwaj A, Shokeen N, et al. “Immunoporosis”: Immunology of Osteoporosis. Proceed Natl Acad Sci India Sec B: Biol Sci. 2021;91:511.CrossRef Sapra L, Azam Z, Rani L, Saini C, Bhardwaj A, Shokeen N, et al. “Immunoporosis”: Immunology of Osteoporosis. Proceed Natl Acad Sci India Sec B: Biol Sci. 2021;91:511.CrossRef
8.
Zurück zum Zitat Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, et al. Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep. 2021;11:1807.PubMedPubMedCentralCrossRef Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, et al. Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep. 2021;11:1807.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: the current evidence and treatment strategies. Front immunol. 2020;11:1708.PubMedPubMedCentralCrossRef Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: the current evidence and treatment strategies. Front immunol. 2020;11:1708.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Lau EMC, Chan FWK, Hui DSC, Wu AKL, Leung PC. Reduced bone mineral density in male Severe Acute Respiratory Syndrome (SARS) patients in Hong Kong. Bone. 2005;37:420–4.PubMedPubMedCentralCrossRef Lau EMC, Chan FWK, Hui DSC, Wu AKL, Leung PC. Reduced bone mineral density in male Severe Acute Respiratory Syndrome (SARS) patients in Hong Kong. Bone. 2005;37:420–4.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Glesby MJ. Bone Disord Human Immunodefic Virus Infect. 2003;37:S91-95. Glesby MJ. Bone Disord Human Immunodefic Virus Infect. 2003;37:S91-95.
12.
Zurück zum Zitat Titanji K. Beyond antibodies: B cells and the OPG/RANK-RANKL pathway in health, non-HIV disease and HIV-induced bone loss. Front Immunol. 2017;8:1851.PubMedPubMedCentralCrossRef Titanji K. Beyond antibodies: B cells and the OPG/RANK-RANKL pathway in health, non-HIV disease and HIV-induced bone loss. Front Immunol. 2017;8:1851.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Delpino MV, Quarleri J. Influence of HIV infection and antiretroviral therapy on bone homeostasis. Front Endocrinol. 2020;11:502.CrossRef Delpino MV, Quarleri J. Influence of HIV infection and antiretroviral therapy on bone homeostasis. Front Endocrinol. 2020;11:502.CrossRef
14.
Zurück zum Zitat Raynaud-Messina B, Bracq L, Dupont M, Souriant S, Usmani SM, Proag A, et al. Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proceed Nat Acad Sci. 2018;115:E2556–65.CrossRef Raynaud-Messina B, Bracq L, Dupont M, Souriant S, Usmani SM, Proag A, et al. Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proceed Nat Acad Sci. 2018;115:E2556–65.CrossRef
15.
Zurück zum Zitat Chen Y-Y, Fang W-H, Wang C-C, Kao T-W, Chang Y-W, Yang H-F, et al. Crosssectional assessment of bone mass density in adults with hepatitis B virus and hepatitis C virus. Infection. 2019;9:5069. Chen Y-Y, Fang W-H, Wang C-C, Kao T-W, Chang Y-W, Yang H-F, et al. Crosssectional assessment of bone mass density in adults with hepatitis B virus and hepatitis C virus. Infection. 2019;9:5069.
16.
Zurück zum Zitat Dessordi R, Watanabe LM, Guimarães MP, Romão EA, de LourdesCandoloMartinelli A, de CarvalhoSantana R, et al. Bone Loss Hepatitis B Virus-Infect Patient Assoc Gt Osteoclastic Act Indep Retrovir Use. 2021;11:10162. Dessordi R, Watanabe LM, Guimarães MP, Romão EA, de LourdesCandoloMartinelli A, de CarvalhoSantana R, et al. Bone Loss Hepatitis B Virus-Infect Patient Assoc Gt Osteoclastic Act Indep Retrovir Use. 2021;11:10162.
17.
Zurück zum Zitat Chen W, Foo S-S, Rulli NE, Taylor A, Sheng K-C, Herrero LJ, et al. Arthr Alphaviral Infec Perturb Osteoblast Funct Trigger Pathol Bone Loss. 2014;111:6040–5. Chen W, Foo S-S, Rulli NE, Taylor A, Sheng K-C, Herrero LJ, et al. Arthr Alphaviral Infec Perturb Osteoblast Funct Trigger Pathol Bone Loss. 2014;111:6040–5.
18.
Zurück zum Zitat Obitsu S, Ahmed N, Nishitsuji H, Hasegawa A, Nakahama K, Morita I, et al. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein. Archiv Virol. 2009;154:1457–64.CrossRef Obitsu S, Ahmed N, Nishitsuji H, Hasegawa A, Nakahama K, Morita I, et al. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein. Archiv Virol. 2009;154:1457–64.CrossRef
19.
Zurück zum Zitat di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A. Radiological thoracic vertebral fractures are highly prevalent in covid-19 and predict disease outcomes. J Clin Endocrinol Meta. 2021;106:e602–14.CrossRef di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A. Radiological thoracic vertebral fractures are highly prevalent in covid-19 and predict disease outcomes. J Clin Endocrinol Meta. 2021;106:e602–14.CrossRef
21.
Zurück zum Zitat Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. 2017 The interplay between Angiotensin II, TLR4 and hypertension 120: 88–96. Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. 2017 The interplay between Angiotensin II, TLR4 and hypertension 120: 88–96.
22.
Zurück zum Zitat Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accel osteoporos activ osteoclast. 2008;22:2465–75. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accel osteoporos activ osteoclast. 2008;22:2465–75.
23.
Zurück zum Zitat Awosanya OD, Dalloul CE, Blosser RJ, Dadwal UC, Carozza M, Boschen K, et al. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone. 2022;154:116227.PubMedCrossRef Awosanya OD, Dalloul CE, Blosser RJ, Dadwal UC, Carozza M, Boschen K, et al. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone. 2022;154:116227.PubMedCrossRef
24.
Zurück zum Zitat Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, et al. The angiotensin converting enzyme 2/angiotensin-(1–7)/Mas Receptor axis as a key player in alveolar bone remodelling. Bone. 2019;128:115041.PubMedCrossRef Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, et al. The angiotensin converting enzyme 2/angiotensin-(1–7)/Mas Receptor axis as a key player in alveolar bone remodelling. Bone. 2019;128:115041.PubMedCrossRef
25.
Zurück zum Zitat Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, et al. Neuropilin-1 Mediates SARS-CoV-2 Infection in Bone Marrow-derived Macrophages 2021 Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, et al. Neuropilin-1 Mediates SARS-CoV-2 Infection in Bone Marrow-derived Macrophages 2021
26.
Zurück zum Zitat Mi B, Xiong Y, Zhang C, Zhou W, Chen L, Cao F, et al. SARS-CoV-2-induced overexpression of miR-4485 suppresses osteogenic differentiation and impairs fracture healing. Intern J Biol Sci. 2021;17:1277–88.CrossRef Mi B, Xiong Y, Zhang C, Zhou W, Chen L, Cao F, et al. SARS-CoV-2-induced overexpression of miR-4485 suppresses osteogenic differentiation and impairs fracture healing. Intern J Biol Sci. 2021;17:1277–88.CrossRef
27.
Zurück zum Zitat Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, et al. COVID-19: immunology, immunopathogenesis and potential therapies. Intern Rev Immunol. 2021;41:1–36. Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, et al. COVID-19: immunology, immunopathogenesis and potential therapies. Intern Rev Immunol. 2021;41:1–36.
28.
Zurück zum Zitat Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an Acute Inflammatory Disease. J Immunol. 2020;205:12–9.PubMedCrossRef Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an Acute Inflammatory Disease. J Immunol. 2020;205:12–9.PubMedCrossRef
30.
Zurück zum Zitat Qiao W, Lau HE, Xie H, Poon VK-M, Chan CC-S, Chu H, et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nature communications 2021: 2021.10.08.463665. Qiao W, Lau HE, Xie H, Poon VK-M, Chan CC-S, Chu H, et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nature communications 2021: 2021.10.08.463665.
32.
Zurück zum Zitat Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B, McConnell M, Mros S, Coad J, et al. Inflamm Mark Bone Health Postmenopausal Women Cross-Sec Overv. 2019;16:15. Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B, McConnell M, Mros S, Coad J, et al. Inflamm Mark Bone Health Postmenopausal Women Cross-Sec Overv. 2019;16:15.
33.
Zurück zum Zitat Compston J. Glucocorticoid-Induced Osteoporos Update. 2018;61:7–16. Compston J. Glucocorticoid-Induced Osteoporos Update. 2018;61:7–16.
34.
Zurück zum Zitat Li G. Glucocorticoid, Covid-19, bone and nerve repair. J Ortho Trans. 2021;31:A1-2. Li G. Glucocorticoid, Covid-19, bone and nerve repair. J Ortho Trans. 2021;31:A1-2.
35.
Zurück zum Zitat Li W, Huang Z, Tan B, Chen G, Li X, Xiong K, et al. General recommendation for assessment and management on the risk of glucocorticoid-induced osteonecrosis in patients with COVID-19. J Ortho Trans. 2021;31:1–9. Li W, Huang Z, Tan B, Chen G, Li X, Xiong K, et al. General recommendation for assessment and management on the risk of glucocorticoid-induced osteonecrosis in patients with COVID-19. J Ortho Trans. 2021;31:1–9.
36.
Zurück zum Zitat Zhang Y, Wang K, Song Q, Liu R, Ji W, Ji L, et al. Role Local Bone Renin-Angiot Sys Steroid-Induc Osteonecros Rabbit. 2014;9:1128–34. Zhang Y, Wang K, Song Q, Liu R, Ji W, Ji L, et al. Role Local Bone Renin-Angiot Sys Steroid-Induc Osteonecros Rabbit. 2014;9:1128–34.
37.
Zurück zum Zitat Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients With COVID-19: focus on severity and mortality. Fron Public Health. 2020;8:152.CrossRef Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients With COVID-19: focus on severity and mortality. Fron Public Health. 2020;8:152.CrossRef
38.
Zurück zum Zitat Dehingia N, Raj A. Sex differences in COVID-19 case fatality: do we know enough? Lancet Global Health. 2021;9:e14-15.PubMedCrossRef Dehingia N, Raj A. Sex differences in COVID-19 case fatality: do we know enough? Lancet Global Health. 2021;9:e14-15.PubMedCrossRef
39.
Zurück zum Zitat Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Net Open. 2021;4:e2111398.CrossRef Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Net Open. 2021;4:e2111398.CrossRef
40.
Zurück zum Zitat Raimondi F, Novelli L, Ghirardi A, Russo FM, Pellegrini D, Biza R, et al. Covid-19 and gender: lower rate but same mortality of severe disease in women—an observational study. BMC Pulm Med. 2021;21:96.PubMedPubMedCentralCrossRef Raimondi F, Novelli L, Ghirardi A, Russo FM, Pellegrini D, Biza R, et al. Covid-19 and gender: lower rate but same mortality of severe disease in women—an observational study. BMC Pulm Med. 2021;21:96.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Wang Y, Shoemaker R, Thatcher SE, Batifoulier-Yiannikouris F, English VL, Cassis LA. Administration of 17β-estradiol to ovariectomized obese female mice reverses obesity-hypertension through an ACE2-dependent mechanism. Am J Phy-Endocrinol Meta. 2015;308:E1066–75.CrossRef Wang Y, Shoemaker R, Thatcher SE, Batifoulier-Yiannikouris F, English VL, Cassis LA. Administration of 17β-estradiol to ovariectomized obese female mice reverses obesity-hypertension through an ACE2-dependent mechanism. Am J Phy-Endocrinol Meta. 2015;308:E1066–75.CrossRef
42.
Zurück zum Zitat Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Ni Lochlainn M, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS ONE. 2021;16:e0257051.PubMedPubMedCentralCrossRef Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Ni Lochlainn M, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS ONE. 2021;16:e0257051.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Baktash V, Hosack T, Patel N, Shah S, Kandiah P, Van den Abbeele K, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Post Med J. 2021;97:442–7. Baktash V, Hosack T, Patel N, Shah S, Kandiah P, Van den Abbeele K, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Post Med J. 2021;97:442–7.
44.
Zurück zum Zitat Demir M, Demir F, Aygun H. Vitamin D deficiency is associated with COVID-19 positivity and severity of the disease. J Med Virol. 2021;93:2992–9.PubMedPubMedCentralCrossRef Demir M, Demir F, Aygun H. Vitamin D deficiency is associated with COVID-19 positivity and severity of the disease. J Med Virol. 2021;93:2992–9.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Annweiler C, Beaudenon M, Gautier J, Simon R, Dubée V, Gonsard J, et al. COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial. Trials. 2020;21:1031.PubMedPubMedCentralCrossRef Annweiler C, Beaudenon M, Gautier J, Simon R, Dubée V, Gonsard J, et al. COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial. Trials. 2020;21:1031.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Lips P, van Schoor NM. Effect Vitamin D Bone Osteoporos. 2011;25:585–91. Lips P, van Schoor NM. Effect Vitamin D Bone Osteoporos. 2011;25:585–91.
47.
Zurück zum Zitat Parra-Ortega I, Alcara-Ramírez DG, Ronzon-Ronzon AA, Elías-García F, Mata-Chapol JA, Cervantes-Cote AD, et al. 25-Hydroxyvitamin D level is associated with mortality in patients with critical COVID-19: a prospective observational study in Mexico City. Nutri Res Prac. 2021;15:S32.CrossRef Parra-Ortega I, Alcara-Ramírez DG, Ronzon-Ronzon AA, Elías-García F, Mata-Chapol JA, Cervantes-Cote AD, et al. 25-Hydroxyvitamin D level is associated with mortality in patients with critical COVID-19: a prospective observational study in Mexico City. Nutri Res Prac. 2021;15:S32.CrossRef
48.
Zurück zum Zitat Kumar R, Rathi H, Haq A, Wimalawansa SJ, Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021;292:198235.PubMedCrossRef Kumar R, Rathi H, Haq A, Wimalawansa SJ, Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021;292:198235.PubMedCrossRef
49.
Zurück zum Zitat Salamanna F, Maglio M, Sartori M, Landini MP, Fini M. Vitamin D and platelets: a menacing duo in COVID-19 and potential relation to bone remodeling. Intern J Mole Sci. 2021;22:10010.CrossRef Salamanna F, Maglio M, Sartori M, Landini MP, Fini M. Vitamin D and platelets: a menacing duo in COVID-19 and potential relation to bone remodeling. Intern J Mole Sci. 2021;22:10010.CrossRef
50.
Zurück zum Zitat Cao J, Wang C, Zhang Y, Lei G, Xu K, Zhao N, et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut microbes. 2021;13:1887722.PubMedCentralCrossRef Cao J, Wang C, Zhang Y, Lei G, Xu K, Zhao N, et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut microbes. 2021;13:1887722.PubMedCentralCrossRef
51.
Zurück zum Zitat Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, et al. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Sig Trans Target Therapy. 2022;7:143.CrossRef Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, et al. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Sig Trans Target Therapy. 2022;7:143.CrossRef
52.
Zurück zum Zitat Liu Q, Mak JWY, Su Q, Yeoh YK, Lui GC-Y, Ng SSS, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71:544–52.PubMedCrossRef Liu Q, Mak JWY, Su Q, Yeoh YK, Lui GC-Y, Ng SSS, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71:544–52.PubMedCrossRef
53.
Zurück zum Zitat Yeoh YK, Zuo T, Lui GC-Y, Zhang F, Liu Q, Li AYL, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706.PubMedCrossRef Yeoh YK, Zuo T, Lui GC-Y, Zhang F, Liu Q, Li AYL, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706.PubMedCrossRef
54.
Zurück zum Zitat Martino C, Kellman BP, Sandoval DR, Clausen TM, Marotz CA, Song SJ, et al. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. BioRxiv 2020: 2020.08.17.238444. Martino C, Kellman BP, Sandoval DR, Clausen TM, Marotz CA, Song SJ, et al. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. BioRxiv 2020: 2020.08.17.238444.
55.
Zurück zum Zitat Grassi F, Tyagi AM, Calvert JW, Gambari L, Walker LD, Yu M, et al. Hydrog Sul Nov Reg Bone Form Implicat Bone Loss Induc Estrog Def. 2016;31:949–63. Grassi F, Tyagi AM, Calvert JW, Gambari L, Walker LD, Yu M, et al. Hydrog Sul Nov Reg Bone Form Implicat Bone Loss Induc Estrog Def. 2016;31:949–63.
56.
Zurück zum Zitat Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, et al. Short-Chain Fatty Acid Reg Sys Bone Mass Prot Pathol Bone Loss. 2018;9:55. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, et al. Short-Chain Fatty Acid Reg Sys Bone Mass Prot Pathol Bone Loss. 2018;9:55.
57.
Zurück zum Zitat Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in immunology 2019; 10. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in immunology 2019; 10.
58.
Zurück zum Zitat Lee CS, Kim J-Y, Kim BK, Lee IO, Park NH, Kim SH. Lacto Ferment Milk Prod Atten Bone Loss Exper Rat Model Ovariectomy-Ind Post-Menopaus Prim Osteoporos. 2021;130:2041–62. Lee CS, Kim J-Y, Kim BK, Lee IO, Park NH, Kim SH. Lacto Ferment Milk Prod Atten Bone Loss Exper Rat Model Ovariectomy-Ind Post-Menopaus Prim Osteoporos. 2021;130:2041–62.
59.
Zurück zum Zitat Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. “Osteomicrobiology”: The Nexus Between Bone and Bugs. Frontiers in Microbiology 2022; 12. Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. “Osteomicrobiology”: The Nexus Between Bone and Bugs. Frontiers in Microbiology 2022; 12.
60.
Zurück zum Zitat Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V, Jalanka J, et al. The Potential of gut commensals in reinforcing intestinal barrier function and alleviating. Inflammation. 2018;10:988. Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V, Jalanka J, et al. The Potential of gut commensals in reinforcing intestinal barrier function and alleviating. Inflammation. 2018;10:988.
61.
Zurück zum Zitat Yu LC-H. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophy. 2012;3:27.CrossRef Yu LC-H. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophy. 2012;3:27.CrossRef
62.
Zurück zum Zitat Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, et al. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exper Therapeutic Med. 2021;23:20.CrossRef Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, et al. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exper Therapeutic Med. 2021;23:20.CrossRef
63.
Zurück zum Zitat Dar HY, Shukla P, Mishra PK, Anupam R, Mondal RK, Tomar GB, et al. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep. 2018;8:46–56.PubMedPubMedCentralCrossRef Dar HY, Shukla P, Mishra PK, Anupam R, Mondal RK, Tomar GB, et al. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep. 2018;8:46–56.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, et al. Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition. 2018;54:118–28.PubMedCrossRef Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, et al. Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition. 2018;54:118–28.PubMedCrossRef
65.
Zurück zum Zitat Sapra L, Shokeen N, Porwal K, Saini C, Bhardwaj A, Mathew M, et al. Bifidobacterium longum ameliorates ovariectomy-induced bone loss via enhancing anti-osteoclastogenic and immunomodulatory potential of regulatory B Cells (Bregs). Fron Immunol. 2022;13:875788.CrossRef Sapra L, Shokeen N, Porwal K, Saini C, Bhardwaj A, Mathew M, et al. Bifidobacterium longum ameliorates ovariectomy-induced bone loss via enhancing anti-osteoclastogenic and immunomodulatory potential of regulatory B Cells (Bregs). Fron Immunol. 2022;13:875788.CrossRef
66.
Zurück zum Zitat Lee Y-M, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Intern Immunol. 2010;22:805–16.CrossRef Lee Y-M, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Intern Immunol. 2010;22:805–16.CrossRef
68.
Zurück zum Zitat Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol. 2020;30:1–9.PubMedCrossRef Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol. 2020;30:1–9.PubMedCrossRef
69.
Zurück zum Zitat Wu Q, Zhou X, Huang D, JI Y, Kang F. IL-6 Enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Phy Biochem. 2017;41:1360–9.CrossRef Wu Q, Zhou X, Huang D, JI Y, Kang F. IL-6 Enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Phy Biochem. 2017;41:1360–9.CrossRef
70.
Zurück zum Zitat Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28–37.PubMedCrossRef Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28–37.PubMedCrossRef
71.
Zurück zum Zitat Hasan MZ, Islam S, Matsumoto K, Kawai T. SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Sci Rep. 2021;11:16814.PubMedPubMedCentralCrossRef Hasan MZ, Islam S, Matsumoto K, Kawai T. SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Sci Rep. 2021;11:16814.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, et al. Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 2019;19(6):4743–52.PubMedPubMedCentral Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, et al. Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 2019;19(6):4743–52.PubMedPubMedCentral
73.
Zurück zum Zitat Chen P-K, Lan J-L, Huang P-H, Hsu J-L, Chang C-K, Tien N, et al. Interleukin-18 is a potential biomarker to discriminate active adult-onset still’s disease from COVID-19. Fron Immunol. 2021;12:2997. Chen P-K, Lan J-L, Huang P-H, Hsu J-L, Chang C-K, Tien N, et al. Interleukin-18 is a potential biomarker to discriminate active adult-onset still’s disease from COVID-19. Fron Immunol. 2021;12:2997.
74.
Zurück zum Zitat Dai S-M. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 and tumour necrosis factor. Ann Rheum Dis. 2004;63:1379–86.PubMedPubMedCentralCrossRef Dai S-M. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 and tumour necrosis factor. Ann Rheum Dis. 2004;63:1379–86.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Luo G, Li F, Li X, Wang Z-G, Zhang B. TNF-α RANKL Promote Osteoclastogenes Upreg Rank Via Nf-Κb Path. 2018;17:6605–11. Luo G, Li F, Li X, Wang Z-G, Zhang B. TNF-α RANKL Promote Osteoclastogenes Upreg Rank Via Nf-Κb Path. 2018;17:6605–11.
76.
Zurück zum Zitat Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–43.PubMedPubMedCentralCrossRef Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–43.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Ahmed MH, Hassan A. Dexamethasone for the treatment of coronavirus disease (COVID-19): a review. SN Comp Clin Med. 2020;2639:1–10. Ahmed MH, Hassan A. Dexamethasone for the treatment of coronavirus disease (COVID-19): a review. SN Comp Clin Med. 2020;2639:1–10.
78.
Zurück zum Zitat Weinstein RS. Glucocorticoid-Induc Osteoporos Osteonecros. 2012;41:595–611. Weinstein RS. Glucocorticoid-Induc Osteoporos Osteonecros. 2012;41:595–611.
79.
Zurück zum Zitat Sloka JS, Stefanelli M. Mech Act Methylprednisolone Treat Mult Scleros. 2005;11:425–32. Sloka JS, Stefanelli M. Mech Act Methylprednisolone Treat Mult Scleros. 2005;11:425–32.
80.
Zurück zum Zitat Zhang Y, Dai R, Xiao J, Chen D. Liao E [Effect of methylprednisolone on bone mass, microarchitecture and microdamage in cortical bone of ulna in rats]. Med Sci. 2015;40:25–30. Zhang Y, Dai R, Xiao J, Chen D. Liao E [Effect of methylprednisolone on bone mass, microarchitecture and microdamage in cortical bone of ulna in rats]. Med Sci. 2015;40:25–30.
81.
Zurück zum Zitat Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia 7. US: Oxford University Press; 2020. Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia 7. US: Oxford University Press; 2020.
82.
Zurück zum Zitat Li Y, Cui X, Shiloach J, Wang J, Suffredini DA, Xu W, et al. Hydrocortisone decreases lethality and inflammatory cytokine and nitric oxide production in rats challenged with B. anthracis cell wall peptidoglycan. Inten Care Med Exp. 2020;8:67.CrossRef Li Y, Cui X, Shiloach J, Wang J, Suffredini DA, Xu W, et al. Hydrocortisone decreases lethality and inflammatory cytokine and nitric oxide production in rats challenged with B. anthracis cell wall peptidoglycan. Inten Care Med Exp. 2020;8:67.CrossRef
83.
Zurück zum Zitat Dequin P-F, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, et al. 2020 Effect of Hydrocortisone on 21 Day Mortality or Respiratory Support Among Critically III Patients With COVID-19.JAMA 324: 1298. Dequin P-F, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, et al. 2020 Effect of Hydrocortisone on 21 Day Mortality or Respiratory Support Among Critically III Patients With COVID-19.JAMA 324: 1298.
84.
Zurück zum Zitat Schulz J, Frey KR, Cooper MS, Zopf K, Ventz M, Diederich S, et al. Red Daily Hydro Dose Improv Bone Health Prim Adrenal Insuff. 2016;174:531–8. Schulz J, Frey KR, Cooper MS, Zopf K, Ventz M, Diederich S, et al. Red Daily Hydro Dose Improv Bone Health Prim Adrenal Insuff. 2016;174:531–8.
Metadaten
Titel
Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics
verfasst von
Leena Sapra
Chaman Saini
Bhavuk Garg
Ranjan Gupta
Bhupendra Verma
Pradyumna K. Mishra
Rupesh K. Srivastava
Publikationsdatum
28.07.2022
Verlag
Springer International Publishing
Schlagwort
COVID-19
Erschienen in
Inflammation Research / Ausgabe 9/2022
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-022-01616-9

Weitere Artikel der Ausgabe 9/2022

Inflammation Research 9/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.