Skip to main content
Erschienen in: Inflammation 6/2021

06.06.2021 | Original Article

Differential Expression and Copy Number Variation of Gasdermin (GSDM) Family Members, Pore-Forming Proteins in Pyroptosis, in Normal and Malignant Serous Ovarian Tissue

verfasst von: Caglar Berkel, Ercan Cacan

Erschienen in: Inflammation | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Gasdermins (GSDM) are members of a family of pore-forming effector proteins which lead to membrane permeabilization and pyroptosis, a lytic cell death with pro-inflammatory characteristics. Recently, two members of the gasdermin family, gasdermin B (GSDMB) and gasdermin E (GSDME), were shown to suppress tumor growth, through the involvement of cytotoxic lymphocytes. Other studies also reported the important functions of gasdermins in various cancer types including gastric cancer, hepatocarcinoma, and cervix and breast cancer. However, gasdermins have not been previously studied in the context of serous ovarian cancer. Here, we showed that gasdermin D (GSDMD) and gasdermin C (GSDMC) expression increases in serous ovarian cancer; in contrast, the expression of GSDME and PJVK (Pejvakin, DFNB59) is downregulated, compared to healthy ovaries, in multiple independent gene expression datasets. We found that copy number gains are highly frequent (present in approximately 50% of patients) in genes encoding GSDMD and GSDMC in ovarian cancer, in line with their upregulated expression in serous ovarian cancer. Moreover, we observed that the expression of GSDMB and GSDMD, but not of GSDME, is different among several histotypes of epithelial ovarian cancer. Therefore, we propose that differential expression and copy number variations of certain gasdermins might be associated with the development of serous ovarian cancer, in which different members of the family have distinct functions; however, further research is required in in vivo models to understand how changes in gasdermin family members mechanistically contribute to serous ovarian cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
7.
Zurück zum Zitat Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015 Oct 29. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526 (7575): 666–671. https://doi.org/10.1038/nature15541.CrossRefPubMed Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015 Oct 29. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526 (7575): 666–671. https://​doi.​org/​10.​1038/​nature15541.CrossRefPubMed
9.
Zurück zum Zitat He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res (12): 1285–1298. https://doi.org/10.1038/cr.2015.139 Epub 2015 Nov 27. PMID: 26611636; PMCID: PMC4670995. He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res (12): 1285–1298. https://​doi.​org/​10.​1038/​cr.​2015.​139 Epub 2015 Nov 27. PMID: 26611636; PMCID: PMC4670995.
11.
14.
Zurück zum Zitat Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016 Aug 15;35(16):1766-78. doi: 10.15252/embj.201694696. Epub 2016 Jul 14. PMID: 27418190; PMCID: PMC5010048. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016 Aug 15;35(16):1766-78. doi: 10.15252/embj.201694696. Epub 2016 Jul 14. PMID: 27418190; PMCID: PMC5010048.
15.
Zurück zum Zitat Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv. 2020 Nov 18;6(47):eabc3465. doi: https://doi.org/10.1126/sciadv.abc3465. PMID: 33208362; PMCID: PMC7673803. Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv. 2020 Nov 18;6(47):eabc3465. doi: https://​doi.​org/​10.​1126/​sciadv.​abc3465. PMID: 33208362; PMCID: PMC7673803.
16.
Zurück zum Zitat Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 2019 May 15;38(10):e101638. doi: https://doi.org/10.15252/embj.2019101638. Epub 2019 Mar 22. PMID: 30902848; PMCID: PMC6517827. Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 2019 May 15;38(10):e101638. doi: https://​doi.​org/​10.​15252/​embj.​2019101638. Epub 2019 Mar 22. PMID: 30902848; PMCID: PMC6517827.
17.
Zurück zum Zitat Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018 Nov 30;362(6418):1064-1069. doi: https://doi.org/10.1126/science.aau2818. Epub 2018 Oct 25. PMID: 30361383; PMCID: PMC6522129. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018 Nov 30;362(6418):1064-1069. doi: https://​doi.​org/​10.​1126/​science.​aau2818. Epub 2018 Oct 25. PMID: 30361383; PMCID: PMC6522129.
18.
Zurück zum Zitat Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10888-E10897. doi: https://doi.org/10.1073/pnas.1809548115. Epub 2018 Oct 31. PMID: 30381458; PMCID: PMC6243247. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10888-E10897. doi: https://​doi.​org/​10.​1073/​pnas.​1809548115. Epub 2018 Oct 31. PMID: 30381458; PMCID: PMC6243247.
21.
Zurück zum Zitat Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017 Jan 3;8:14128. doi: https://doi.org/10.1038/ncomms14128. PMID: 28045099; PMCID: PMC5216131. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017 Jan 3;8:14128. doi: https://​doi.​org/​10.​1038/​ncomms14128. PMID: 28045099; PMCID: PMC5216131.
22.
Zurück zum Zitat Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, Wang WJ, Wu Y, Ke B, Hsu JL, Huang K, Ye Z, Yang Y, Xia X, Li Y, Li CW, Shao B, Tainer JA, Hung MC. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020 Oct;22(10):1264-1275. doi: https://doi.org/10.1038/s41556-020-0575-z. Epub 2020 Sep 14. Erratum in: Nat Cell Biol. 2020 Nov;22(11):1396. PMID: 32929201; PMCID: PMC7653546. Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, Wang WJ, Wu Y, Ke B, Hsu JL, Huang K, Ye Z, Yang Y, Xia X, Li Y, Li CW, Shao B, Tainer JA, Hung MC. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020 Oct;22(10):1264-1275. doi: https://​doi.​org/​10.​1038/​s41556-020-0575-z. Epub 2020 Sep 14. Erratum in: Nat Cell Biol. 2020 Nov;22(11):1396. PMID: 32929201; PMCID: PMC7653546.
23.
Zurück zum Zitat Saeki, N., Y. Kuwahara, H. Sasaki, H. Satoh, and T. Shiroishi. 2000 Sep. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 11 (9): 718–724. https://doi.org/10.1007/s003350010138.CrossRefPubMed Saeki, N., Y. Kuwahara, H. Sasaki, H. Satoh, and T. Shiroishi. 2000 Sep. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 11 (9): 718–724. https://​doi.​org/​10.​1007/​s003350010138.CrossRefPubMed
24.
Zurück zum Zitat Carl-McGrath, S., R. Schneider-Stock, M. Ebert, and C. Röcken. 2008 Jan. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology. 40 (1): 13–24. https://doi.org/10.1080/00313020701716250.CrossRefPubMed Carl-McGrath, S., R. Schneider-Stock, M. Ebert, and C. Röcken. 2008 Jan. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology. 40 (1): 13–24. https://​doi.​org/​10.​1080/​0031302070171625​0.CrossRefPubMed
25.
26.
Zurück zum Zitat Hergueta-Redondo M, Sarrió D, Molina-Crespo Á, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, Peinado H, Moreno-Bueno G. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 2014 Mar 27;9(3):e90099. doi: https://doi.org/10.1371/journal.pone.0090099. PMID: 24675552; PMCID: PMC3967990. Hergueta-Redondo M, Sarrió D, Molina-Crespo Á, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, Peinado H, Moreno-Bueno G. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 2014 Mar 27;9(3):e90099. doi: https://​doi.​org/​10.​1371/​journal.​pone.​0090099. PMID: 24675552; PMCID: PMC3967990.
27.
Zurück zum Zitat Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, Yoshikawa K, Matsuzawa Y, Kitamura Y, Nojima H. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res. 2001 Feb;92(2):140-51. doi: https://doi.org/10.1111/j.1349-7006.2001.tb01076.x. PMID: 11223543; PMCID: PMC5926699. Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, Yoshikawa K, Matsuzawa Y, Kitamura Y, Nojima H. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res. 2001 Feb;92(2):140-51. doi: https://​doi.​org/​10.​1111/​j.​1349-7006.​2001.​tb01076.​x. PMID: 11223543; PMCID: PMC5926699.
28.
Zurück zum Zitat Saeki, N., T. Usui, K. Aoyagi, D.H. Kim, M. Sato, T. Mabuchi, K. Yanagihara, K. Ogawa, H. Sakamoto, T. Yoshida, and H. Sasaki. 2009 Mar. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 48 (3): 261–271. https://doi.org/10.1002/gcc.20636.CrossRefPubMed Saeki, N., T. Usui, K. Aoyagi, D.H. Kim, M. Sato, T. Mabuchi, K. Yanagihara, K. Ogawa, H. Sakamoto, T. Yoshida, and H. Sasaki. 2009 Mar. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 48 (3): 261–271. https://​doi.​org/​10.​1002/​gcc.​20636.CrossRefPubMed
29.
Zurück zum Zitat Miguchi M, Hinoi T, Shimomura M, Adachi T, Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, Shigeyasu K, Tanakaya K, Kitadai Y, Sentani K, Oue N, Yasui W, Ohdan H. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One. 2016 Nov 11;11(11):e0166422. doi: https://doi.org/10.1371/journal.pone.0166422. PMID: 27835699; PMCID: PMC5105946. Miguchi M, Hinoi T, Shimomura M, Adachi T, Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, Shigeyasu K, Tanakaya K, Kitadai Y, Sentani K, Oue N, Yasui W, Ohdan H. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One. 2016 Nov 11;11(11):e0166422. doi: https://​doi.​org/​10.​1371/​journal.​pone.​0166422. PMID: 27835699; PMCID: PMC5105946.
30.
Zurück zum Zitat Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020 Mar;579(7799):415-420. doi: https://doi.org/10.1038/s41586-020-2071-9. Epub 2020 Mar 11. PMID: 32188940; PMCID: PMC7123794. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020 Mar;579(7799):415-420. doi: https://​doi.​org/​10.​1038/​s41586-020-2071-9. Epub 2020 Mar 11. PMID: 32188940; PMCID: PMC7123794.
31.
Zurück zum Zitat Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020 May 29;368(6494):eaaz7548. doi: https://doi.org/10.1126/science.aaz7548. Epub 2020 Apr 16. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020 May 29;368(6494):eaaz7548. doi: https://​doi.​org/​10.​1126/​science.​aaz7548. Epub 2020 Apr 16.
32.
Zurück zum Zitat Kayagaki, N., O.S. Kornfeld, B.L. Lee, I.B. Stowe, K. O’Rourke, Q. Li, W. Sandoval, D. Yan, J. Kang, M. Xu, J. Zhang, W.P. Lee, B.S. McKenzie, G. Ulas, J. Payandeh, M. Roose-Girma, Z. Modrusan, R. Reja, M. Sagolla, J.D. Webster, V. Cho, T.D. Andrews, L.X. Morris, L.A. Miosge, C.C. Goodnow, E.M. Bertram, and V.M. Dixit. 2021 Mar. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 591 (7848): 131–136. https://doi.org/10.1038/s41586-021-03218-7.CrossRefPubMed Kayagaki, N., O.S. Kornfeld, B.L. Lee, I.B. Stowe, K. O’Rourke, Q. Li, W. Sandoval, D. Yan, J. Kang, M. Xu, J. Zhang, W.P. Lee, B.S. McKenzie, G. Ulas, J. Payandeh, M. Roose-Girma, Z. Modrusan, R. Reja, M. Sagolla, J.D. Webster, V. Cho, T.D. Andrews, L.X. Morris, L.A. Miosge, C.C. Goodnow, E.M. Bertram, and V.M. Dixit. 2021 Mar. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 591 (7848): 131–136. https://​doi.​org/​10.​1038/​s41586-021-03218-7.CrossRefPubMed
35.
Zurück zum Zitat Yoshihara, K., A. Tajima, D. Komata, T. Yamamoto, S. Kodama, H. Fujiwara, M. Suzuki, Y. Onishi, M. Hatae, K. Sueyoshi, H. Fujiwara, Y. Kudo, I. Inoue, and K. Tanaka. 2009 Aug. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 100 (8): 1421–1428. https://doi.org/10.1111/j.1349-7006.2009.01204.x.CrossRefPubMed Yoshihara, K., A. Tajima, D. Komata, T. Yamamoto, S. Kodama, H. Fujiwara, M. Suzuki, Y. Onishi, M. Hatae, K. Sueyoshi, H. Fujiwara, Y. Kudo, I. Inoue, and K. Tanaka. 2009 Aug. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 100 (8): 1421–1428. https://​doi.​org/​10.​1111/​j.​1349-7006.​2009.​01204.​x.CrossRefPubMed
36.
Zurück zum Zitat Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, Park DC, Hao K, Yip DK, Donninger H, Ozbun L, Samimi G, Brady J, Randonovich M, Pise-Masison CA, Barrett JC, Wong WH, Welch WR, Berkowitz RS, Birrer MJ. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell. 2009 Dec 8;16(6):521-32. doi: https://doi.org/10.1016/j.ccr.2009.10.018. PMID: 19962670; PMCID: PMC3008560. Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, Park DC, Hao K, Yip DK, Donninger H, Ozbun L, Samimi G, Brady J, Randonovich M, Pise-Masison CA, Barrett JC, Wong WH, Welch WR, Berkowitz RS, Birrer MJ. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell. 2009 Dec 8;16(6):521-32. doi: https://​doi.​org/​10.​1016/​j.​ccr.​2009.​10.​018. PMID: 19962670; PMCID: PMC3008560.
37.
Zurück zum Zitat Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008 Jul 1;68(13):5478-86. doi: https://doi.org/10.1158/0008-5472.CAN-07-6595. PMID: 18593951; PMCID: PMC7039050. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008 Jul 1;68(13):5478-86. doi: https://​doi.​org/​10.​1158/​0008-5472.CAN-07-6595. PMID: 18593951; PMCID: PMC7039050.
38.
Zurück zum Zitat Vathipadiekal, V., V. Wang, W. Wei, L. Waldron, R. Drapkin, M. Gillette, S. Skates, and M. Birrer. 2015 Nov 1. Creation of a human secretome: a novel composite library of human secreted proteins: validation using ovarian cancer gene expression data and a virtual secretome array. Clin Cancer Res. 21 (21): 4960–4969. https://doi.org/10.1158/1078-0432.CCR-14-3173.CrossRefPubMed Vathipadiekal, V., V. Wang, W. Wei, L. Waldron, R. Drapkin, M. Gillette, S. Skates, and M. Birrer. 2015 Nov 1. Creation of a human secretome: a novel composite library of human secreted proteins: validation using ovarian cancer gene expression data and a virtual secretome array. Clin Cancer Res. 21 (21): 4960–4969. https://​doi.​org/​10.​1158/​1078-0432.​CCR-14-3173.CrossRefPubMed
40.
Zurück zum Zitat Wu R, Zhai Y, Kuick R, Karnezis AN, Garcia P, Naseem A, Hu TC, Fearon ER, Cho KR. Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse. J Pathol. 2016 Nov;240(3):341-351. doi: https://doi.org/10.1002/path.4783. PMID: 27538791; PMCID: PMC5071155. Wu R, Zhai Y, Kuick R, Karnezis AN, Garcia P, Naseem A, Hu TC, Fearon ER, Cho KR. Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse. J Pathol. 2016 Nov;240(3):341-351. doi: https://​doi.​org/​10.​1002/​path.​4783. PMID: 27538791; PMCID: PMC5071155.
42.
Zurück zum Zitat Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. doi: https://doi.org/10.1038/nature10166. Erratum in: Nature. 2012 Oct 11;490(7419):298. PMID: 21720365; PMCID: PMC3163504. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. doi: https://​doi.​org/​10.​1038/​nature10166. Erratum in: Nature. 2012 Oct 11;490(7419):298. PMID: 21720365; PMCID: PMC3163504.
43.
Zurück zum Zitat Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G, Huttenhower C, Waldron L. curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford). 2013 Apr 2;2013:bat013. doi: https://doi.org/10.1093/database/bat013. PMID: 23550061; PMCID: PMC3625954. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G, Huttenhower C, Waldron L. curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford). 2013 Apr 2;2013:bat013. doi: https://​doi.​org/​10.​1093/​database/​bat013. PMID: 23550061; PMCID: PMC3625954.
44.
Zurück zum Zitat Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015 Feb;12(2):115-21. doi: https://doi.org/10.1038/nmeth.3252. PMID: 25633503; PMCID: PMC4509590. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015 Feb;12(2):115-21. doi: https://​doi.​org/​10.​1038/​nmeth.​3252. PMID: 25633503; PMCID: PMC4509590.
45.
53.
Zurück zum Zitat Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2021. GGally: extension to ‘ggplot2’. R package version 2 (1): 1 https://CRAN.R-project.org/. Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2021. GGally: extension to ‘ggplot2’. R package version 2 (1): 1 https://​CRAN.​R-project.​org/​.
54.
Zurück zum Zitat JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone (2020). rmarkdown: dynamic documents for R. R package version 2.6. https://rmarkdown.rstudio.com. JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone (2020). rmarkdown: dynamic documents for R. R package version 2.6. https://​rmarkdown.​rstudio.​com.
55.
Zurück zum Zitat Yihui Xie (2020). knitr: a general-purpose package for dynamic report generation in R. R package version 1.30. Yihui Xie (2020). knitr: a general-purpose package for dynamic report generation in R. R package version 1.30.
57.
Zurück zum Zitat Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808. https://doi.org/10.1093/nar/gkx1011. PMID: 29092050; PMCID: PMC5753204. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808. https://​doi.​org/​10.​1093/​nar/​gkx1011. PMID: 29092050; PMCID: PMC5753204.
58.
Zurück zum Zitat Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. https://doi.org/10.1093/nar/gkx1098. PMID: 29155950; PMCID: PMC5753206. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. https://​doi.​org/​10.​1093/​nar/​gkx1098. PMID: 29155950; PMCID: PMC5753206.
60.
Zurück zum Zitat Berkel C, Cacan E. GAB2 and GAB3 are expressed in a tumor stage-, grade- and histotype-dependent manner and are associated with shorter progression-free survival in ovarian cancer. J Cell Commun Signal. 2021 Mar;15(1):57-70. https://doi.org/10.1007/s12079-020-00582-3. Epub 2020 Sep 4. PMID: 32888136; PMCID: PMC7904992. Berkel C, Cacan E. GAB2 and GAB3 are expressed in a tumor stage-, grade- and histotype-dependent manner and are associated with shorter progression-free survival in ovarian cancer. J Cell Commun Signal. 2021 Mar;15(1):57-70. https://​doi.​org/​10.​1007/​s12079-020-00582-3. Epub 2020 Sep 4. PMID: 32888136; PMCID: PMC7904992.
62.
Zurück zum Zitat Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T, Song Y. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep. 2018 Oct;40(4):1971-1984. https://doi.org/10.3892/or.2018.6634. Epub 2018 Aug 7. PMID: 30106450; PMCID: PMC6111570. Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T, Song Y. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep. 2018 Oct;40(4):1971-1984. https://​doi.​org/​10.​3892/​or.​2018.​6634. Epub 2018 Aug 7. PMID: 30106450; PMCID: PMC6111570.
65.
Zurück zum Zitat Croes L, Beyens M, Fransen E, Ibrahim J, Vanden Berghe W, Suls A, Peeters M, Pauwels P, Van Camp G, Opde Beeck K. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin Epigenetics. 2018 Apr 11;10:51. https://doi.org/10.1186/s13148-018-0479-y. PMID: 29682089; PMCID: PMC5896072. Croes L, Beyens M, Fransen E, Ibrahim J, Vanden Berghe W, Suls A, Peeters M, Pauwels P, Van Camp G, Opde Beeck K. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin Epigenetics. 2018 Apr 11;10:51. https://​doi.​org/​10.​1186/​s13148-018-0479-y. PMID: 29682089; PMCID: PMC5896072.
67.
Zurück zum Zitat Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun. 2008 May 23;370(1):38-43. https://doi.org/10.1016/j.bbrc.2008.03.026. Epub 2008 Mar 17. PMID: 18346456; PMCID: PMC3094717. Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun. 2008 May 23;370(1):38-43. https://​doi.​org/​10.​1016/​j.​bbrc.​2008.​03.​026. Epub 2008 Mar 17. PMID: 18346456; PMCID: PMC3094717.
68.
Zurück zum Zitat Ibrahim J, Opde Beeck K, Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M, Van Camp G. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 2019 May;8(5):2133-2145. https://doi.org/10.1002/cam4.2103. Epub 2019 Apr 16. PMID: 30993897; PMCID: PMC6536921. Ibrahim J, Opde Beeck K, Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M, Van Camp G. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 2019 May;8(5):2133-2145. https://​doi.​org/​10.​1002/​cam4.​2103. Epub 2019 Apr 16. PMID: 30993897; PMCID: PMC6536921.
69.
Zurück zum Zitat Yokomizo, K., Y. Harada, K. Kijima, K. Shinmura, M. Sakata, K. Sakuraba, Y. Kitamura, A. Shirahata, T. Goto, H. Mizukami, M. Saito, G. Kigawa, H. Nemoto, and K. Hibi. 2012 Apr. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer Res. 32 (4): 1319–1322.PubMed Yokomizo, K., Y. Harada, K. Kijima, K. Shinmura, M. Sakata, K. Sakuraba, Y. Kitamura, A. Shirahata, T. Goto, H. Mizukami, M. Saito, G. Kigawa, H. Nemoto, and K. Hibi. 2012 Apr. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer Res. 32 (4): 1319–1322.PubMed
Metadaten
Titel
Differential Expression and Copy Number Variation of Gasdermin (GSDM) Family Members, Pore-Forming Proteins in Pyroptosis, in Normal and Malignant Serous Ovarian Tissue
verfasst von
Caglar Berkel
Ercan Cacan
Publikationsdatum
06.06.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01493-0

Weitere Artikel der Ausgabe 6/2021

Inflammation 6/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.