Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 6/2022

16.02.2022 | Invited Review Article

Do We Really Need Aspirin Loading for STEMI?

verfasst von: Regina Ye, Hani Jneid, Mahboob Alam, Barry F. Uretsky, Dan Atar, Masafumi Kitakaze, Sean M. Davidson, Derek M. Yellon, Yochai Birnbaum

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Aspirin loading (chewable or intravenous) as soon as possible after presentation is a class I recommendation by current ST elevation myocardial infarction (STEMI) guidelines. Earlier achievement of therapeutic antiplatelet effects by aspirin loading has long been considered the standard of care. However, the effects of the loading dose of aspirin (alone or in addition to a chronic maintenance oral dose) have not been studied. A large proportion of myocardial cell death occurs upon and after reperfusion (reperfusion injury). Numerous agents and interventions have been shown to limit infarct size in animal models when administered before or immediately after reperfusion. However, these interventions have predominantly failed to show significant protection in clinical studies. In the current review, we raise the hypothesis that aspirin loading may be the culprit. Data obtained from animal models consistently show that statins, ticagrelor, opiates, and ischemic postconditioning limit myocardial infarct size. In most of these studies, aspirin was not administered. However, when aspirin was administered before reperfusion (as is the case in the majority of studies enrolling STEMI patients), the protective effects of statin, ticagrelor, morphine, and ischemic postconditioning were attenuated, which can be plausibly attributable to aspirin loading. We therefore suggest studying the effects of aspirin loading before reperfusion on the infarct size limiting effects of statins, ticagrelor, morphine, and/ or postconditioning in large animal models using long reperfusion periods (at least 24 h). If indeed aspirin attenuates the protective effects, clinical trials should be conducted comparing aspirin loading to alternative antiplatelet regimens without aspirin loading in patients with STEMI undergoing primary percutaneous coronary intervention.
Literatur
1.
Zurück zum Zitat Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.PubMedCrossRef Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.PubMedCrossRef
2.
Zurück zum Zitat O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.PubMedCrossRef O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.PubMedCrossRef
3.
Zurück zum Zitat Shuvy M, Atar D, Gabriel Steg P, et al. Oxygen therapy in acute coronary syndrome: are the benefits worth the risk? Eur Heart J. 2013;34(22):1630–5.PubMedCrossRef Shuvy M, Atar D, Gabriel Steg P, et al. Oxygen therapy in acute coronary syndrome: are the benefits worth the risk? Eur Heart J. 2013;34(22):1630–5.PubMedCrossRef
4.
Zurück zum Zitat Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004;44(3):671–719.PubMedCrossRef Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004;44(3):671–719.PubMedCrossRef
5.
Zurück zum Zitat Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619.PubMedCrossRef Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619.PubMedCrossRef
6.
Zurück zum Zitat Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–367.PubMedCrossRef Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–367.PubMedCrossRef
7.
Zurück zum Zitat Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet. 1988;2(8607):349–60. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet. 1988;2(8607):349–60.
8.
Zurück zum Zitat Feldman M, Cryer B. Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution. Am J Cardiol. 1999;84(4):404–9.PubMedCrossRef Feldman M, Cryer B. Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution. Am J Cardiol. 1999;84(4):404–9.PubMedCrossRef
9.
Zurück zum Zitat de Gaetano G, Cerletti C, Dejana E, Latini R. Pharmacology of platelet inhibition in humans: implications of the salicylate-aspirin interaction. Circulation. 1985;72(6):1185–93.PubMedCrossRef de Gaetano G, Cerletti C, Dejana E, Latini R. Pharmacology of platelet inhibition in humans: implications of the salicylate-aspirin interaction. Circulation. 1985;72(6):1185–93.PubMedCrossRef
10.
Zurück zum Zitat Bell RM, Botker HE, Carr RD, et al. 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Res Cardiol. 2016;111(4):41.PubMedPubMedCentralCrossRef Bell RM, Botker HE, Carr RD, et al. 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Res Cardiol. 2016;111(4):41.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Vidal-Cales P, Cepas-Guillen PL, Brugaletta S, Sabate M. New interventional therapies beyond stenting to treat ST-segment elevation acute myocardial infarction. J Cardiovasc Dev Dis. 2021;8(9):100.PubMedPubMedCentralCrossRef Vidal-Cales P, Cepas-Guillen PL, Brugaletta S, Sabate M. New interventional therapies beyond stenting to treat ST-segment elevation acute myocardial infarction. J Cardiovasc Dev Dis. 2021;8(9):100.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Duicu OM, Angoulvant D, Muntean DM. Cardioprotection against myocardial reperfusion injury: successes, failures, and perspectives. Can J Physiol Pharmacol. 2013;91(8):657–62.PubMedCrossRef Duicu OM, Angoulvant D, Muntean DM. Cardioprotection against myocardial reperfusion injury: successes, failures, and perspectives. Can J Physiol Pharmacol. 2013;91(8):657–62.PubMedCrossRef
13.
Zurück zum Zitat Roth S, Torregroza C, Feige K, et al. Pharmacological conditioning of the heart: an update on experimental developments and clinical implications. Int J Mol Sci. 2021;22(5):2519.PubMedPubMedCentralCrossRef Roth S, Torregroza C, Feige K, et al. Pharmacological conditioning of the heart: an update on experimental developments and clinical implications. Int J Mol Sci. 2021;22(5):2519.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Rossello X, Yellon DM. Cardioprotection: the disconnect between bench and bedside. Circulation. 2016;134(8):574–5.PubMedCrossRef Rossello X, Yellon DM. Cardioprotection: the disconnect between bench and bedside. Circulation. 2016;134(8):574–5.PubMedCrossRef
15.
Zurück zum Zitat Birnbaum GD, Birnbaum I, Ye Y, Birnbaum Y. Statin-induced cardioprotection against ischemia-reperfusion injury: potential drug-drug interactions. Lesson to be learnt by translating results from animal models to the clinical settings. Cardiovasc Drugs Ther. 2015;29(5):461–7.PubMedCrossRef Birnbaum GD, Birnbaum I, Ye Y, Birnbaum Y. Statin-induced cardioprotection against ischemia-reperfusion injury: potential drug-drug interactions. Lesson to be learnt by translating results from animal models to the clinical settings. Cardiovasc Drugs Ther. 2015;29(5):461–7.PubMedCrossRef
16.
Zurück zum Zitat Merla R, Ye Y, Lin Y, et al. The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol. 2007;293(3):H1918–28.PubMedCrossRef Merla R, Ye Y, Lin Y, et al. The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol. 2007;293(3):H1918–28.PubMedCrossRef
17.
Zurück zum Zitat Birnbaum Y, Ye Y, Rosanio S, et al. Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia-reperfusion injury. Cardiovasc Res. 2005;65(2):345–55.PubMedCrossRef Birnbaum Y, Ye Y, Rosanio S, et al. Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia-reperfusion injury. Cardiovasc Res. 2005;65(2):345–55.PubMedCrossRef
18.
Zurück zum Zitat Birnbaum Y, Lin Y, Ye Y, et al. Aspirin before reperfusion blunts the infarct size limiting effect of atorvastatin. Am J Physiol Heart Circ Physiol. 2007;292(6):H2891–7.PubMedCrossRef Birnbaum Y, Lin Y, Ye Y, et al. Aspirin before reperfusion blunts the infarct size limiting effect of atorvastatin. Am J Physiol Heart Circ Physiol. 2007;292(6):H2891–7.PubMedCrossRef
19.
Zurück zum Zitat Nanhwan MK, Ling S, Kodakandla M, et al. Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol. 2014;34(9):2078–85.PubMedCrossRef Nanhwan MK, Ling S, Kodakandla M, et al. Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol. 2014;34(9):2078–85.PubMedCrossRef
20.
Zurück zum Zitat Montalescot G, van ’t Hof AW, Lapostolle F, et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med. 2014;371(11):1016–27.PubMedCrossRef Montalescot G, van ’t Hof AW, Lapostolle F, et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med. 2014;371(11):1016–27.PubMedCrossRef
21.
Zurück zum Zitat Ubaid S, Ford TJ, Berry C, et al. Cangrelor versus ticagrelor in patients treated with primary percutaneous coronary intervention: impact on platelet activity, myocardial microvascular function and infarct size: a randomized controlled trial. Thromb Haemost. 2019;119(7):1171–81.PubMedCrossRef Ubaid S, Ford TJ, Berry C, et al. Cangrelor versus ticagrelor in patients treated with primary percutaneous coronary intervention: impact on platelet activity, myocardial microvascular function and infarct size: a randomized controlled trial. Thromb Haemost. 2019;119(7):1171–81.PubMedCrossRef
22.
Zurück zum Zitat Khan JN, Greenwood JP, Nazir SA, et al. Infarct size following treatment with second- versus third-generation P2Y12 antagonists in patients with multivessel coronary disease at ST-segment elevation myocardial infarction in the CvLPRIT Study. J Am Heart Assoc. 2016;5(6):e003403.PubMedPubMedCentralCrossRef Khan JN, Greenwood JP, Nazir SA, et al. Infarct size following treatment with second- versus third-generation P2Y12 antagonists in patients with multivessel coronary disease at ST-segment elevation myocardial infarction in the CvLPRIT Study. J Am Heart Assoc. 2016;5(6):e003403.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Sabbah M, Nepper-Christensen L, Kober L, et al. Infarct size following loading with ticagrelor/prasugrel versus clopidogrel in ST-segment elevation myocardial infarction. Int J Cardiol. 2020;314:7–12.PubMedCrossRef Sabbah M, Nepper-Christensen L, Kober L, et al. Infarct size following loading with ticagrelor/prasugrel versus clopidogrel in ST-segment elevation myocardial infarction. Int J Cardiol. 2020;314:7–12.PubMedCrossRef
24.
Zurück zum Zitat Ye Y, Birnbaum GD, Perez-Polo JR, et al. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35(8):1805–14.PubMedCrossRef Ye Y, Birnbaum GD, Perez-Polo JR, et al. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35(8):1805–14.PubMedCrossRef
25.
Zurück zum Zitat Birnbaum Y, Tran D, Chen H, et al. Ticagrelor improves remodeling, reduces apoptosis, inflammation and fibrosis and increases the number of progenitor stem cells after myocardial infarction in a rat model of ischemia reperfusion. Cell Physiol Biochem. 2019;53(6):961–81.PubMedCrossRef Birnbaum Y, Tran D, Chen H, et al. Ticagrelor improves remodeling, reduces apoptosis, inflammation and fibrosis and increases the number of progenitor stem cells after myocardial infarction in a rat model of ischemia reperfusion. Cell Physiol Biochem. 2019;53(6):961–81.PubMedCrossRef
26.
Zurück zum Zitat Jiang X, Shi E, Nakajima Y, Sato S. COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent mechanism. Life Sci. 2006;78(22):2543–9.PubMedCrossRef Jiang X, Shi E, Nakajima Y, Sato S. COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent mechanism. Life Sci. 2006;78(22):2543–9.PubMedCrossRef
27.
Zurück zum Zitat Gross ER, Hsu AK, Gross GJ. Acute aspirin treatment abolishes, whereas acute ibuprofen treatment enhances morphine-induced cardioprotection: role of 12-lipoxygenase. J Pharmacol Exp Ther. 2004;310(1):185–91.PubMedCrossRef Gross ER, Hsu AK, Gross GJ. Acute aspirin treatment abolishes, whereas acute ibuprofen treatment enhances morphine-induced cardioprotection: role of 12-lipoxygenase. J Pharmacol Exp Ther. 2004;310(1):185–91.PubMedCrossRef
28.
Zurück zum Zitat de Waha S, Eitel I, Desch S, et al. Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin Res Cardiol. 2015;104(9):727–34.PubMedCrossRef de Waha S, Eitel I, Desch S, et al. Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin Res Cardiol. 2015;104(9):727–34.PubMedCrossRef
29.
Zurück zum Zitat Eitel I, Wang J, Stiermaier T, et al. Impact of morphine treatment on infarct size and reperfusion injury in acute reperfused ST-elevation myocardial infarction. J Clin Med. 2020;9(3):735.PubMedCentralCrossRef Eitel I, Wang J, Stiermaier T, et al. Impact of morphine treatment on infarct size and reperfusion injury in acute reperfused ST-elevation myocardial infarction. J Clin Med. 2020;9(3):735.PubMedCentralCrossRef
30.
Zurück zum Zitat Kubica J, Adamski P, Ostrowska M, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37(3):245–52.PubMedCrossRef Kubica J, Adamski P, Ostrowska M, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37(3):245–52.PubMedCrossRef
31.
Zurück zum Zitat Atar D, Agewall S. Morphine in myocardial infarction: balancing on the tight rope. Eur Heart J. 2016;37(3):253–5.PubMedCrossRef Atar D, Agewall S. Morphine in myocardial infarction: balancing on the tight rope. Eur Heart J. 2016;37(3):253–5.PubMedCrossRef
32.
Zurück zum Zitat Stiermaier T, Schaefer P, Meyer-Saraei R, et al. Impact of morphine treatment with and without metoclopramide coadministration on myocardial and microvascular injury in acute myocardial infarction: insights from the randomized MonAMI Trial. J Am Heart Assoc. 2021;10(9): e018881.PubMedPubMedCentralCrossRef Stiermaier T, Schaefer P, Meyer-Saraei R, et al. Impact of morphine treatment with and without metoclopramide coadministration on myocardial and microvascular injury in acute myocardial infarction: insights from the randomized MonAMI Trial. J Am Heart Assoc. 2021;10(9): e018881.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Reddy PM, Shantanu S, Shewade DG, Ramaswamy S. Effect of ATP sensitive potassium channel modifiers on antinociceptive effect of metoclopramide. Indian J Exp Biol. 2001;39(5):476–8.PubMed Reddy PM, Shantanu S, Shewade DG, Ramaswamy S. Effect of ATP sensitive potassium channel modifiers on antinociceptive effect of metoclopramide. Indian J Exp Biol. 2001;39(5):476–8.PubMed
34.
Zurück zum Zitat Duval N, Grosset A, O’Connor SE. Combination of aspirin and metoclopramide produces a synergistic antithrombotic effect in a canine model of coronary artery thrombosis. Fundam Clin Pharmacol. 1997;11(1):57–62.PubMedCrossRef Duval N, Grosset A, O’Connor SE. Combination of aspirin and metoclopramide produces a synergistic antithrombotic effect in a canine model of coronary artery thrombosis. Fundam Clin Pharmacol. 1997;11(1):57–62.PubMedCrossRef
35.
Zurück zum Zitat Mobarok Ali AT, al-Humayyd MS. Enhancement of antithrombotic effect of aspirin by metoclopramide in rats. Thromb Res. 1991;61(4):361–7. . Mobarok Ali AT, al-Humayyd MS. Enhancement of antithrombotic effect of aspirin by metoclopramide in rats. Thromb Res. 1991;61(4):361–7. .
36.
Zurück zum Zitat Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.PubMedCrossRef Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.PubMedCrossRef
37.
Zurück zum Zitat Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13(4):193–209.PubMedCrossRef Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13(4):193–209.PubMedCrossRef
38.
Zurück zum Zitat Skyschally A, van Caster P, Iliodromitis EK, et al. Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol. 2009;104(5):469–83.PubMedCrossRef Skyschally A, van Caster P, Iliodromitis EK, et al. Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol. 2009;104(5):469–83.PubMedCrossRef
39.
Zurück zum Zitat Birnbaum Y, Ye R, Ye Y. 2021 Aspirin blocks the infarct-size limiting effect of ischemic postconditioning in the rat. Cardiovasc Drugs Ther Birnbaum Y, Ye R, Ye Y. 2021 Aspirin blocks the infarct-size limiting effect of ischemic postconditioning in the rat. Cardiovasc Drugs Ther
40.
Zurück zum Zitat Birnbaum Y, Ye Y, Lin Y, et al. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat. 2007;83(1–2):89–98.PubMedCrossRef Birnbaum Y, Ye Y, Lin Y, et al. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat. 2007;83(1–2):89–98.PubMedCrossRef
42.
Zurück zum Zitat Francis R, Chong J, Ramlall M, et al. Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy. Basic Res Cardiol. 2021;116(1):59.PubMedPubMedCentralCrossRef Francis R, Chong J, Ramlall M, et al. Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy. Basic Res Cardiol. 2021;116(1):59.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Hausenloy DJ, Kharbanda RK, Moller UK, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet. 2019;394(10207):1415–24.PubMedPubMedCentralCrossRef Hausenloy DJ, Kharbanda RK, Moller UK, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet. 2019;394(10207):1415–24.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002;55(3):506–19.PubMedCrossRef Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002;55(3):506–19.PubMedCrossRef
45.
Zurück zum Zitat Kodani E, Xuan YT, Shinmura K, et al. Delta-opioid receptor-induced late preconditioning is mediated by cyclooxygenase-2 in conscious rabbits. Am J Physiol Heart Circ Physiol. 2002;283(5):H1943–57.PubMedCrossRef Kodani E, Xuan YT, Shinmura K, et al. Delta-opioid receptor-induced late preconditioning is mediated by cyclooxygenase-2 in conscious rabbits. Am J Physiol Heart Circ Physiol. 2002;283(5):H1943–57.PubMedCrossRef
46.
Zurück zum Zitat Patel HH, Hsu AK, Gross GJ. COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat. Life Sci. 2004;75(2):129–40.PubMedCrossRef Patel HH, Hsu AK, Gross GJ. COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat. Life Sci. 2004;75(2):129–40.PubMedCrossRef
47.
Zurück zum Zitat Schoos A, Gabriel C, Knab VM, Fux DA. Activation of HIF-1alpha by delta-opioid receptors induces COX-2 expression in breast cancer cells and leads to paracrine activation of vascular endothelial cells. J Pharmacol Exp Ther. 2019;370(3):480–9.PubMedCrossRef Schoos A, Gabriel C, Knab VM, Fux DA. Activation of HIF-1alpha by delta-opioid receptors induces COX-2 expression in breast cancer cells and leads to paracrine activation of vascular endothelial cells. J Pharmacol Exp Ther. 2019;370(3):480–9.PubMedCrossRef
48.
Zurück zum Zitat Atar S, Ye Y, Lin Y, et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol. 2006;290(5):H1960–8.PubMedCrossRef Atar S, Ye Y, Lin Y, et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol. 2006;290(5):H1960–8.PubMedCrossRef
49.
Zurück zum Zitat Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 2005;310(5756):1966–70.PubMedCrossRef Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 2005;310(5756):1966–70.PubMedCrossRef
50.
Zurück zum Zitat Buchholz B, Donato M, D’Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem. 2014;392(1–2):1–12.PubMedCrossRef Buchholz B, Donato M, D’Annunzio V, Gelpi RJ. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem. 2014;392(1–2):1–12.PubMedCrossRef
51.
Zurück zum Zitat Maslov LN, Tsibulnikov SY, Prokudina ES, et al. Trigger, signaling mechanism and end effector of cardioprotective effect of remote postconditioning of heart. Curr Cardiol Rev. 2019;15(3):177–87.PubMedPubMedCentralCrossRef Maslov LN, Tsibulnikov SY, Prokudina ES, et al. Trigger, signaling mechanism and end effector of cardioprotective effect of remote postconditioning of heart. Curr Cardiol Rev. 2019;15(3):177–87.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Peart JN, Gross GJ. Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. Am J Physiol Heart Circ Physiol. 2003;285(1):H81–9.PubMedCrossRef Peart JN, Gross GJ. Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. Am J Physiol Heart Circ Physiol. 2003;285(1):H81–9.PubMedCrossRef
53.
Zurück zum Zitat Heusch G. Critical issues for the translation of cardioprotection. Circ Res. 2017;120(9):1477–86.PubMedCrossRef Heusch G. Critical issues for the translation of cardioprotection. Circ Res. 2017;120(9):1477–86.PubMedCrossRef
54.
Zurück zum Zitat Allencherril J, Alam M, Levine G, et al. Do we need potent intravenous antiplatelet inhibition at the time of reperfusion during ST-segment elevation myocardial infarction? J Cardiovasc Pharmacol Ther. 2019;24(3):215–24.PubMedCrossRef Allencherril J, Alam M, Levine G, et al. Do we need potent intravenous antiplatelet inhibition at the time of reperfusion during ST-segment elevation myocardial infarction? J Cardiovasc Pharmacol Ther. 2019;24(3):215–24.PubMedCrossRef
55.
Zurück zum Zitat Jones SP, Trocha SD, Lefer DJ. Pretreatment with simvastatin attenuates myocardial dysfunction after ischemia and chronic reperfusion. Arterioscler Thromb Vasc Biol. 2001;21(12):2059–64.PubMedCrossRef Jones SP, Trocha SD, Lefer DJ. Pretreatment with simvastatin attenuates myocardial dysfunction after ischemia and chronic reperfusion. Arterioscler Thromb Vasc Biol. 2001;21(12):2059–64.PubMedCrossRef
56.
Zurück zum Zitat Ye Y, Martinez JD, Perez-Polo RJ, et al. The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol. 2008;295(1):H343–51.PubMedCrossRef Ye Y, Martinez JD, Perez-Polo RJ, et al. The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol. 2008;295(1):H343–51.PubMedCrossRef
57.
Zurück zum Zitat Tian Y, Linden J, French BA, Yang Z. Atorvastatin at reperfusion reduces myocardial infarct size in mice by activating eNOS in bone marrow-derived cells. PLoS ONE. 2014;9(12): e114375.PubMedPubMedCentralCrossRef Tian Y, Linden J, French BA, Yang Z. Atorvastatin at reperfusion reduces myocardial infarct size in mice by activating eNOS in bone marrow-derived cells. PLoS ONE. 2014;9(12): e114375.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Tavackoli S, Ashitkov T, Hu ZY, et al. Simvastatin-induced myocardial protection against ischemia-reperfusion injury is mediated by activation of ATP-sensitive K+ channels. Coron Artery Dis. 2004;15(1):53–8.PubMedCrossRef Tavackoli S, Ashitkov T, Hu ZY, et al. Simvastatin-induced myocardial protection against ischemia-reperfusion injury is mediated by activation of ATP-sensitive K+ channels. Coron Artery Dis. 2004;15(1):53–8.PubMedCrossRef
59.
Zurück zum Zitat Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther. 2016;30(6):539–50.PubMedCrossRef Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther. 2016;30(6):539–50.PubMedCrossRef
60.
Zurück zum Zitat Sanada S, Asanuma H, Minamino T, et al. Optimal windows of statin use for immediate infarct limitation: 5’-nucleotidase as another downstream molecule of phosphatidylinositol 3-kinase. Circulation. 2004;110(15):2143–9.PubMedCrossRef Sanada S, Asanuma H, Minamino T, et al. Optimal windows of statin use for immediate infarct limitation: 5’-nucleotidase as another downstream molecule of phosphatidylinositol 3-kinase. Circulation. 2004;110(15):2143–9.PubMedCrossRef
61.
Zurück zum Zitat Bulhak AA, Gourine AV, Gonon AT, et al. Oral pre-treatment with rosuvastatin protects porcine myocardium from ischaemia/reperfusion injury via a mechanism related to nitric oxide but not to serum cholesterol level. Acta Physiol Scand. 2005;183(2):151–9.PubMedCrossRef Bulhak AA, Gourine AV, Gonon AT, et al. Oral pre-treatment with rosuvastatin protects porcine myocardium from ischaemia/reperfusion injury via a mechanism related to nitric oxide but not to serum cholesterol level. Acta Physiol Scand. 2005;183(2):151–9.PubMedCrossRef
62.
Zurück zum Zitat Li XD, Yang YJ, Geng YJ, et al. Phosphorylation of endothelial NOS contributes to simvastatin protection against myocardial no-reflow and infarction in reperfused swine hearts: partially via the PKA signaling pathway. Acta Pharmacol Sin. 2012;33(7):879–87.PubMedPubMedCentralCrossRef Li XD, Yang YJ, Geng YJ, et al. Phosphorylation of endothelial NOS contributes to simvastatin protection against myocardial no-reflow and infarction in reperfused swine hearts: partially via the PKA signaling pathway. Acta Pharmacol Sin. 2012;33(7):879–87.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ichimura K, Matoba T, Nakano K, et al. A translational study of a new therapeutic approach for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model. PLoS ONE. 2016;11(9): e0162425.PubMedPubMedCentralCrossRef Ichimura K, Matoba T, Nakano K, et al. A translational study of a new therapeutic approach for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model. PLoS ONE. 2016;11(9): e0162425.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Mendieta G, Ben-Aicha S, Gutierrez M, et al. Intravenous statin administration during myocardial infarction compared with oral post-infarct administration. J Am Coll Cardiol. 2020;75(12):1386–402.PubMedCrossRef Mendieta G, Ben-Aicha S, Gutierrez M, et al. Intravenous statin administration during myocardial infarction compared with oral post-infarct administration. J Am Coll Cardiol. 2020;75(12):1386–402.PubMedCrossRef
65.
Zurück zum Zitat Hahn JY, Kim HJ, Choi YJ, et al. Effects of atorvastatin pretreatment on infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2011;162(6):1026–33.PubMedCrossRef Hahn JY, Kim HJ, Choi YJ, et al. Effects of atorvastatin pretreatment on infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2011;162(6):1026–33.PubMedCrossRef
66.
Zurück zum Zitat Post S, Post MC, van den Branden BJ, et al. Early statin treatment prior to primary PCI for acute myocardial infarction: REPERATOR, a randomized placebo-controlled pilot trial. Catheter Cardiovasc Interv. 2012;80(5):756–65.PubMedCrossRef Post S, Post MC, van den Branden BJ, et al. Early statin treatment prior to primary PCI for acute myocardial infarction: REPERATOR, a randomized placebo-controlled pilot trial. Catheter Cardiovasc Interv. 2012;80(5):756–65.PubMedCrossRef
67.
Zurück zum Zitat Fuernau G, Eitel I, Wohrle J, et al. Impact of long-term statin pretreatment on myocardial damage in ST elevation myocardial infarction (from the AIDA STEMI CMR Substudy). Am J Cardiol. 2014;114(4):503–9.PubMedCrossRef Fuernau G, Eitel I, Wohrle J, et al. Impact of long-term statin pretreatment on myocardial damage in ST elevation myocardial infarction (from the AIDA STEMI CMR Substudy). Am J Cardiol. 2014;114(4):503–9.PubMedCrossRef
68.
Zurück zum Zitat Kim EK, Hahn JY, Song YB, et al. Effects of high-dose atorvastatin pretreatment in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a cardiac magnetic resonance study. J Korean Med Sci. 2015;30(4):435–41.PubMedPubMedCentralCrossRef Kim EK, Hahn JY, Song YB, et al. Effects of high-dose atorvastatin pretreatment in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a cardiac magnetic resonance study. J Korean Med Sci. 2015;30(4):435–41.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Marenzi G, Cosentino N, Cortinovis S, et al. Myocardial Infarct size in patients on long-term statin therapy undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol. 2015;116(12):1791–7.PubMedCrossRef Marenzi G, Cosentino N, Cortinovis S, et al. Myocardial Infarct size in patients on long-term statin therapy undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol. 2015;116(12):1791–7.PubMedCrossRef
70.
Zurück zum Zitat Ko YG, Won H, Shin DH, et al. Efficacy of early intensive rosuvastatin therapy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (ROSEMARY Study). Am J Cardiol. 2014;114(1):29–35.PubMedCrossRef Ko YG, Won H, Shin DH, et al. Efficacy of early intensive rosuvastatin therapy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (ROSEMARY Study). Am J Cardiol. 2014;114(1):29–35.PubMedCrossRef
71.
Zurück zum Zitat Bell RM, Sivaraman V, Kunuthur SP, et al. Cardioprotective properties of the platelet P2Y12 receptor inhibitor, cangrelor: protective in diabetics and reliant upon the presence of blood. Cardiovasc Drugs Ther. 2015;29(5):415–8.PubMedPubMedCentralCrossRef Bell RM, Sivaraman V, Kunuthur SP, et al. Cardioprotective properties of the platelet P2Y12 receptor inhibitor, cangrelor: protective in diabetics and reliant upon the presence of blood. Cardiovasc Drugs Ther. 2015;29(5):415–8.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Liu X, Wang Y, Zhang M, et al. Ticagrelor reduces ischemia-reperfusion injury through the NF-kappaB-dependent pathway in rats. J Cardiovasc Pharmacol. 2019;74(1):13–9.PubMedCrossRef Liu X, Wang Y, Zhang M, et al. Ticagrelor reduces ischemia-reperfusion injury through the NF-kappaB-dependent pathway in rats. J Cardiovasc Pharmacol. 2019;74(1):13–9.PubMedCrossRef
73.
Zurück zum Zitat Audia JP, Yang XM, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol. 2018;113(5):32.PubMedPubMedCentralCrossRef Audia JP, Yang XM, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol. 2018;113(5):32.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Hjortbak MV, Olesen KKW, Seefeldt JM, et al. Translation of experimental cardioprotective capability of P2Y12 inhibitors into clinical outcome in patients with ST-elevation myocardial infarction. Basic Res Cardiol. 2021;116(1):36.PubMedCrossRef Hjortbak MV, Olesen KKW, Seefeldt JM, et al. Translation of experimental cardioprotective capability of P2Y12 inhibitors into clinical outcome in patients with ST-elevation myocardial infarction. Basic Res Cardiol. 2021;116(1):36.PubMedCrossRef
75.
Zurück zum Zitat Vilahur G, Gutierrez M, Casani L, et al. Protective effects of ticagrelor on myocardial injury after infarction. Circulation. 2016;134(22):1708–19.PubMedCrossRef Vilahur G, Gutierrez M, Casani L, et al. Protective effects of ticagrelor on myocardial injury after infarction. Circulation. 2016;134(22):1708–19.PubMedCrossRef
76.
Zurück zum Zitat Vilahur G, Gutierrez M, Casani L, et al. P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs. Cardiovasc Res. 2018;114(14):1860–70.PubMedCrossRef Vilahur G, Gutierrez M, Casani L, et al. P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs. Cardiovasc Res. 2018;114(14):1860–70.PubMedCrossRef
77.
Zurück zum Zitat Wang K, Zhou X, Huang Y, et al. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb Haemost. 2010;104(3):609–17.PubMed Wang K, Zhou X, Huang Y, et al. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb Haemost. 2010;104(3):609–17.PubMed
78.
Zurück zum Zitat Yang XM, Liu Y, Cui L, et al. Platelet P2Y(1)(2) blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther. 2013;18(3):251–62.PubMedCrossRef Yang XM, Liu Y, Cui L, et al. Platelet P2Y(1)(2) blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther. 2013;18(3):251–62.PubMedCrossRef
79.
Zurück zum Zitat Yang XM, Liu Y, Cui L, et al. Two classes of anti-platelet drugs reduce anatomical infarct size in monkey hearts. Cardiovasc Drugs Ther. 2013;27(2):109–15.PubMedCrossRef Yang XM, Liu Y, Cui L, et al. Two classes of anti-platelet drugs reduce anatomical infarct size in monkey hearts. Cardiovasc Drugs Ther. 2013;27(2):109–15.PubMedCrossRef
80.
Zurück zum Zitat Schultz JE, Hsu AK, Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res. 1996;78(6):1100–4.PubMedCrossRef Schultz JE, Hsu AK, Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res. 1996;78(6):1100–4.PubMedCrossRef
81.
Zurück zum Zitat Ludwig LM, Patel HH, Gross GJ, et al. Morphine enhances pharmacological preconditioning by isoflurane: role of mitochondrial K(ATP) channels and opioid receptors. Anesthesiology. 2003;98(3):705–11.PubMedCrossRef Ludwig LM, Patel HH, Gross GJ, et al. Morphine enhances pharmacological preconditioning by isoflurane: role of mitochondrial K(ATP) channels and opioid receptors. Anesthesiology. 2003;98(3):705–11.PubMedCrossRef
82.
Zurück zum Zitat Small BA, Lu Y, Hsu AK, Gross GJ, Gross ER. Morphine reduces myocardial infarct size via heat shock protein 90 in rodents. Biomed Res Int. 2015;2015: 129612.PubMedPubMedCentralCrossRef Small BA, Lu Y, Hsu AK, Gross GJ, Gross ER. Morphine reduces myocardial infarct size via heat shock protein 90 in rodents. Biomed Res Int. 2015;2015: 129612.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Wu L, Yu J, Wang Q, Lu Y. Effects of nalbuphine on the cardioprotective effect of morphine in rats. Int J Cardiol. 2021;322:207–10.PubMedCrossRef Wu L, Yu J, Wang Q, Lu Y. Effects of nalbuphine on the cardioprotective effect of morphine in rats. Int J Cardiol. 2021;322:207–10.PubMedCrossRef
84.
Zurück zum Zitat Xu J, Bian X, Zhao H et al. Morphine prevents ischemia/reperfusion-induced myocardial mitochondrial damage by activating delta-opioid receptor/EGFR/ROS pathway. Cardiovasc Drugs Ther. 2021 Xu J, Bian X, Zhao H et al. Morphine prevents ischemia/reperfusion-induced myocardial mitochondrial damage by activating delta-opioid receptor/EGFR/ROS pathway. Cardiovasc Drugs Ther. 2021
85.
Zurück zum Zitat Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem. 1998;186(1–2):3–12.PubMedCrossRef Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem. 1998;186(1–2):3–12.PubMedCrossRef
86.
Zurück zum Zitat Okubo S, Tanabe Y, Takeda K, et al. Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: role of delta-opioid receptor. Am J Physiol Heart Circ Physiol. 2004;287(4):H1786–91.PubMedCrossRef Okubo S, Tanabe Y, Takeda K, et al. Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: role of delta-opioid receptor. Am J Physiol Heart Circ Physiol. 2004;287(4):H1786–91.PubMedCrossRef
87.
Zurück zum Zitat Sigg DC, Coles JA Jr, Oeltgen PR, Iaizzo PA. Role of delta-opioid receptor agonists on infarct size reduction in swine. Am J Physiol Heart Circ Physiol. 2002;282(6):H1953–60.PubMedCrossRef Sigg DC, Coles JA Jr, Oeltgen PR, Iaizzo PA. Role of delta-opioid receptor agonists on infarct size reduction in swine. Am J Physiol Heart Circ Physiol. 2002;282(6):H1953–60.PubMedCrossRef
88.
Zurück zum Zitat Coles JA Jr, Sigg DC, Iaizzo PA. Role of kappa-opioid receptor activation in pharmacological preconditioning of swine. Am J Physiol Heart Circ Physiol. 2003;284(6):H2091–9.PubMedCrossRef Coles JA Jr, Sigg DC, Iaizzo PA. Role of kappa-opioid receptor activation in pharmacological preconditioning of swine. Am J Physiol Heart Circ Physiol. 2003;284(6):H2091–9.PubMedCrossRef
89.
Zurück zum Zitat Karlsson LO, Grip L, Bissessar E, et al. Opioid receptor agonist Eribis peptide 94 reduces infarct size in different porcine models for myocardial ischaemia and reperfusion. Eur J Pharmacol. 2011;651(1–3):146–51.PubMedCrossRef Karlsson LO, Grip L, Bissessar E, et al. Opioid receptor agonist Eribis peptide 94 reduces infarct size in different porcine models for myocardial ischaemia and reperfusion. Eur J Pharmacol. 2011;651(1–3):146–51.PubMedCrossRef
90.
Zurück zum Zitat Peart JN, Patel HH, Gross GJ. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol. 2003;42(1):78–81.PubMedCrossRef Peart JN, Patel HH, Gross GJ. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol. 2003;42(1):78–81.PubMedCrossRef
91.
Zurück zum Zitat Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004;78(3):961–9 (discussion 9).PubMedCrossRef Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004;78(3):961–9 (discussion 9).PubMedCrossRef
92.
Zurück zum Zitat Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol. 2006;290(3):H1011–8.PubMedCrossRef Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol. 2006;290(3):H1011–8.PubMedCrossRef
93.
Zurück zum Zitat Iliodromitis EK, Georgiadis M, Cohen MV, et al. Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006;101(6):502–7.PubMedCrossRef Iliodromitis EK, Georgiadis M, Cohen MV, et al. Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006;101(6):502–7.PubMedCrossRef
94.
Zurück zum Zitat Lie RH, Hasenkam JM, Nielsen TT, Poulsen R, Sloth E. Post-conditioning reduces infarct size in an open-chest porcine acute ischemia-reperfusion model. Acta Anaesthesiol Scand. 2008;52(9):1188–93.PubMedCrossRef Lie RH, Hasenkam JM, Nielsen TT, Poulsen R, Sloth E. Post-conditioning reduces infarct size in an open-chest porcine acute ischemia-reperfusion model. Acta Anaesthesiol Scand. 2008;52(9):1188–93.PubMedCrossRef
95.
Zurück zum Zitat Heusch G, Buchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol. 2006;101(4):354–6.PubMedCrossRef Heusch G, Buchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol. 2006;101(4):354–6.PubMedCrossRef
96.
Zurück zum Zitat Kaljusto ML, Mori T, Mohammad Husain Rizvi S, et al. Postconditioning in rats and mice. Scand Cardiovasc J. 2006;40(6):334–41.PubMedCrossRef Kaljusto ML, Mori T, Mohammad Husain Rizvi S, et al. Postconditioning in rats and mice. Scand Cardiovasc J. 2006;40(6):334–41.PubMedCrossRef
97.
Zurück zum Zitat Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62(1):74–85.PubMedCrossRef Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62(1):74–85.PubMedCrossRef
98.
Zurück zum Zitat Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67(1):124–33.PubMedCrossRef Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67(1):124–33.PubMedCrossRef
99.
Zurück zum Zitat Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44(5):1103–10.PubMedCrossRef Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44(5):1103–10.PubMedCrossRef
100.
Zurück zum Zitat Argaud L, Gateau-Roesch O, Raisky O, et al. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111(2):194–7.PubMedCrossRef Argaud L, Gateau-Roesch O, Raisky O, et al. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111(2):194–7.PubMedCrossRef
101.
Zurück zum Zitat Lonborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv. 2010;3(1):34–41.PubMedCrossRef Lonborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv. 2010;3(1):34–41.PubMedCrossRef
102.
Zurück zum Zitat Sorensson P, Saleh N, Bouvier F, et al. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart. 2010;96(21):1710–5.PubMedCrossRef Sorensson P, Saleh N, Bouvier F, et al. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart. 2010;96(21):1710–5.PubMedCrossRef
103.
Zurück zum Zitat Freixa X, Bellera N, Ortiz-Perez JT, et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 2012;33(1):103–12.PubMedCrossRef Freixa X, Bellera N, Ortiz-Perez JT, et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 2012;33(1):103–12.PubMedCrossRef
104.
Zurück zum Zitat Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012;162(1):33–8.PubMedCrossRef Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012;162(1):33–8.PubMedCrossRef
105.
Zurück zum Zitat Hahn JY, Song YB, Kim EK, et al. Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation. 2013;128(17):1889–96.PubMedCrossRef Hahn JY, Song YB, Kim EK, et al. Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation. 2013;128(17):1889–96.PubMedCrossRef
106.
Zurück zum Zitat Limalanathan S, Andersen GO, Klow NE, et al. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014;3(2): e000679.PubMedPubMedCentralCrossRef Limalanathan S, Andersen GO, Klow NE, et al. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014;3(2): e000679.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Eitel I, Stiermaier T, Rommel KP, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J. 2015;36(44):3049–57.PubMedCrossRef Eitel I, Stiermaier T, Rommel KP, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J. 2015;36(44):3049–57.PubMedCrossRef
108.
Zurück zum Zitat Pichot S, Mewton N, Bejan-Angoulvant T, et al. Influence of cardiovascular risk factors on infarct size and interaction with mechanical ischaemic postconditioning in ST-elevation myocardial infarction. Open Heart. 2015;2(1): e000175.PubMedPubMedCentralCrossRef Pichot S, Mewton N, Bejan-Angoulvant T, et al. Influence of cardiovascular risk factors on infarct size and interaction with mechanical ischaemic postconditioning in ST-elevation myocardial infarction. Open Heart. 2015;2(1): e000175.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Engstrom T, Kelbaek H, Helqvist S, et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2017;2(5):490–7.PubMedPubMedCentralCrossRef Engstrom T, Kelbaek H, Helqvist S, et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2017;2(5):490–7.PubMedPubMedCentralCrossRef
Metadaten
Titel
Do We Really Need Aspirin Loading for STEMI?
verfasst von
Regina Ye
Hani Jneid
Mahboob Alam
Barry F. Uretsky
Dan Atar
Masafumi Kitakaze
Sean M. Davidson
Derek M. Yellon
Yochai Birnbaum
Publikationsdatum
16.02.2022
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 6/2022
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07327-x

Weitere Artikel der Ausgabe 6/2022

Cardiovascular Drugs and Therapy 6/2022 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.