Skip to main content
main-content
Erschienen in: Der Gynäkologe 1/2022

21.12.2021 | Echokardiografie | Leitthema

Künstliche Intelligenz in der pränatalen kardialen Diagnostik

verfasst von: Prof. Dr. Jan Weichert, Amrei Welp, Jann Lennard Scharf, Christoph Dracopoulos, Achim Rody, Michael Gembicki

Erschienen in: Der Gynäkologe | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die pränatale Detektionsrate von fetalen Herzfehlern ist trotz Auflage nationaler und internationaler Screeningprogramme niedrig geblieben. Die Entdeckungsraten im Niedrigrisikokollektiv reichen von 22,5–52,8 %. Erfolgversprechende Ansätze hin zu verbesserten Detektionsraten könnten automatisierte Anwendungen der künstlichen Intelligenz (KI) darstellen. Bezug nehmend auf neuartige und bereits etablierte KI-Lösungen aus der Erwachsenenkardiologie sollen in dieser Übersicht die Möglichkeiten und Limitierungen von KI-Algorithmen für die fetale Echokardiographie diskutiert werden.
Zugang erhalten Sie mit:
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S (2019) Digitale Transformation der Medizin – Die Zukunft aktiv gestalten. Dtsch Arztebl 116(17):A830–834 Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S (2019) Digitale Transformation der Medizin – Die Zukunft aktiv gestalten. Dtsch Arztebl 116(17):A830–834
2.
Zurück zum Zitat Thomford NE, Bope CD, Agamah FE et al (2020) Implementing artificial intelligence and digital health in resource-limited settings? Top 10 lessons we learned in congenital heart defects and cardiology. OMICS 24(5):264–277 PubMed Thomford NE, Bope CD, Agamah FE et al (2020) Implementing artificial intelligence and digital health in resource-limited settings? Top 10 lessons we learned in congenital heart defects and cardiology. OMICS 24(5):264–277 PubMed
3.
Zurück zum Zitat Obermeyer Z, Emanuel EJ (2016) Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219 PubMedPubMedCentral Obermeyer Z, Emanuel EJ (2016) Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219 PubMedPubMedCentral
4.
Zurück zum Zitat McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94 PubMed McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94 PubMed
5.
Zurück zum Zitat Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885 PubMed Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885 PubMed
6.
Zurück zum Zitat Day TG, Kainz B, Hajnal J, Razavi R, Simpson JM (2021) Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenat Diagn 41:733–742 PubMedCentral Day TG, Kainz B, Hajnal J, Razavi R, Simpson JM (2021) Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenat Diagn 41:733–742 PubMedCentral
7.
Zurück zum Zitat Zhou J, Du M, Chang S, Chen Z (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29 PubMedPubMedCentral Zhou J, Du M, Chang S, Chen Z (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29 PubMedPubMedCentral
8.
Zurück zum Zitat Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466 PubMed Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466 PubMed
9.
Zurück zum Zitat Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782 PubMed Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782 PubMed
11.
Zurück zum Zitat Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372 PubMed Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372 PubMed
12.
Zurück zum Zitat Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679 PubMedPubMedCentral Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679 PubMedPubMedCentral
13.
Zurück zum Zitat Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547 PubMed Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547 PubMed
14.
Zurück zum Zitat Kusunose K (2021) Steps to use artificial intelligence in echocardiography. J Echocardiogr 19(1):21–27 PubMed Kusunose K (2021) Steps to use artificial intelligence in echocardiography. J Echocardiogr 19(1):21–27 PubMed
15.
Zurück zum Zitat Yoon YE, Kim S, Chang HJ (2021) Artificial intelligence and echocardiography. J Cardiovasc Imaging 29(3):193–204 PubMedPubMedCentral Yoon YE, Kim S, Chang HJ (2021) Artificial intelligence and echocardiography. J Cardiovasc Imaging 29(3):193–204 PubMedPubMedCentral
16.
Zurück zum Zitat Yu L, Guo Y, Wang Y, Yu J, Chen P (2017) Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng 64(8):1886–1895 PubMed Yu L, Guo Y, Wang Y, Yu J, Chen P (2017) Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng 64(8):1886–1895 PubMed
17.
Zurück zum Zitat Xu L, Liu M, Shen Z et al (2020) DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph 80:101690 PubMed Xu L, Liu M, Shen Z et al (2020) DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph 80:101690 PubMed
18.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635 PubMedPubMedCentral Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635 PubMedPubMedCentral
19.
Zurück zum Zitat Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning (medRxiv) Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning (medRxiv)
20.
Zurück zum Zitat Le TK, Truong V, Nguyen-Vo TH (2020) Application of machine learning in screening of congenital heart diseases using fetal echo-cardiography. J Am Coll Cardiol 75(11):648 Le TK, Truong V, Nguyen-Vo TH (2020) Application of machine learning in screening of congenital heart diseases using fetal echo-cardiography. J Am Coll Cardiol 75(11):648
22.
Zurück zum Zitat Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942 PubMed Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942 PubMed
23.
Zurück zum Zitat Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689 PubMedPubMedCentral Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689 PubMedPubMedCentral
24.
Zurück zum Zitat Lee CS, Lee AY (2020) How artificial intelligence can transform randomized controlled trials. Transl Vis Sci Technol 9(2):9 PubMedPubMedCentral Lee CS, Lee AY (2020) How artificial intelligence can transform randomized controlled trials. Transl Vis Sci Technol 9(2):9 PubMedPubMedCentral
25.
Zurück zum Zitat Kim YH (2021) Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40(3):313–317 PubMedPubMedCentral Kim YH (2021) Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40(3):313–317 PubMedPubMedCentral
26.
Zurück zum Zitat Patra A, Noble JA (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inform 24(4):1046–1058 PubMed Patra A, Noble JA (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inform 24(4):1046–1058 PubMed
27.
Zurück zum Zitat Huang W, Bridge CP, Noble JA, Zisserman A (2017) Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video Huang W, Bridge CP, Noble JA, Zisserman A (2017) Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video
28.
Zurück zum Zitat Sharma H, Drukker L, Chatelain P, Droste R, Papageorghiou AT, Noble JA (2021) Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med Image Anal 69:101973 PubMed Sharma H, Drukker L, Chatelain P, Droste R, Papageorghiou AT, Noble JA (2021) Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med Image Anal 69:101973 PubMed
29.
Zurück zum Zitat Droste R, Drukker L, Papageorghiou AT, Noble JA (2020) Automatic probe movement guidance for freehand obstetric ultrasound. Med Image Comput Comput Assist Interv 12263:583–592 PubMedPubMedCentral Droste R, Drukker L, Papageorghiou AT, Noble JA (2020) Automatic probe movement guidance for freehand obstetric ultrasound. Med Image Comput Comput Assist Interv 12263:583–592 PubMedPubMedCentral
30.
Zurück zum Zitat Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA (2019) Captioning ultrasound images automatically (Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019) Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA (2019) Captioning ultrasound images automatically (Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019)
31.
Zurück zum Zitat Cai Y, Droste R, Sharma H et al (2020) Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 65:101762 PubMed Cai Y, Droste R, Sharma H et al (2020) Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 65:101762 PubMed
32.
Zurück zum Zitat Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215 PubMed Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215 PubMed
33.
Zurück zum Zitat Yaqub M, Kelly B, Noble JA, Papageorghiou AT (2018) An AI system to support sonologists during fetal ultrasound anomaly screening. Ultrasound Obstet Gynecol 52(S1):9–10 Yaqub M, Kelly B, Noble JA, Papageorghiou AT (2018) An AI system to support sonologists during fetal ultrasound anomaly screening. Ultrasound Obstet Gynecol 52(S1):9–10
34.
Zurück zum Zitat Yaqub M, Sleep N, Syme S et al (2021) ScanNav® audit: an AI-powered screening assistant for fetal anatomical ultrasound. Am J Obstet Gynecol 224(Suppl):312 Yaqub M, Sleep N, Syme S et al (2021) ScanNav® audit: an AI-powered screening assistant for fetal anatomical ultrasound. Am J Obstet Gynecol 224(Suppl):312
35.
Zurück zum Zitat Yeo L, Romero R (2013) Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 42(3):268–284 PubMed Yeo L, Romero R (2013) Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 42(3):268–284 PubMed
36.
Zurück zum Zitat Yeo L, Luewan S, Romero R (2018) Fetal intelligent navigation echocardiography (FINE) detects 98 % of congenital heart disease. J Ultrasound Med 37(11):2577–2593 PubMedPubMedCentral Yeo L, Luewan S, Romero R (2018) Fetal intelligent navigation echocardiography (FINE) detects 98 % of congenital heart disease. J Ultrasound Med 37(11):2577–2593 PubMedPubMedCentral
37.
Zurück zum Zitat Garcia M, Yeo L, Romero R et al (2016) Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE). Ultrasound Obstet Gynecol 47(4):450–459 PubMedPubMedCentral Garcia M, Yeo L, Romero R et al (2016) Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE). Ultrasound Obstet Gynecol 47(4):450–459 PubMedPubMedCentral
38.
Zurück zum Zitat Huang C, Zhao BW, Chen R et al (2020) Is fetal intelligent navigation echocardiography helpful in screening for d‑transposition of the great arteries? J Ultrasound Med 39(4):775–784 PubMed Huang C, Zhao BW, Chen R et al (2020) Is fetal intelligent navigation echocardiography helpful in screening for d‑transposition of the great arteries? J Ultrasound Med 39(4):775–784 PubMed
39.
Zurück zum Zitat DeVore GR, Haxel C, Satou G et al (2021) Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 57(2):282–291 PubMed DeVore GR, Haxel C, Satou G et al (2021) Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 57(2):282–291 PubMed
40.
Zurück zum Zitat DeVore GR, Klas B, Satou G, Sklansky M (2018) 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 51(5):650–658 PubMed DeVore GR, Klas B, Satou G, Sklansky M (2018) 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 51(5):650–658 PubMed
41.
Zurück zum Zitat DeVore GR, Klas B, Satou G, Sklansky M (2018) Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 37(5):1129–1141 PubMed DeVore GR, Klas B, Satou G, Sklansky M (2018) Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 37(5):1129–1141 PubMed
42.
Zurück zum Zitat DeVore GR, Polanco B, Satou G, Sklansky M (2016) Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. J Ultrasound Med. 2016 Aug;35(8):1765–1781 PubMed DeVore GR, Polanco B, Satou G, Sklansky M (2016) Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. J Ultrasound Med. 2016 Aug;35(8):1765–1781 PubMed
43.
Zurück zum Zitat Lee M, Won H (2019) Novel technique for measurement of fetal right myocardial performance index using synchronised images of right ventricular inflow and outflow. Ultrasound Obstet Gynecol 54:178–179 Lee M, Won H (2019) Novel technique for measurement of fetal right myocardial performance index using synchronised images of right ventricular inflow and outflow. Ultrasound Obstet Gynecol 54:178–179
44.
Zurück zum Zitat Kang OJ, Kim SY, Lee MY et al (2021) Novel technique for the measurement of fetal right modified myocardial performance index using synchronized images of right ventricular inflow and outflow and clinical application to twin-to-twin transfusion syndrome. J Ultrasound Med 40(11):2467–2475. https://​doi.​org/​10.​1002/​jum.​15634 CrossRefPubMed Kang OJ, Kim SY, Lee MY et al (2021) Novel technique for the measurement of fetal right modified myocardial performance index using synchronized images of right ventricular inflow and outflow and clinical application to twin-to-twin transfusion syndrome. J Ultrasound Med 40(11):2467–2475. https://​doi.​org/​10.​1002/​jum.​15634 CrossRefPubMed
45.
Zurück zum Zitat Box G (1976) Science and statistics. J Am Stat Assoc 71:791–799 Box G (1976) Science and statistics. J Am Stat Assoc 71:791–799
46.
Zurück zum Zitat Wasserstein R (2010) George Box: a model statistician. Significance 7:134–135 Wasserstein R (2010) George Box: a model statistician. Significance 7:134–135
47.
Zurück zum Zitat Chen Z, Liu Z, Du M, Wang Z (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne) 8:733468 Chen Z, Liu Z, Du M, Wang Z (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne) 8:733468
48.
Zurück zum Zitat Bates DW, Auerbach A, Schulam P, Wright A, Saria S (2020) Reporting and implementing interventions involving machine learning and artificial intelligence. Ann Intern Med 172(11):S137–s144 PubMed Bates DW, Auerbach A, Schulam P, Wright A, Saria S (2020) Reporting and implementing interventions involving machine learning and artificial intelligence. Ann Intern Med 172(11):S137–s144 PubMed
49.
Zurück zum Zitat Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195 PubMedPubMedCentral Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195 PubMedPubMedCentral
50.
Zurück zum Zitat Sengupta PP, Shrestha S, Berthon B et al (2020) Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology Healthcare innovation council. JACC Cardiovasc Imaging 13(9):2017–2035 PubMedPubMedCentral Sengupta PP, Shrestha S, Berthon B et al (2020) Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology Healthcare innovation council. JACC Cardiovasc Imaging 13(9):2017–2035 PubMedPubMedCentral
52.
Zurück zum Zitat Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313 PubMed Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313 PubMed
53.
Zurück zum Zitat Allen B Jr., Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 national institutes of health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189 PubMed Allen B Jr., Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 national institutes of health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189 PubMed
54.
Zurück zum Zitat Langlotz CP, Allen B, Erickson BJ et al (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3):781–791 PubMed Langlotz CP, Allen B, Erickson BJ et al (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3):781–791 PubMed
55.
Zurück zum Zitat Gaffar S, Gearhart AS, Chang AC (2020) The next frontier in pediatric cardiology: artificial intelligence. Pediatr Clin North Am 67(5):995–1009 PubMed Gaffar S, Gearhart AS, Chang AC (2020) The next frontier in pediatric cardiology: artificial intelligence. Pediatr Clin North Am 67(5):995–1009 PubMed
56.
Zurück zum Zitat Krittanawong C, Rogers AJ, Johnson KW et al (2021) Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 18(2):75–91 PubMed Krittanawong C, Rogers AJ, Johnson KW et al (2021) Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 18(2):75–91 PubMed
57.
Zurück zum Zitat Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27(9):392–402 PubMedPubMedCentral Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27(9):392–402 PubMedPubMedCentral
58.
Zurück zum Zitat Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ (2021) Routine echocardiography and artificial intelligence solutions. Front Cardiovasc Med 8:648877 PubMedPubMedCentral Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ (2021) Routine echocardiography and artificial intelligence solutions. Front Cardiovasc Med 8:648877 PubMedPubMedCentral
59.
Zurück zum Zitat Sonntag D (2021) Künstliche Intelligenz in der Medizin und Gynäkologie – Holzweg oder Heilversprechen? Gynäkologe 54:476–482 Sonntag D (2021) Künstliche Intelligenz in der Medizin und Gynäkologie – Holzweg oder Heilversprechen? Gynäkologe 54:476–482
60.
Zurück zum Zitat Banerjee M, Chiew D, Patel KT et al (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):429 PubMedPubMedCentral Banerjee M, Chiew D, Patel KT et al (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):429 PubMedPubMedCentral
61.
Zurück zum Zitat Kleesiek J, Murray J, Kaissis G, Braren R (2020) Künstliche Intelligenz und maschinelles Lernen in der onkologischen Bildgebung. Onkologe 26:60–65 Kleesiek J, Murray J, Kaissis G, Braren R (2020) Künstliche Intelligenz und maschinelles Lernen in der onkologischen Bildgebung. Onkologe 26:60–65
Metadaten
Titel
Künstliche Intelligenz in der pränatalen kardialen Diagnostik
verfasst von
Prof. Dr. Jan Weichert
Amrei Welp
Jann Lennard Scharf
Christoph Dracopoulos
Achim Rody
Michael Gembicki
Publikationsdatum
21.12.2021
Verlag
Springer Medizin
Erschienen in
Der Gynäkologe / Ausgabe 1/2022
Print ISSN: 0017-5994
Elektronische ISSN: 1433-0393
DOI
https://doi.org/10.1007/s00129-021-04890-6