Skip to main content
Erschienen in: Lasers in Medical Science 2/2022

17.06.2021 | Original Article

Effects of photobiomodulation on bone remodeling in an osteoblast–osteoclast co-culture system

verfasst von: Ji-Un Hong, Jin-Ju Kwon, Soon Chul Heo, Sang-Hun Shin, Hyung Joon Kim, Jae-Yeol Lee

Erschienen in: Lasers in Medical Science | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

The general bone anabolic effect of photobiomodulation (PBM) is largely accepted. As a result, PBM therapy is expected to be beneficial in the medical fields of dentistry and bone healing. However, most of the previous in vitro studies on PBM and bone metabolism were performed with single-cell cultures of osteoclast-lineage cells or osteoblast-lineage cells. In the present study, the bone-modulating effects of PBM were evaluated in an in vitro osteoblast/osteoclast co-culture system. Mouse bone marrow-derived macrophages (BMMs) and mouse calvarial pre-osteoblasts cells were purified and used as precursor cells for osteoclasts and osteoblasts, respectively. The PBM effects on single-cell culture of osteoclasts or osteoblasts as well as co-culture were examined by 1.2 J/cm2 low-level Ga-Al-As laser (λ  = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1cm2; NDLux, Seoul, Korea) irradiation for 30 s at daily intervals throughout culture period. At the end of culture, the osteoclast differentiation and osteoblast differentiation were assessed by TRAP staining and ALP staining, respectively. The expressions of osteoclastogenic cytokines were evaluated by RT-PCR and Western blot analyses. Under the single-cell culture condition, PBM enhanced osteoblast differentiation but had minor effects on osteoclast differentiation. However, in the co-culture condition, its osteoblastogenic effect was maintained, and osteoclast differentiation was substantially reduced. Subsequent RT-PCR analyses and western blot results revealed marked reduction in receptor activator of NF-κB ligand (RANKL) expression and elevation in osteoprotegerin (OPG) expression by PBM in co-cultured cells. More importantly, these alterations in RANKL/OPG levels were not observed under the single-cell culture conditions. Our results highlight the different effects of PBM on bone cells based on culture conditions. Further, our findings suggest the indirect anti-osteoclastogenic effect of PBM, which is accompanied by a decrease in RANKL expression and an increase in OPG expression.
Literatur
1.
Zurück zum Zitat Mester E, Szende B, Gartner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother 9:621–626 Mester E, Szende B, Gartner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother 9:621–626
2.
Zurück zum Zitat Woodruff L, Bounkeo J, Brannon W, Dawes K, Barham C, Waddell D, Enwemeka C (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247CrossRef Woodruff L, Bounkeo J, Brannon W, Dawes K, Barham C, Waddell D, Enwemeka C (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247CrossRef
3.
Zurück zum Zitat Cury V, Moretti A, Assis L, Bossini P, de Souza CJ, Neto C, Fangel R, de Souza H, Hamblin M, Parizotto N (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 125:164–170CrossRef Cury V, Moretti A, Assis L, Bossini P, de Souza CJ, Neto C, Fangel R, de Souza H, Hamblin M, Parizotto N (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 125:164–170CrossRef
4.
Zurück zum Zitat Bjordal J, Johnson M, Iversen V, Aimbire F, Lopes-Martins R (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168CrossRef Bjordal J, Johnson M, Iversen V, Aimbire F, Lopes-Martins R (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168CrossRef
5.
Zurück zum Zitat AlGhamdi K, Kumar A, Moussa N (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRef AlGhamdi K, Kumar A, Moussa N (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRef
6.
Zurück zum Zitat Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in and clinical research. Adv Clin Exp Med 5:835–842CrossRef Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in and clinical research. Adv Clin Exp Med 5:835–842CrossRef
7.
Zurück zum Zitat Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 10:860–867CrossRef Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 10:860–867CrossRef
8.
Zurück zum Zitat Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 6937:349–355CrossRef Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 6937:349–355CrossRef
9.
Zurück zum Zitat Huertas R, Luna-Bertos E, Ramos-Torrecillas J, Leyva F, Ruiz C, Garcia-Martinez O (2013) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 2:191–196 Huertas R, Luna-Bertos E, Ramos-Torrecillas J, Leyva F, Ruiz C, Garcia-Martinez O (2013) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 2:191–196
10.
Zurück zum Zitat Saygun I, Nizam N, Ural A, Serdar M, Avcu F, Tozum T (2012) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30:149–154CrossRef Saygun I, Nizam N, Ural A, Serdar M, Avcu F, Tozum T (2012) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30:149–154CrossRef
11.
Zurück zum Zitat Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 4:291–297CrossRef Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 4:291–297CrossRef
12.
Zurück zum Zitat Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRef Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRef
13.
Zurück zum Zitat Khadra M, Ronold H, Lyngstadaas S, Ellingsen J, Haanaes H (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332CrossRef Khadra M, Ronold H, Lyngstadaas S, Ellingsen J, Haanaes H (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332CrossRef
14.
Zurück zum Zitat Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 2:201–209CrossRef Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 2:201–209CrossRef
15.
Zurück zum Zitat Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2:76–81CrossRef Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2:76–81CrossRef
16.
Zurück zum Zitat Kim HJ, Lee Y, Chang EJ, Kim HM, Hong SP, Lee ZH, Ryu J, Kim HH (2007) Suppression of osteoclastogenesis by N, N-dimethyl-D-erythro-sphingosine: a sphingosine kinase inhibition-independent action. Mol Pharmacol 2:418–428CrossRef Kim HJ, Lee Y, Chang EJ, Kim HM, Hong SP, Lee ZH, Ryu J, Kim HH (2007) Suppression of osteoclastogenesis by N, N-dimethyl-D-erythro-sphingosine: a sphingosine kinase inhibition-independent action. Mol Pharmacol 2:418–428CrossRef
17.
Zurück zum Zitat Kim HJ, Prasad V, Hyung SW, Lee ZH, Lee SW, Bhargava A, Pearce D, Lee Y, Kim HH (2012) Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J Cell Biol 7:1145–1158CrossRef Kim HJ, Prasad V, Hyung SW, Lee ZH, Lee SW, Bhargava A, Pearce D, Lee Y, Kim HH (2012) Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J Cell Biol 7:1145–1158CrossRef
18.
Zurück zum Zitat Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH (2006) Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 24:5840–5851CrossRef Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH (2006) Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 24:5840–5851CrossRef
19.
Zurück zum Zitat Lee Y, Ha J, Kim HJ, Kim YS, Chang EJ, Song WJ, Kim HH (2009) Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis. J Biol Chem 48:33343–33351CrossRef Lee Y, Ha J, Kim HJ, Kim YS, Chang EJ, Song WJ, Kim HH (2009) Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis. J Biol Chem 48:33343–33351CrossRef
20.
Zurück zum Zitat Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH (2015) Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Laser Med Sci 30:635–643CrossRef Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH (2015) Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Laser Med Sci 30:635–643CrossRef
21.
Zurück zum Zitat Shin SH, Kim KH, Choi NR, Kim IR, Park BS, Kim YD, Kim UK, Kim CH (2016) Effect of low-level laser therapy on bisphosphonate-treated osteoblasts. Maxillofac Plast Reconstr Surg 38:48CrossRef Shin SH, Kim KH, Choi NR, Kim IR, Park BS, Kim YD, Kim UK, Kim CH (2016) Effect of low-level laser therapy on bisphosphonate-treated osteoblasts. Maxillofac Plast Reconstr Surg 38:48CrossRef
22.
Zurück zum Zitat Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med 1:43–63CrossRef Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med 1:43–63CrossRef
23.
Zurück zum Zitat Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 1:e8CrossRef Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 1:e8CrossRef
24.
Zurück zum Zitat Martin TJ, Sims NA (2015) RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord 2:131–139CrossRef Martin TJ, Sims NA (2015) RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord 2:131–139CrossRef
25.
Zurück zum Zitat de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 3 de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 3
26.
Zurück zum Zitat Bayat M, Virdi RF, Chien S (2018) Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. Prog Biophys Mol Biol 133:36–48CrossRef Bayat M, Virdi RF, Chien S (2018) Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. Prog Biophys Mol Biol 133:36–48CrossRef
27.
Zurück zum Zitat Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 6:433–438CrossRef Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 6:433–438CrossRef
28.
Zurück zum Zitat Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 3:277–282CrossRef Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 3:277–282CrossRef
29.
Zurück zum Zitat Aihara N, Yamaguchi M, Kasai K (2006) Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 1:24–33CrossRef Aihara N, Yamaguchi M, Kasai K (2006) Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 1:24–33CrossRef
30.
Zurück zum Zitat Hamdy NA (2007) Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis. Curr Opin Investig Drugs 4:299–303 Hamdy NA (2007) Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis. Curr Opin Investig Drugs 4:299–303
31.
Zurück zum Zitat Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 2:251–264CrossRef Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 2:251–264CrossRef
32.
Zurück zum Zitat Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 2:309–315CrossRef Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 2:309–315CrossRef
33.
Zurück zum Zitat Incerti Parenti S, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Opt 10:108002CrossRef Incerti Parenti S, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Opt 10:108002CrossRef
34.
Zurück zum Zitat Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 2:211–216CrossRef Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 2:211–216CrossRef
35.
Zurück zum Zitat Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 42:40917–40922CrossRef Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 42:40917–40922CrossRef
36.
Zurück zum Zitat Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 17:17497–17506CrossRef Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 17:17497–17506CrossRef
37.
Zurück zum Zitat Zhang Y, Zhang Y, Kou J, Wang C, Wang K (2014) Role of reactive oxygen species in angiotensin II: induced receptor activator of nuclear factor-κB ligand expression in mouse osteoblastic cells. Mol Cell Biochem 1–2:249–255CrossRef Zhang Y, Zhang Y, Kou J, Wang C, Wang K (2014) Role of reactive oxygen species in angiotensin II: induced receptor activator of nuclear factor-κB ligand expression in mouse osteoblastic cells. Mol Cell Biochem 1–2:249–255CrossRef
Metadaten
Titel
Effects of photobiomodulation on bone remodeling in an osteoblast–osteoclast co-culture system
verfasst von
Ji-Un Hong
Jin-Ju Kwon
Soon Chul Heo
Sang-Hun Shin
Hyung Joon Kim
Jae-Yeol Lee
Publikationsdatum
17.06.2021
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-021-03352-8

Weitere Artikel der Ausgabe 2/2022

Lasers in Medical Science 2/2022 Zur Ausgabe