Skip to main content
Erschienen in:

22.04.2021 | Original Article

Empagliflozin Disrupts a Tnfrsf12a-Mediated Feed Forward Loop That Promotes Left Ventricular Hypertrophy

verfasst von: Veera Ganesh Yerra, Sri Nagarjun Batchu, Golam Kabir, Suzanne L. Advani, Youan Liu, Ferhan S. Siddiqi, Kim A. Connelly, Andrew Advani

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Although the cardioprotective benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors are now widely appreciated, the mechanisms underlying these benefits remain unresolved. Tumor necrosis factor receptor superfamily member 12a (Tnfrsf12a) is a receptor for tumor necrosis factor superfamily member 12 (Tnfsf12). Tnfrsf12a is highly inducible and plays a key role in the development of cardiac hypertrophy and heart failure. Here we set out to determine if SGLT2 inhibition affects the Tnfsf12/Tnfrsf12a system in the stressed myocardium.

Methods

C57BL/6N mice that had undergone sham or transverse aortic constriction (TAC) surgery were treated with either the SGLT2 inhibitor empagliflozin (400 mg/kg diet; 60–65 mg/kg/day) or standard chow alone and were followed for 8 weeks. Tnfrsf12a expression in mouse hearts was assessed by in situ hybridization, qRT-PCR, and immunoblotting.

Results

Left ventricular (LV) mass, end-systolic volume, and end-diastolic volume were all increased in TAC mice and were significantly lower with empagliflozin. Myocyte hypertrophy and interstitial fibrosis in TAC hearts were similarly attenuated with empagliflozin. Tnfrsf12a expression was upregulated in mouse hearts following TAC surgery but not in the hearts of empagliflozin-treated mice. In cultured cardiomyocytes, Tnfrsf12a antagonism attenuated the increase in cardiomyocyte size that was induced by phenylephrine.

Conclusion

Empagliflozin attenuates LV enlargement in mice with hypertrophic heart failure. This effect may be mediated, at least in part, by a reduction in loading conditions which limits upregulation of the inducible, proinflammatory, and prohypertrophic TNF superfamily receptor, Tnfrsf12a. Disruption of the Tnfsf12/Tnfrsf12a feed forward system may contribute to the cardioprotective benefits of SGLT2 inhibition.

Graphical abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRef Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRef
2.
Zurück zum Zitat Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRef Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRef
3.
Zurück zum Zitat Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMedCrossRef Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMedCrossRef
4.
Zurück zum Zitat McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMedCrossRef McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMedCrossRef
5.
Zurück zum Zitat Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140(21):1693–702.PubMedCrossRef Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140(21):1693–702.PubMedCrossRef
6.
Zurück zum Zitat Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.PubMedCrossRef Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.PubMedCrossRef
7.
Zurück zum Zitat Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51(18):1775–83.PubMedCrossRef Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51(18):1775–83.PubMedCrossRef
8.
Zurück zum Zitat Roush GC, Abdelfattah R, Song S, Ernst ME, Sica DA, Kostis JB. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium-sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2018;20(10):1507–15.CrossRef Roush GC, Abdelfattah R, Song S, Ernst ME, Sica DA, Kostis JB. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium-sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2018;20(10):1507–15.CrossRef
9.
Zurück zum Zitat Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007;40(1):1–16.PubMedCrossRef Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007;40(1):1–16.PubMedCrossRef
10.
Zurück zum Zitat Ando T, Ichikawa J, Wako M, Hatsushika K, Watanabe Y, Sakuma M, et al. TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells. Arthritis Res Ther. 2006;8(5):R146.PubMedPubMedCentralCrossRef Ando T, Ichikawa J, Wako M, Hatsushika K, Watanabe Y, Sakuma M, et al. TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells. Arthritis Res Ther. 2006;8(5):R146.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J. 2003;371(Pt 2):395–403.PubMedPubMedCentralCrossRef Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J. 2003;371(Pt 2):395–403.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Mustonen E, Sakkinen H, Tokola H, Isopoussu E, Aro J, Leskinen H, et al. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats. Acta Physiol (Oxford). 2010;199(1):11–22.CrossRef Mustonen E, Sakkinen H, Tokola H, Isopoussu E, Aro J, Leskinen H, et al. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats. Acta Physiol (Oxford). 2010;199(1):11–22.CrossRef
13.
Zurück zum Zitat Jain M, Jakubowski A, Cui L, Shi J, Su L, Bauer M, et al. A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation. 2009;119(15):2058–68.PubMedPubMedCentralCrossRef Jain M, Jakubowski A, Cui L, Shi J, Su L, Bauer M, et al. A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation. 2009;119(15):2058–68.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Novoyatleva T, Janssen W, Wietelmann A, Schermuly RT, Engel FB. TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy. Cytokine. 2013;64(1):43–5.PubMedCrossRef Novoyatleva T, Janssen W, Wietelmann A, Schermuly RT, Engel FB. TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy. Cytokine. 2013;64(1):43–5.PubMedCrossRef
15.
Zurück zum Zitat Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res. 2018;114(12):1629–41.PubMedPubMedCentralCrossRef Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res. 2018;114(12):1629–41.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Phys Renal Phys. 2014;306(2):F194–204. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Phys Renal Phys. 2014;306(2):F194–204.
17.
Zurück zum Zitat Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, et al. eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol. 2012;23(11):1810–23 ASN.2011121170 [pii]10.1681/ASN.2011121170.PubMedPubMedCentralCrossRef Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, et al. eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol. 2012;23(11):1810–23 ASN.2011121170 [pii]10.1681/ASN.2011121170.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Derumeaux G, Mulder P, Richard V, Chagraoui A, Nafeh C, Bauer F, et al. Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats. Circulation. 2002;105(13):1602–8.PubMedCrossRef Derumeaux G, Mulder P, Richard V, Chagraoui A, Nafeh C, Bauer F, et al. Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats. Circulation. 2002;105(13):1602–8.PubMedCrossRef
19.
Zurück zum Zitat Tsui AK, Marsden PA, Mazer CD, Adamson SL, Henkelman RM, Ho JJ, et al. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia. Proc Natl Acad Sci U S A. 2011;108(42):17544–9 1114026108 [pii].PubMedPubMedCentralCrossRef Tsui AK, Marsden PA, Mazer CD, Adamson SL, Henkelman RM, Ho JJ, et al. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia. Proc Natl Acad Sci U S A. 2011;108(42):17544–9 1114026108 [pii].PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Brodie BR, McLaurin LP, Grossman W. Combined hemodynamic-ultrasonic method for studying left ventricular wall stress: comparison with angiography. Am J Cardiol. 1976;37(6):864–70.PubMedCrossRef Brodie BR, McLaurin LP, Grossman W. Combined hemodynamic-ultrasonic method for studying left ventricular wall stress: comparison with angiography. Am J Cardiol. 1976;37(6):864–70.PubMedCrossRef
21.
Zurück zum Zitat Borow KM, Green LH, Grossman W, Braunwald E. Left ventricular end-systolic stress-shortening and stress-length relations in human. Normal values and sensitivity to inotropic state. Am J Cardiol. 1982;50(6):1301–8.PubMedCrossRef Borow KM, Green LH, Grossman W, Braunwald E. Left ventricular end-systolic stress-shortening and stress-length relations in human. Normal values and sensitivity to inotropic state. Am J Cardiol. 1982;50(6):1301–8.PubMedCrossRef
22.
Zurück zum Zitat Kolev N. Left ventricular end-systolic wall stress and left ventricular ejection time revisited. Eur J Anaesthesiol. 1998;15(4):509–11.PubMedCrossRef Kolev N. Left ventricular end-systolic wall stress and left ventricular ejection time revisited. Eur J Anaesthesiol. 1998;15(4):509–11.PubMedCrossRef
23.
Zurück zum Zitat Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ, et al. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res. 2007;76(2):280–91.PubMedCrossRef Connelly KA, Kelly DJ, Zhang Y, Prior DL, Martin J, Cox AJ, et al. Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. Cardiovasc Res. 2007;76(2):280–91.PubMedCrossRef
24.
Zurück zum Zitat Kai H, Muraishi A, Sugiu Y, Nishi H, Seki Y, Kuwahara F, et al. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ Res. 1998;83(6):594–601.PubMedCrossRef Kai H, Muraishi A, Sugiu Y, Nishi H, Seki Y, Kuwahara F, et al. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ Res. 1998;83(6):594–601.PubMedCrossRef
25.
Zurück zum Zitat Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87(12):1123–32.PubMedCrossRef Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87(12):1123–32.PubMedCrossRef
26.
Zurück zum Zitat Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.PubMedPubMedCentralCrossRef Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res. 2016;119(8):909–20.PubMedPubMedCentralCrossRef Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res. 2016;119(8):909–20.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668–73.PubMedPubMedCentralCrossRef Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668–73.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, et al. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem. 2013;288(45):32261–76.PubMedPubMedCentralCrossRef Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, et al. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem. 2013;288(45):32261–76.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17.PubMedCrossRef Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17.PubMedCrossRef
32.
Zurück zum Zitat Messerli FH, Oren S, Grossman E. Left ventricular hypertrophy and antihypertensive therapy. Drugs. 1988;35(Suppl 5):27–33.PubMedCrossRef Messerli FH, Oren S, Grossman E. Left ventricular hypertrophy and antihypertensive therapy. Drugs. 1988;35(Suppl 5):27–33.PubMedCrossRef
33.
Zurück zum Zitat Cherchi A, Sau F, Seguro C. Possible regression of left ventricular hypertrophy during antihypertensive treatment with diuretics and/or beta blockers. J Clin Hypertens. 1987;3(2):216–25.PubMed Cherchi A, Sau F, Seguro C. Possible regression of left ventricular hypertrophy during antihypertensive treatment with diuretics and/or beta blockers. J Clin Hypertens. 1987;3(2):216–25.PubMed
34.
Zurück zum Zitat Yurista SR, Sillje HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21(7):862–73.PubMedCrossRef Yurista SR, Sillje HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21(7):862–73.PubMedCrossRef
35.
Zurück zum Zitat Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, et al. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol. 2020;19(1):13.PubMedPubMedCentralCrossRef Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, et al. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol. 2020;19(1):13.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.PubMedCrossRef Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.PubMedCrossRef
37.
Zurück zum Zitat Yu H, Tang W, Greasley PJ, Penland RC, Boulton DW, Hallow KM. Predicted cardiac hemodynamic consequences of the renal actions of SGLT2i in the DAPA-HF study population: a mathematical modeling analysis. J Clin Pharmacol. 2020. Epub head of print Oct. 22. https://doi.org/10.1002/jcph.1769. Yu H, Tang W, Greasley PJ, Penland RC, Boulton DW, Hallow KM. Predicted cardiac hemodynamic consequences of the renal actions of SGLT2i in the DAPA-HF study population: a mathematical modeling analysis. J Clin Pharmacol. 2020. Epub head of print Oct. 22. https://​doi.​org/​10.​1002/​jcph.​1769.
38.
Zurück zum Zitat Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2020;141(8):704–7.PubMedCrossRef Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2020;141(8):704–7.PubMedCrossRef
39.
Zurück zum Zitat Verma S. Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits. Am J Cardiol. 2019;124(Suppl 1):S36–44.PubMedCrossRef Verma S. Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits. Am J Cardiol. 2019;124(Suppl 1):S36–44.PubMedCrossRef
40.
Zurück zum Zitat Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.PubMedCrossRef Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.PubMedCrossRef
41.
Zurück zum Zitat Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–12.PubMedPubMedCentralCrossRef Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–12.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Moellmann J, Klinkhammer BM, Droste P, Kappel B, Haj-Yehia E, Maxeiner S, et al. Empagliflozin improves left ventricular diastolic function of db/db mice. Biochim Biophys Acta Mol basis Dis. 2020;165807:165807.CrossRef Moellmann J, Klinkhammer BM, Droste P, Kappel B, Haj-Yehia E, Maxeiner S, et al. Empagliflozin improves left ventricular diastolic function of db/db mice. Biochim Biophys Acta Mol basis Dis. 2020;165807:165807.CrossRef
43.
Zurück zum Zitat Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci. 2017;2(4):347–54.PubMedPubMedCentralCrossRef Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci. 2017;2(4):347–54.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor alpha-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–86.PubMedCrossRef Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor alpha-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–86.PubMedCrossRef
45.
Zurück zum Zitat Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73.PubMedCrossRef Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73.PubMedCrossRef
46.
Zurück zum Zitat Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Micciche A, et al. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res. 2020;157:104781.PubMedCrossRef Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Micciche A, et al. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacol Res. 2020;157:104781.PubMedCrossRef
47.
Zurück zum Zitat Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, et al. Off-target effects of SGLT2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc Res. 2020. Epub ahead of print Nov. 2. https://doi.org/10.1093/cvr/cvaa323. Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, et al. Off-target effects of SGLT2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc Res. 2020. Epub ahead of print Nov. 2. https://​doi.​org/​10.​1093/​cvr/​cvaa323.
48.
Zurück zum Zitat Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am J Hypertens. 2019;32(5):452–9.PubMedCrossRef Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am J Hypertens. 2019;32(5):452–9.PubMedCrossRef
49.
Zurück zum Zitat Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107.PubMedPubMedCentralCrossRef Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 2003;14(3-4):241–9.PubMedCrossRef Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 2003;14(3-4):241–9.PubMedCrossRef
51.
Zurück zum Zitat Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, et al. FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol. 2010;105(2):301–13.PubMedCrossRef Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, et al. FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol. 2010;105(2):301–13.PubMedCrossRef
52.
Zurück zum Zitat Fischer A, Bockstahler M, Muller AM, Stroikova V, Leib C, Pfitzer G, et al. FN14 Signaling plays a pathogenic role in a mouse model of experimental autoimmune myocarditis. J Card Fail. 2019;25(8):674–85.PubMedCrossRef Fischer A, Bockstahler M, Muller AM, Stroikova V, Leib C, Pfitzer G, et al. FN14 Signaling plays a pathogenic role in a mouse model of experimental autoimmune myocarditis. J Card Fail. 2019;25(8):674–85.PubMedCrossRef
53.
Zurück zum Zitat Novoyatleva T, Schymura Y, Janssen W, Strobl F, Swiercz JM, Patra C, et al. Deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. Basic Res Cardiol. 2013;108(2):325.PubMedPubMedCentralCrossRef Novoyatleva T, Schymura Y, Janssen W, Strobl F, Swiercz JM, Patra C, et al. Deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. Basic Res Cardiol. 2013;108(2):325.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Chen HN, Wang DJ, Ren MY, Wang QL, Sui SJ. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-kB pathway. Mol Biol Rep. 2012;39(8):8231–41.PubMedCrossRef Chen HN, Wang DJ, Ren MY, Wang QL, Sui SJ. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-kB pathway. Mol Biol Rep. 2012;39(8):8231–41.PubMedCrossRef
55.
Zurück zum Zitat Novoyatleva T, Sajjad A, Engel FB. TWEAK-Fn14 cytokine-receptor axis: a new player of myocardial remodeling and cardiac failure. Front Immunol. 2014;5:50.PubMedPubMedCentralCrossRef Novoyatleva T, Sajjad A, Engel FB. TWEAK-Fn14 cytokine-receptor axis: a new player of myocardial remodeling and cardiac failure. Front Immunol. 2014;5:50.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91(9):776–81.PubMedCrossRef Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91(9):776–81.PubMedCrossRef
57.
Zurück zum Zitat Gaspar-Pereira S, Fullard N, Townsend PA, Banks PS, Ellis EL, Fox C, et al. The NF-kappaB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol. 2012;180(3):929–39.PubMedPubMedCentralCrossRef Gaspar-Pereira S, Fullard N, Townsend PA, Banks PS, Ellis EL, Fox C, et al. The NF-kappaB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol. 2012;180(3):929–39.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Zhang S, Weinheimer C, Courtois M, Kovacs A, Zhang CE, Cheng AM, et al. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest. 2003;111(6):833–41.PubMedPubMedCentralCrossRef Zhang S, Weinheimer C, Courtois M, Kovacs A, Zhang CE, Cheng AM, et al. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest. 2003;111(6):833–41.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Unudurthi SD, Nassal DM, Patel NJ, Thomas E, Yu J, Pierson CG, et al. Fibroblast growth factor-inducible 14 mediates macrophage infiltration in heart to promote pressure overload-induced cardiac dysfunction. Life Sci. 2020;247:117440.PubMedPubMedCentralCrossRef Unudurthi SD, Nassal DM, Patel NJ, Thomas E, Yu J, Pierson CG, et al. Fibroblast growth factor-inducible 14 mediates macrophage infiltration in heart to promote pressure overload-induced cardiac dysfunction. Life Sci. 2020;247:117440.PubMedPubMedCentralCrossRef
Metadaten
Titel
Empagliflozin Disrupts a Tnfrsf12a-Mediated Feed Forward Loop That Promotes Left Ventricular Hypertrophy
verfasst von
Veera Ganesh Yerra
Sri Nagarjun Batchu
Golam Kabir
Suzanne L. Advani
Youan Liu
Ferhan S. Siddiqi
Kim A. Connelly
Andrew Advani
Publikationsdatum
22.04.2021
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 4/2022
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07190-2

Weitere Artikel der Ausgabe 4/2022

Cardiovascular Drugs and Therapy 4/2022 Zur Ausgabe

Neu im Fachgebiet Kardiologie

Nach dem Nitrospray fünf Minuten mit der Kardio-CT warten!

19.07.2024 Koronare Herzerkrankung Nachrichten

Nach Verabreichung von sublingualem Nitrospray vor einer CT-Koronarangiografie sollte man unbedingt die in Leitlinien empfohlene Wartezeit einhalten, rät ein kardiologisches Team aus Belgien.

Welche Antikoagulation bei Vorhofflimmern und Leberzirrhose?

19.07.2024 Leberzirrhose Nachrichten

Bei einer Auswertung von US-Versicherungsdaten ging es um die Frage, welche Antikoagulation –  Apixaban, Rivaroxaban oder Warfarin – bei Personen mit Leberzirrhose und Vorhofflimmern unterm Strich die beste Prophylaxe-Option ist.     

Mehrgefäßstenosen einzeitig oder zweizeitig eröffnen?

18.07.2024 Gefäßstenosen Nachrichten

Nach einem Herzinfarkt mit Mehrgefäßerkrankung sind bessere Ergebnisse zu erwarten, wenn alle stenotischen Abschnitte revaskularisiert werden. Sollte das in einer oder in mehreren Sitzungen geschehen? Eine Metaanalyse gibt eine klare Antwort.

Erste zielgerichtete Therapie zur Behandlung der hypertrophen obstruktiven Kardiomyopathie

18.07.2024 Kardiomyopathie Nachrichten

Mit Mavacamten von Bristol Myers Squibb ist erstmals eine zielgerichtete Therapie der hypertrophen obstruktiven Kardiomyopathie (HOCM) verfügbar. Der Myosin-Inhibitor verhindert die bei HOCM übermäßige Bildung von Aktin-Myosin-Querbrücken und verbessert die Symptomatik und die Lebensqualität von Betroffenen.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.