Skip to main content
Erschienen in: Cardiovascular Toxicology 7/2022

04.05.2022

Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients

verfasst von: Masoumeh Roohaninasab, Shadnaz fakhteh yavari, Motahareh Babazadeh, Rozita Adldoosti Hagh, Mahboubeh Pazoki, Mehran Amrovani

Erschienen in: Cardiovascular Toxicology | Ausgabe 7/2022

Einloggen, um Zugang zu erhalten

Abstract

Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Literatur
1.
Zurück zum Zitat Yang, M., Weng, T., Zhang, W., Zhang, M., He, X., Han, C., & Wang, X. (2021). The roles of non-coding RNA in the development and regeneration of hair follicles: current status and further perspectives. Frontiers in Cell and Developmental Biology, 9, 2891.CrossRef Yang, M., Weng, T., Zhang, W., Zhang, M., He, X., Han, C., & Wang, X. (2021). The roles of non-coding RNA in the development and regeneration of hair follicles: current status and further perspectives. Frontiers in Cell and Developmental Biology, 9, 2891.CrossRef
2.
Zurück zum Zitat Salman, K. E., Altunay, I. K., Kucukunal, N. A., & Cerman, A. A. (2017). Frequency, severity and related factors of androgenetic alopecia in dermatology outpatient clinic: Hospital-based cross-sectional study in Turkey. Anais Brasileiros de Dermatologia, 92, 35–40.PubMedPubMedCentralCrossRef Salman, K. E., Altunay, I. K., Kucukunal, N. A., & Cerman, A. A. (2017). Frequency, severity and related factors of androgenetic alopecia in dermatology outpatient clinic: Hospital-based cross-sectional study in Turkey. Anais Brasileiros de Dermatologia, 92, 35–40.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Arias-Santiago, S., Gutierrez-Salmeron, M. T., Buendia-Eisman, A., Giron-Prieto, M. S., & Naranjo-Sintes, R. (2010). A comparative study of dyslipidaemia in men and woman with androgenic alopecia. Acta Dermato-Venereologica, 90, 485.PubMedCrossRef Arias-Santiago, S., Gutierrez-Salmeron, M. T., Buendia-Eisman, A., Giron-Prieto, M. S., & Naranjo-Sintes, R. (2010). A comparative study of dyslipidaemia in men and woman with androgenic alopecia. Acta Dermato-Venereologica, 90, 485.PubMedCrossRef
5.
Zurück zum Zitat Ahouansou, S., Le Toumelin, P., Crickx, B., & Descamps, V. (2007). Association of androgenetic alopecia and hypertension. European Journal of Dermatology, 17(3), 220–222.PubMed Ahouansou, S., Le Toumelin, P., Crickx, B., & Descamps, V. (2007). Association of androgenetic alopecia and hypertension. European Journal of Dermatology, 17(3), 220–222.PubMed
6.
Zurück zum Zitat Banger, H. S., Malhotra, S. K., Singh, S., & Mahajan, M. (2015). Is early onset androgenic alopecia a marker of metabolic syndrome and carotid artery atherosclerosis in young Indian male patients? International Journal of Trichology, 7(4), 141.PubMedPubMedCentralCrossRef Banger, H. S., Malhotra, S. K., Singh, S., & Mahajan, M. (2015). Is early onset androgenic alopecia a marker of metabolic syndrome and carotid artery atherosclerosis in young Indian male patients? International Journal of Trichology, 7(4), 141.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Sharma, L., Dubey, A., Gupta, P., & Agrawal, A. (2013). Androgenetic alopecia and risk of coronary artery disease. Indian Dermatology Online Journal, 4(4), 283.PubMedPubMedCentralCrossRef Sharma, L., Dubey, A., Gupta, P., & Agrawal, A. (2013). Androgenetic alopecia and risk of coronary artery disease. Indian Dermatology Online Journal, 4(4), 283.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kessler, E. L., Rivaud, M. R., Vos, M. A., & van Veen, T. A. (2019). Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biology of Sex Differences, 10(1), 1–11.CrossRef Kessler, E. L., Rivaud, M. R., Vos, M. A., & van Veen, T. A. (2019). Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biology of Sex Differences, 10(1), 1–11.CrossRef
9.
Zurück zum Zitat Danesh-Shakiba, M., Poorolajal, J., & Alirezaei, P. (2020). Androgenetic alopecia: Relationship to anthropometric indices, blood pressure and life-style habits. Clinical, Cosmetic and Investigational Dermatology, 13, 137.PubMedPubMedCentralCrossRef Danesh-Shakiba, M., Poorolajal, J., & Alirezaei, P. (2020). Androgenetic alopecia: Relationship to anthropometric indices, blood pressure and life-style habits. Clinical, Cosmetic and Investigational Dermatology, 13, 137.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Zhang, B. F., Jiang, H., Chen, J., Hu, Q., Yang, S., Liu, X. P., & Liu, G. (2020). LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. Journal of Cellular and Molecular Medicine, 24(1), 1099–1115.PubMedCrossRef Zhang, B. F., Jiang, H., Chen, J., Hu, Q., Yang, S., Liu, X. P., & Liu, G. (2020). LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. Journal of Cellular and Molecular Medicine, 24(1), 1099–1115.PubMedCrossRef
12.
Zurück zum Zitat Lin, B.-J., Lin, G.-Y., Zhu, J.-Y., Yin, G.-Q., Huang, D., & Yan, Y.-Y. (2020). LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Experimental Cell Research, 394(1), 112031.PubMedCrossRef Lin, B.-J., Lin, G.-Y., Zhu, J.-Y., Yin, G.-Q., Huang, D., & Yan, Y.-Y. (2020). LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Experimental Cell Research, 394(1), 112031.PubMedCrossRef
13.
Zurück zum Zitat Chen, Q., Feng, C., Liu, Y., Li, Q., Qiu, F., Wang, M., Shen, Z. D., & Fu, G. (2019). Long non-coding RNA PCAT-1 promotes cardiac fibroblast proliferation via upregulating TGF-beta1. European Review for Medical and Pharmacological Sciences, 23(23), 10517–10522.PubMed Chen, Q., Feng, C., Liu, Y., Li, Q., Qiu, F., Wang, M., Shen, Z. D., & Fu, G. (2019). Long non-coding RNA PCAT-1 promotes cardiac fibroblast proliferation via upregulating TGF-beta1. European Review for Medical and Pharmacological Sciences, 23(23), 10517–10522.PubMed
14.
Zurück zum Zitat Li, C., Chang, L., Chen, Z., Liu, Z., Wang, Y., & Ye, Q. (2017). The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. International Journal of Molecular Medicine, 39(2), 347–356.PubMedPubMedCentralCrossRef Li, C., Chang, L., Chen, Z., Liu, Z., Wang, Y., & Ye, Q. (2017). The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. International Journal of Molecular Medicine, 39(2), 347–356.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Li, D., Zhang, C., Li, J., Che, J., Yang, X., Xian, Y., Li, X., & Cao, C. (2019). Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY), 11(20), 8792.CrossRef Li, D., Zhang, C., Li, J., Che, J., Yang, X., Xian, Y., Li, X., & Cao, C. (2019). Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY), 11(20), 8792.CrossRef
16.
Zurück zum Zitat Li, X., Zhao, J., Geng, J., Chen, F., Wei, Z., Liu, C., Zhang, X., Li, Q., Zhang, J., & Gao, L. (2019). Long non-coding RNA MEG3 knockdown attenuates endoplasmic reticulum stress-mediated apoptosis by targeting p53 following myocardial infarction. Journal of Cellular and Molecular Medicine, 23(12), 8369–8380.PubMedPubMedCentralCrossRef Li, X., Zhao, J., Geng, J., Chen, F., Wei, Z., Liu, C., Zhang, X., Li, Q., Zhang, J., & Gao, L. (2019). Long non-coding RNA MEG3 knockdown attenuates endoplasmic reticulum stress-mediated apoptosis by targeting p53 following myocardial infarction. Journal of Cellular and Molecular Medicine, 23(12), 8369–8380.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Wang, W.-L., Chen, L.-J., Wei, S.-Y., Shih, Y.-T., Huang, Y.-H., Lee, P.-L., Lee, C. I., Wang, M. C., Lee, D. Y., & Chien, S. (2021). Mechanoresponsive smad5 enhances MiR-487a processing to promote vascular endothelial proliferation in response to disturbed flow. Frontiers in Cell and Developmental Biology, 9, 647714.PubMedPubMedCentralCrossRef Wang, W.-L., Chen, L.-J., Wei, S.-Y., Shih, Y.-T., Huang, Y.-H., Lee, P.-L., Lee, C. I., Wang, M. C., Lee, D. Y., & Chien, S. (2021). Mechanoresponsive smad5 enhances MiR-487a processing to promote vascular endothelial proliferation in response to disturbed flow. Frontiers in Cell and Developmental Biology, 9, 647714.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Li, X., He, X., Wang, H., Li, M., Huang, S., Chen, G., Jing, Y., Wang, S., Chen, Y., & Liao, W. (2018). Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovascular Research, 114(12), 1642–1655.PubMedPubMedCentralCrossRef Li, X., He, X., Wang, H., Li, M., Huang, S., Chen, G., Jing, Y., Wang, S., Chen, Y., & Liao, W. (2018). Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovascular Research, 114(12), 1642–1655.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Li, X., Sun, Y., Huang, S., Chen, Y., Chen, X., Li, M., Si, X., He, X., Zheng, H., & Zhong, L. (2019). Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. eBioMedicine, 39, 69–82.PubMedCrossRef Li, X., Sun, Y., Huang, S., Chen, Y., Chen, X., Li, M., Si, X., He, X., Zheng, H., & Zhong, L. (2019). Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. eBioMedicine, 39, 69–82.PubMedCrossRef
20.
Zurück zum Zitat Wang, D., Xu, X., Pan, J., Zhao, S., Li, Y., Wang, Z., Yang, J., Zhang, X., Wang, Y., & Liu, M. (2021). GAS5 knockdown alleviates spinal cord injury by reducing VAV1 expression via RNA binding protein CELF2. Scientific Reports, 11(1), 1–11. Wang, D., Xu, X., Pan, J., Zhao, S., Li, Y., Wang, Z., Yang, J., Zhang, X., Wang, Y., & Liu, M. (2021). GAS5 knockdown alleviates spinal cord injury by reducing VAV1 expression via RNA binding protein CELF2. Scientific Reports, 11(1), 1–11.
21.
Zurück zum Zitat Zhou, X.-H., Chai, H.-X., Bai, M., & Zhang, Z. (2020). LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle, 19(11), 1363–1377.PubMedPubMedCentralCrossRef Zhou, X.-H., Chai, H.-X., Bai, M., & Zhang, Z. (2020). LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle, 19(11), 1363–1377.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Soliman, A. R., Ahmed, R. M., Yousry, A., Abdelaziz, T. S., & Selem, A. H. (2020). Plasma N-terminal pro-brain natriuretic peptide level as a marker of adverse outcome in patients with co-existing diabetes, chronic kidney disease and heart failure. Journal of Renal Injury Prevention, 10(3), e20–e20.CrossRef Soliman, A. R., Ahmed, R. M., Yousry, A., Abdelaziz, T. S., & Selem, A. H. (2020). Plasma N-terminal pro-brain natriuretic peptide level as a marker of adverse outcome in patients with co-existing diabetes, chronic kidney disease and heart failure. Journal of Renal Injury Prevention, 10(3), e20–e20.CrossRef
23.
Zurück zum Zitat Yin, G., Peng, Y., Lin, Y., Wang, P., Li, Z., Wang, R., & Lin, H. (2021). Long non-coding RNA MSTRG. 24008. 1 regulates the regeneration of the sciatic nerve via the miR-331–3p–NLRP3/MAL axis. Frontiers in Cell and Developmental Biology, 9, 1452.CrossRef Yin, G., Peng, Y., Lin, Y., Wang, P., Li, Z., Wang, R., & Lin, H. (2021). Long non-coding RNA MSTRG. 24008. 1 regulates the regeneration of the sciatic nerve via the miR-331–3p–NLRP3/MAL axis. Frontiers in Cell and Developmental Biology, 9, 1452.CrossRef
24.
Zurück zum Zitat Yousefi, F., Soltani, B. M., & Rabbani, S. (2021). MicroRNA-331 inhibits isoproterenol-induced expression of profibrotic genes in cardiac myofibroblasts via the TGFβ/smad3 signaling pathway. Scientific Reports, 11(1), 1–12.CrossRef Yousefi, F., Soltani, B. M., & Rabbani, S. (2021). MicroRNA-331 inhibits isoproterenol-induced expression of profibrotic genes in cardiac myofibroblasts via the TGFβ/smad3 signaling pathway. Scientific Reports, 11(1), 1–12.CrossRef
25.
Zurück zum Zitat Wang, Y., Zhao, Z.-J., Kang, X.-R., Bian, T., Shen, Z.-M., Jiang, Y., Sun, B., Hu, H. B., & Chen, Y.-S. (2020). lncRNA DLEU2 acts as a miR-181a sponge to regulate SEPP1 and inhibit skeletal muscle differentiation and regeneration. Aging (Albany NY), 12(23), 24033.CrossRef Wang, Y., Zhao, Z.-J., Kang, X.-R., Bian, T., Shen, Z.-M., Jiang, Y., Sun, B., Hu, H. B., & Chen, Y.-S. (2020). lncRNA DLEU2 acts as a miR-181a sponge to regulate SEPP1 and inhibit skeletal muscle differentiation and regeneration. Aging (Albany NY), 12(23), 24033.CrossRef
26.
Zurück zum Zitat Hori, D., Dunkerly-Eyring, B., Nomura, Y., Biswas, D., Steppan, J., Henao-Mejia, J., Adachi, H., Santhanam, L., Berkowitz, D. E., & Steenbergen, C. (2017). miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS ONE, 12(3), e0174108.PubMedPubMedCentralCrossRef Hori, D., Dunkerly-Eyring, B., Nomura, Y., Biswas, D., Steppan, J., Henao-Mejia, J., Adachi, H., Santhanam, L., Berkowitz, D. E., & Steenbergen, C. (2017). miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS ONE, 12(3), e0174108.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Li, R., Li, B., Cao, Y., Li, W., Dai, W., Zhang, L., Zhang, X., Ning, C., Li, H., & Yao, Y. (2021). Long non-coding RNA Mir22hg-derived miR-22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4. Molecular Therapy-Nucleic Acids, 24, 200–211.PubMedPubMedCentralCrossRef Li, R., Li, B., Cao, Y., Li, W., Dai, W., Zhang, L., Zhang, X., Ning, C., Li, H., & Yao, Y. (2021). Long non-coding RNA Mir22hg-derived miR-22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4. Molecular Therapy-Nucleic Acids, 24, 200–211.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Wang, R., Xu, Y., Zhang, W., Fang, Y., Yang, T., Zeng, D., Wei, T., Liu, J., Zhou, H., & Li, Y. (2021). Inhibiting miR-22 alleviates cardiac dysfunction by regulating Sirt1 in septic cardiomyopathy. Frontiers in Cell and Developmental Biology, 9, 675. Wang, R., Xu, Y., Zhang, W., Fang, Y., Yang, T., Zeng, D., Wei, T., Liu, J., Zhou, H., & Li, Y. (2021). Inhibiting miR-22 alleviates cardiac dysfunction by regulating Sirt1 in septic cardiomyopathy. Frontiers in Cell and Developmental Biology, 9, 675.
29.
Zurück zum Zitat Lin, B.-J., Zhu, J.-Y., Ye, J., Lu, S.-D., Liao, M.-D., Meng, X.-C., & Yin, G.-Q. (2020). LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cellular Signalling, 72, 109623.PubMedCrossRef Lin, B.-J., Zhu, J.-Y., Ye, J., Lu, S.-D., Liao, M.-D., Meng, X.-C., & Yin, G.-Q. (2020). LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cellular Signalling, 72, 109623.PubMedCrossRef
30.
Zurück zum Zitat Lin, B., Xu, J., Wang, F., Wang, J., Zhao, H., & Feng, D. (2020). LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY), 12(8), 7232.CrossRef Lin, B., Xu, J., Wang, F., Wang, J., Zhao, H., & Feng, D. (2020). LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY), 12(8), 7232.CrossRef
31.
Zurück zum Zitat Wang, L., Zhao, Y., Bao, X., Zhu, X., Kwok, Y.K.-Y., Sun, K., Chen, X., Huang, Y., Jauch, R., & Esteban, M. A. (2015). LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Research, 25(3), 335–350.PubMedPubMedCentralCrossRef Wang, L., Zhao, Y., Bao, X., Zhu, X., Kwok, Y.K.-Y., Sun, K., Chen, X., Huang, Y., Jauch, R., & Esteban, M. A. (2015). LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Research, 25(3), 335–350.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kakoki, M., Ramanathan, P. V., Hagaman, J. R., Grant, R., Wilder, J. C., Taylor, J. M., Charles Jennette, J., Smithies, O., & Maeda-Smithies, N. (2021). Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Communications Biology, 4(1), 1–12.CrossRef Kakoki, M., Ramanathan, P. V., Hagaman, J. R., Grant, R., Wilder, J. C., Taylor, J. M., Charles Jennette, J., Smithies, O., & Maeda-Smithies, N. (2021). Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Communications Biology, 4(1), 1–12.CrossRef
33.
Zurück zum Zitat Peracheh, M., Teymouri, B., Noori, N., Arbabzadeh, T., & Ghasemi, M. (2021). Evaluating the agreement of ultrasound imaging and beta-human chorionic gonadotropin (β-hCG) measurement in confirming completed medical abortion: Cross-sectional study. Qatar Medical Journal, 2021(2), 22.PubMedPubMedCentralCrossRef Peracheh, M., Teymouri, B., Noori, N., Arbabzadeh, T., & Ghasemi, M. (2021). Evaluating the agreement of ultrasound imaging and beta-human chorionic gonadotropin (β-hCG) measurement in confirming completed medical abortion: Cross-sectional study. Qatar Medical Journal, 2021(2), 22.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Wang, D., Chen, Y., Liu, M., Cao, Q., Wang, Q., Zhou, S., Wang, Y., Mao, S., Gu, X., & Luo, Z. (2020). The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 295(25), 8374–8386.PubMedPubMedCentralCrossRef Wang, D., Chen, Y., Liu, M., Cao, Q., Wang, Q., Zhou, S., Wang, Y., Mao, S., Gu, X., & Luo, Z. (2020). The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 295(25), 8374–8386.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhou, W., He, X., Chen, Z., Fan, D., Wang, Y., Feng, H., Zhang, G., Lu, A., & Xiao, L. (2019). LncRNA HOTAIR-mediated Wnt/β-catenin network modeling to predict and validate therapeutic targets for cartilage damage. BMC Bioinformatics, 20(1), 1–13.CrossRef Zhou, W., He, X., Chen, Z., Fan, D., Wang, Y., Feng, H., Zhang, G., Lu, A., & Xiao, L. (2019). LncRNA HOTAIR-mediated Wnt/β-catenin network modeling to predict and validate therapeutic targets for cartilage damage. BMC Bioinformatics, 20(1), 1–13.CrossRef
36.
Zurück zum Zitat Dai, W., Chao, X., Li, S., Zhou, S., Zhong, G., & Jiang, Z. (2020). Long noncoding RNA HOTAIR functions as a competitive endogenous RNA to regulate Connexin43 remodeling in atrial fibrillation by sponging microRNA-613. Cardiovascular Therapeutics, 2020, 1.CrossRef Dai, W., Chao, X., Li, S., Zhou, S., Zhong, G., & Jiang, Z. (2020). Long noncoding RNA HOTAIR functions as a competitive endogenous RNA to regulate Connexin43 remodeling in atrial fibrillation by sponging microRNA-613. Cardiovascular Therapeutics, 2020, 1.CrossRef
38.
Zurück zum Zitat Niu, Y.-N., Wang, K., Jin, S., Fan, D.-D., Wang, M.-S., Xing, N.-Z., & Xia, S.-J. (2016). The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer. Asian Journal of Andrology, 18(6), 913.PubMed Niu, Y.-N., Wang, K., Jin, S., Fan, D.-D., Wang, M.-S., Xing, N.-Z., & Xia, S.-J. (2016). The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer. Asian Journal of Andrology, 18(6), 913.PubMed
39.
Zurück zum Zitat An, N., Peng, J., He, G., Fan, X., Li, F., & Chen, H. (2018). Involvement of activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway in proliferation of urethral plate fibroblasts in finasteride-induced rat hypospadias. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8984.CrossRef An, N., Peng, J., He, G., Fan, X., Li, F., & Chen, H. (2018). Involvement of activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway in proliferation of urethral plate fibroblasts in finasteride-induced rat hypospadias. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8984.CrossRef
40.
Zurück zum Zitat Ge, Z., Yin, C., Li, Y., Tian, D., Xiang, Y., Li, Q., Tang, Y., & Zhang, Y. (2022). Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. Journal of Translational Medicine, 20(1), 1–16.CrossRef Ge, Z., Yin, C., Li, Y., Tian, D., Xiang, Y., Li, Q., Tang, Y., & Zhang, Y. (2022). Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. Journal of Translational Medicine, 20(1), 1–16.CrossRef
41.
Zurück zum Zitat Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T., & Fu, Y. (2016). Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE, 11(6), e0156549.PubMedPubMedCentralCrossRef Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T., & Fu, Y. (2016). Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE, 11(6), e0156549.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Hao, H., Hu, S., Wan, Q., Xu, C., Chen, H., Zhu, L., Xu, Z., Meng, J., Breyer, R. M., & Li, N. (2018). A protective role of microsomal prostaglandin E synthase-1 derived PGE2 and the endothelial EP4 receptor in vascular responses to injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(5), 1115.PubMedPubMedCentralCrossRef Hao, H., Hu, S., Wan, Q., Xu, C., Chen, H., Zhu, L., Xu, Z., Meng, J., Breyer, R. M., & Li, N. (2018). A protective role of microsomal prostaglandin E synthase-1 derived PGE2 and the endothelial EP4 receptor in vascular responses to injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(5), 1115.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhao, R., Wang, X., Jiang, C., Shi, F., Zhu, Y., Yang, B., Zhuo, J., Jing, Y., Luo, G., & Xia, S. (2018). Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling. Cell Proliferation, 51(3), e12415.PubMedCrossRef Zhao, R., Wang, X., Jiang, C., Shi, F., Zhu, Y., Yang, B., Zhuo, J., Jing, Y., Luo, G., & Xia, S. (2018). Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling. Cell Proliferation, 51(3), e12415.PubMedCrossRef
44.
Zurück zum Zitat Miao, K., Zhou, L., Ba, H., Li, C., Gu, H., Yin, B., Wang, J., Yang, X. P., Li, Z., & Wang, D. W. (2020). Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2. PLoS Biology, 18(12), e3000967.PubMedPubMedCentralCrossRef Miao, K., Zhou, L., Ba, H., Li, C., Gu, H., Yin, B., Wang, J., Yang, X. P., Li, Z., & Wang, D. W. (2020). Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2. PLoS Biology, 18(12), e3000967.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Shao, S., Zhang, X., Duan, L., Fang, H., Rao, S., Liu, W., Guo, B., & Zhang, X. (2018). Lysyl hydroxylase inhibition by minoxidil blocks collagen deposition and prevents pulmonary fibrosis via TGF-β1/Smad3 signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8592.CrossRef Shao, S., Zhang, X., Duan, L., Fang, H., Rao, S., Liu, W., Guo, B., & Zhang, X. (2018). Lysyl hydroxylase inhibition by minoxidil blocks collagen deposition and prevents pulmonary fibrosis via TGF-β1/Smad3 signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8592.CrossRef
46.
Zurück zum Zitat Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., & Jin, C. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.PubMedCrossRef Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., & Jin, C. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.PubMedCrossRef
47.
Zurück zum Zitat Choi, N., Shin, S., Song, S. U., & Sung, J.-H. (2018). Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells. International Journal of Molecular Sciences, 19(3), 691.PubMedCentralCrossRef Choi, N., Shin, S., Song, S. U., & Sung, J.-H. (2018). Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells. International Journal of Molecular Sciences, 19(3), 691.PubMedCentralCrossRef
48.
Zurück zum Zitat Chen, Y.-L., Tsai, Y.-T., Lee, C.-Y., Lee, C.-H., Chen, C.-Y., Liu, C.-M., Chen, J. J., Loh, S. H., & Tsai, C.-S. (2014). Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS ONE, 9(9), e106812.PubMedPubMedCentralCrossRef Chen, Y.-L., Tsai, Y.-T., Lee, C.-Y., Lee, C.-H., Chen, C.-Y., Liu, C.-M., Chen, J. J., Loh, S. H., & Tsai, C.-S. (2014). Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS ONE, 9(9), e106812.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Kwon, O. S., Pyo, H. K., Oh, Y. J., Han, J. H., Lee, S. R., Chung, J. H., Eun, H. C., & Kim, K. H. (2007). Promotive effect of minoxidil combined with all-trans retinoic acid (tretinoin) on human hair growth in vitro. Journal of Korean medical science, 22(2), 283–289.PubMedPubMedCentralCrossRef Kwon, O. S., Pyo, H. K., Oh, Y. J., Han, J. H., Lee, S. R., Chung, J. H., Eun, H. C., & Kim, K. H. (2007). Promotive effect of minoxidil combined with all-trans retinoic acid (tretinoin) on human hair growth in vitro. Journal of Korean medical science, 22(2), 283–289.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Garat, C. V., Majka, S. M., Sullivan, T. M., Crossno, J. T., Jr., Reusch, J. E., & Klemm, D. J. (2020). CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulmonary Circulation, 10(2), 2045894019898374.PubMedPubMedCentralCrossRef Garat, C. V., Majka, S. M., Sullivan, T. M., Crossno, J. T., Jr., Reusch, J. E., & Klemm, D. J. (2020). CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulmonary Circulation, 10(2), 2045894019898374.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Tong, S., Ji, Q., Du, Y., Zhu, X., Zhu, C., & Zhou, Y. (2019). Sfrp5/Wnt pathway: A protective regulatory system in atherosclerotic cardiovascular disease. Journal of Interferon & Cytokine Research, 39(8), 472–482.CrossRef Tong, S., Ji, Q., Du, Y., Zhu, X., Zhu, C., & Zhou, Y. (2019). Sfrp5/Wnt pathway: A protective regulatory system in atherosclerotic cardiovascular disease. Journal of Interferon & Cytokine Research, 39(8), 472–482.CrossRef
52.
Zurück zum Zitat Wei, Y., Wang, T., Zhang, N., Ma, Y., Shi, S., Zhang, R., Zheng, X., & Zhao, L. (2021). LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. Journal of Molecular Histology, 52(2), 419–426.PubMedPubMedCentralCrossRef Wei, Y., Wang, T., Zhang, N., Ma, Y., Shi, S., Zhang, R., Zheng, X., & Zhao, L. (2021). LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. Journal of Molecular Histology, 52(2), 419–426.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Li, F.-J., Zhang, C.-L., Luo, X.-J., Peng, J., & Yang, T.-L. (2019). Involvement of the MiR-181b-5p/HMGB1 pathway in Ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging and Disease, 10(2), 231.PubMedPubMedCentralCrossRef Li, F.-J., Zhang, C.-L., Luo, X.-J., Peng, J., & Yang, T.-L. (2019). Involvement of the MiR-181b-5p/HMGB1 pathway in Ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging and Disease, 10(2), 231.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Sun, Y., Zhou, Q., Li, J., Zhao, C., Yu, Z., & Zhu, Q. (2019). LncRNA RP11-422N16. 3 inhibits cell proliferation and EMT, and induces apoptosis in hepatocellular carcinoma cells by sponging miR-23b-3p. OncoTargets and Therapy, 12, 10943.PubMedPubMedCentralCrossRef Sun, Y., Zhou, Q., Li, J., Zhao, C., Yu, Z., & Zhu, Q. (2019). LncRNA RP11-422N16. 3 inhibits cell proliferation and EMT, and induces apoptosis in hepatocellular carcinoma cells by sponging miR-23b-3p. OncoTargets and Therapy, 12, 10943.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Iaconetti, C., De Rosa, S., Polimeni, A., Sorrentino, S., Gareri, C., Carino, A., Sabatino, J., Colangelo, M., Curcio, A., & Indolfi, C. (2015). Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovascular Research, 107(4), 522–533.PubMedCrossRef Iaconetti, C., De Rosa, S., Polimeni, A., Sorrentino, S., Gareri, C., Carino, A., Sabatino, J., Colangelo, M., Curcio, A., & Indolfi, C. (2015). Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovascular Research, 107(4), 522–533.PubMedCrossRef
56.
Zurück zum Zitat Cao, F., Wang, Z., Feng, Y., Zhu, H., Yang, M., Zhang, S., & Wang, X. (2020). lncRNA TPTEP1 competitively sponges miR-328-5p to inhibit the proliferation of non-small cell lung cancer cells. Oncology Reports, 43(5), 1606–1618.PubMedPubMedCentral Cao, F., Wang, Z., Feng, Y., Zhu, H., Yang, M., Zhang, S., & Wang, X. (2020). lncRNA TPTEP1 competitively sponges miR-328-5p to inhibit the proliferation of non-small cell lung cancer cells. Oncology Reports, 43(5), 1606–1618.PubMedPubMedCentral
57.
Zurück zum Zitat Zhang, C., Wang, L., & Shen, Y. (2021). Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovascular Disorders, 21(1), 1–12.CrossRef Zhang, C., Wang, L., & Shen, Y. (2021). Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovascular Disorders, 21(1), 1–12.CrossRef
58.
Zurück zum Zitat Zhou, X., Chen, H., Zhu, L., Hao, B., Zhang, W., Hua, J., Gu, H., Jin, W., & Zhang, G. (2016). Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget, 7(50), 82770.PubMedPubMedCentralCrossRef Zhou, X., Chen, H., Zhu, L., Hao, B., Zhang, W., Hua, J., Gu, H., Jin, W., & Zhang, G. (2016). Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget, 7(50), 82770.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Bernardo, B. C., Gao, X.-M., Winbanks, C. E., Boey, E. J., Tham, Y. K., Kiriazis, H., Gregorevic, P., Obad, S., Kauppinen, S., & Du, X.-J. (2012). Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences, 109(43), 17615–17620.CrossRef Bernardo, B. C., Gao, X.-M., Winbanks, C. E., Boey, E. J., Tham, Y. K., Kiriazis, H., Gregorevic, P., Obad, S., Kauppinen, S., & Du, X.-J. (2012). Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences, 109(43), 17615–17620.CrossRef
60.
Zurück zum Zitat Deng, Y., Wei, Z., Huang, M., Xu, G., Wei, W., Peng, B., Nong, S., & Qin, H. (2020). Long non-coding RNA F11-AS1 inhibits HBV-related hepatocellular carcinoma progression by regulating NR1I3 via binding to microRNA-211-5p. Journal of Cellular and Molecular Medicine, 24(2), 1848–1865.PubMedCrossRef Deng, Y., Wei, Z., Huang, M., Xu, G., Wei, W., Peng, B., Nong, S., & Qin, H. (2020). Long non-coding RNA F11-AS1 inhibits HBV-related hepatocellular carcinoma progression by regulating NR1I3 via binding to microRNA-211-5p. Journal of Cellular and Molecular Medicine, 24(2), 1848–1865.PubMedCrossRef
61.
Zurück zum Zitat Xu, F., Zhong, J. Y., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., Wang, Y., Li, F., Cui, R. R., & Wu, F. (2020). Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. Journal of pineal research, 68(3), e12631.PubMedPubMedCentralCrossRef Xu, F., Zhong, J. Y., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., Wang, Y., Li, F., Cui, R. R., & Wu, F. (2020). Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. Journal of pineal research, 68(3), e12631.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Yang, Z., Wang, Z., & Duan, Y. (2020). LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncology Letters, 20(3), 2183–2190.PubMedPubMedCentralCrossRef Yang, Z., Wang, Z., & Duan, Y. (2020). LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncology Letters, 20(3), 2183–2190.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Zou, L., Ma, X., Lin, S., Wu, B., Chen, Y., & Peng, C. (2019). Long noncoding RNA-MEG3 contributes to myocardial ischemia–reperfusion injury through suppression of miR-7–5p expression. Bioscience Reports. https://doi.org/10.1042/BSR20190210 Zou, L., Ma, X., Lin, S., Wu, B., Chen, Y., & Peng, C. (2019). Long noncoding RNA-MEG3 contributes to myocardial ischemia–reperfusion injury through suppression of miR-7–5p expression. Bioscience Reports. https://​doi.​org/​10.​1042/​BSR20190210
64.
Zurück zum Zitat Liu, L., Wang, H.-J., Meng, T., Lei, C., Yang, X.-H., Wang, Q.-S., Jin, B., & Zhu, J.-F. (2019). lncRNA GAS5 inhibits cell migration and invasion and promotes autophagy by targeting miR-222-3p via the GAS5/PTEN-signaling pathway in CRC. Molecular Therapy-Nucleic Acids, 17, 644–656.PubMedPubMedCentralCrossRef Liu, L., Wang, H.-J., Meng, T., Lei, C., Yang, X.-H., Wang, Q.-S., Jin, B., & Zhu, J.-F. (2019). lncRNA GAS5 inhibits cell migration and invasion and promotes autophagy by targeting miR-222-3p via the GAS5/PTEN-signaling pathway in CRC. Molecular Therapy-Nucleic Acids, 17, 644–656.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat He, X., Wang, S., Li, M., Zhong, L., Zheng, H., Sun, Y., Lai, Y., Chen, X., Wei, G., & Si, X. (2019). Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Theranostics, 9(19), 5558.PubMedPubMedCentralCrossRef He, X., Wang, S., Li, M., Zhong, L., Zheng, H., Sun, Y., Lai, Y., Chen, X., Wei, G., & Si, X. (2019). Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Theranostics, 9(19), 5558.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Ji, T., Zhang, Y., Wang, Z., Hou, Z., Gao, X., & Zhang, X. (2020). FOXD3-AS1 suppresses the progression of non-small cell lung cancer by regulating miR-150/SRCIN1axis. Cancer Biomarkers, 29(3), 417–427.PubMedCrossRef Ji, T., Zhang, Y., Wang, Z., Hou, Z., Gao, X., & Zhang, X. (2020). FOXD3-AS1 suppresses the progression of non-small cell lung cancer by regulating miR-150/SRCIN1axis. Cancer Biomarkers, 29(3), 417–427.PubMedCrossRef
67.
Zurück zum Zitat Tong, G., Wang, Y., Xu, C., Xu, Y., Ye, X., Zhou, L., Zhu, G., Zhou, Z., & Huang, J. (2019). Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy. American Journal of Translational Research, 11(9), 5634.PubMedPubMedCentral Tong, G., Wang, Y., Xu, C., Xu, Y., Ye, X., Zhou, L., Zhu, G., Zhou, Z., & Huang, J. (2019). Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy. American Journal of Translational Research, 11(9), 5634.PubMedPubMedCentral
69.
Zurück zum Zitat Fan, C., Cui, X., Chen, S., Huang, S., & Jiang, H. (2020). LncRNA LOC100912373 modulates PDK1 expression by sponging miR-17-5p to promote the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. American Journal of Translational Research, 12(12), 7709.PubMedPubMedCentral Fan, C., Cui, X., Chen, S., Huang, S., & Jiang, H. (2020). LncRNA LOC100912373 modulates PDK1 expression by sponging miR-17-5p to promote the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. American Journal of Translational Research, 12(12), 7709.PubMedPubMedCentral
70.
Zurück zum Zitat Zadeh, F. J., Ghasemi, Y., Bagheri, S., Maleknia, M., Davari, N., & Rezaeeyan, H. (2020). Do exosomes play role in cardiovascular disease development in hematological malignancy? Molecular Biology Reports, 47(7), 5487–5493.PubMedCrossRef Zadeh, F. J., Ghasemi, Y., Bagheri, S., Maleknia, M., Davari, N., & Rezaeeyan, H. (2020). Do exosomes play role in cardiovascular disease development in hematological malignancy? Molecular Biology Reports, 47(7), 5487–5493.PubMedCrossRef
71.
Zurück zum Zitat Zhang, J., Li, Y., Liu, Y., Xu, G., Hei, Y., Lu, X., & Liu, W. (2021). Long non-coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA-324-5p and upregulating KCTD20 expression. Oncology Reports, 46(1), 1–17.CrossRef Zhang, J., Li, Y., Liu, Y., Xu, G., Hei, Y., Lu, X., & Liu, W. (2021). Long non-coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA-324-5p and upregulating KCTD20 expression. Oncology Reports, 46(1), 1–17.CrossRef
72.
Zurück zum Zitat Zhang, M., Wang, X., Yao, J., & Qiu, Z. (2019). Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3129–3137.PubMedCrossRef Zhang, M., Wang, X., Yao, J., & Qiu, Z. (2019). Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3129–3137.PubMedCrossRef
73.
Zurück zum Zitat Zadeh, F. J., Mohammadtaghizadeh, M., Bahadori, H., Saki, N., & Rezaeeyan, H. (2020). The role of exogenous fibrinogen in cardiac surgery: Stop bleeding or induce cardiovascular disease. Molecular Biology Reports, 47(10), 8189–8198.PubMedCrossRef Zadeh, F. J., Mohammadtaghizadeh, M., Bahadori, H., Saki, N., & Rezaeeyan, H. (2020). The role of exogenous fibrinogen in cardiac surgery: Stop bleeding or induce cardiovascular disease. Molecular Biology Reports, 47(10), 8189–8198.PubMedCrossRef
74.
Zurück zum Zitat Cai, B., Zheng, Y., Ma, S., Xing, Q., Wang, X., Yang, B., Yin, G., & Guan, F. (2018). Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Molecular Medicine Reports, 17(4), 5477–5483.PubMed Cai, B., Zheng, Y., Ma, S., Xing, Q., Wang, X., Yang, B., Yin, G., & Guan, F. (2018). Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Molecular Medicine Reports, 17(4), 5477–5483.PubMed
75.
Zurück zum Zitat Cai, B., Wang, X., Liu, H., Ma, S., Zhang, K., Zhang, Y., Li, Q., Wang, J., Yao, M., & Guan, F. (2019). Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p. Cell Cycle, 18(14), 1588–1600.PubMedPubMedCentralCrossRef Cai, B., Wang, X., Liu, H., Ma, S., Zhang, K., Zhang, Y., Li, Q., Wang, J., Yao, M., & Guan, F. (2019). Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p. Cell Cycle, 18(14), 1588–1600.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Xu, J., Tang, Y., Bei, Y., Ding, S., Che, L., Yao, J., Wang, H., Lv, D., & Xiao, J. (2016). miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 7(10), 10870.PubMedPubMedCentralCrossRef Xu, J., Tang, Y., Bei, Y., Ding, S., Che, L., Yao, J., Wang, H., Lv, D., & Xiao, J. (2016). miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 7(10), 10870.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of ten-eleven translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47(7), 5503–5509.PubMedCrossRef Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of ten-eleven translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47(7), 5503–5509.PubMedCrossRef
78.
Zurück zum Zitat Haybar, H., Rezaeeyan, H., Shahjahani, M., Shirzad, R., & Saki, N. (2019). T-bet transcription factor in cardiovascular disease: attenuation or inflammation factor? Journal of Cellular Physiology, 234(6), 7915–7922.PubMedCrossRef Haybar, H., Rezaeeyan, H., Shahjahani, M., Shirzad, R., & Saki, N. (2019). T-bet transcription factor in cardiovascular disease: attenuation or inflammation factor? Journal of Cellular Physiology, 234(6), 7915–7922.PubMedCrossRef
79.
Zurück zum Zitat Jiang, H., Li, X., Wang, W., & Dong, H. (2020). Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer, 20(1), 1–13.CrossRef Jiang, H., Li, X., Wang, W., & Dong, H. (2020). Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer, 20(1), 1–13.CrossRef
80.
Zurück zum Zitat Dong, P., Liu, W., & Wang, Z. (2018). MiR-154 promotes myocardial fibrosis through beta-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 22(7), 2052–2060.PubMed Dong, P., Liu, W., & Wang, Z. (2018). MiR-154 promotes myocardial fibrosis through beta-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 22(7), 2052–2060.PubMed
81.
Zurück zum Zitat He, R., Zhang, W., Chen, S., Liu, Y., Yang, W., & Li, J. (2020). Transcriptional profiling reveals the regulatory role of DNER in promoting pancreatic neuroendocrine neoplasms. Frontiers in Genetics, 11, 1502.CrossRef He, R., Zhang, W., Chen, S., Liu, Y., Yang, W., & Li, J. (2020). Transcriptional profiling reveals the regulatory role of DNER in promoting pancreatic neuroendocrine neoplasms. Frontiers in Genetics, 11, 1502.CrossRef
82.
Zurück zum Zitat Quillard, T., Coupel, S., Coulon, F., Fitau, J., Chatelais, M., Cuturi, M., Chiffoleau, E., & Charreau, B. (2008). Impaired Notch4 activity elicits endothelial cell activation and apoptosis: Implication for transplant arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2258–2265.PubMedCrossRef Quillard, T., Coupel, S., Coulon, F., Fitau, J., Chatelais, M., Cuturi, M., Chiffoleau, E., & Charreau, B. (2008). Impaired Notch4 activity elicits endothelial cell activation and apoptosis: Implication for transplant arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2258–2265.PubMedCrossRef
83.
Zurück zum Zitat Li, J., Zhang, Q., Fan, X., Mo, W., Dai, W., Feng, J., Wu, L., Liu, T., Li, S., & Xu, S. (2017). The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget, 8(39), 65932.PubMedPubMedCentralCrossRef Li, J., Zhang, Q., Fan, X., Mo, W., Dai, W., Feng, J., Wu, L., Liu, T., Li, S., & Xu, S. (2017). The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget, 8(39), 65932.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Xing, Z., Li, S., Liu, Z., Zhang, C., Meng, M., & Bai, Z. (2020). The long non-coding RNA LINC00473 contributes to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer. Bioscience Reports. https://doi.org/10.1042/BSR20191850 Xing, Z., Li, S., Liu, Z., Zhang, C., Meng, M., & Bai, Z. (2020). The long non-coding RNA LINC00473 contributes to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer. Bioscience Reports. https://​doi.​org/​10.​1042/​BSR20191850
85.
Zurück zum Zitat Fu, C., Li, D., Zhang, X., Liu, N., Chi, G., & Jin, X. (2018). LncRNA PVT1 facilitates tumorigenesis and progression of glioma via regulation of MiR-128-3p/GREM1 axis and BMP signaling pathway. Neurotherapeutics, 15(4), 1139–1157.PubMedPubMedCentralCrossRef Fu, C., Li, D., Zhang, X., Liu, N., Chi, G., & Jin, X. (2018). LncRNA PVT1 facilitates tumorigenesis and progression of glioma via regulation of MiR-128-3p/GREM1 axis and BMP signaling pathway. Neurotherapeutics, 15(4), 1139–1157.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Su, Q., Liu, Y., Lv, X.-W., Dai, R.-X., Yang, X.-H., & Kong, B.-H. (2020). LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. American Journal of Physiology-Heart and Circulatory Physiology, 318(2), H332–H344.PubMedCrossRef Su, Q., Liu, Y., Lv, X.-W., Dai, R.-X., Yang, X.-H., & Kong, B.-H. (2020). LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. American Journal of Physiology-Heart and Circulatory Physiology, 318(2), H332–H344.PubMedCrossRef
87.
Zurück zum Zitat Sun, B., Meng, M., Wei, J., & Wang, S. (2020). Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Experimental and Therapeutic Medicine, 19(5), 3348–3354.PubMedPubMedCentral Sun, B., Meng, M., Wei, J., & Wang, S. (2020). Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Experimental and Therapeutic Medicine, 19(5), 3348–3354.PubMedPubMedCentral
88.
Zurück zum Zitat Du, H., Zhang, H., Yang, R., Qiao, L., Shao, H., & Zhang, X. (2021). Small interfering RNA-induced silencing lncRNA PVT1 inhibits atherosclerosis via inactivating the MAPK/NF-κB pathway. Aging (Albany NY), 13(21), 24449.CrossRef Du, H., Zhang, H., Yang, R., Qiao, L., Shao, H., & Zhang, X. (2021). Small interfering RNA-induced silencing lncRNA PVT1 inhibits atherosclerosis via inactivating the MAPK/NF-κB pathway. Aging (Albany NY), 13(21), 24449.CrossRef
89.
Zurück zum Zitat Li, Q., Wang, X.-J., & Jin, J.-H. (2019). SOX2-induced upregulation of lncRNA LINC01510 promotes papillary thyroid carcinoma progression by modulating miR-335/SHH and activating Hedgehog pathway. Biochemical and Biophysical Research Communications, 520(2), 277–283.PubMedCrossRef Li, Q., Wang, X.-J., & Jin, J.-H. (2019). SOX2-induced upregulation of lncRNA LINC01510 promotes papillary thyroid carcinoma progression by modulating miR-335/SHH and activating Hedgehog pathway. Biochemical and Biophysical Research Communications, 520(2), 277–283.PubMedCrossRef
90.
Zurück zum Zitat Wang, A., Dai, L., Yang, L., Wang, Y., Hao, X., Liu, Z., & Chen, P. (2021). Upregulation of miR-335 reduces myocardial injury following myocardial infarction via targeting MAP3K2. European Review for Medical and Pharmacological Sciences, 25(1), 344–352.PubMed Wang, A., Dai, L., Yang, L., Wang, Y., Hao, X., Liu, Z., & Chen, P. (2021). Upregulation of miR-335 reduces myocardial injury following myocardial infarction via targeting MAP3K2. European Review for Medical and Pharmacological Sciences, 25(1), 344–352.PubMed
91.
Zurück zum Zitat Si, Y., Bai, J., Wu, J., Li, Q., Mo, Y., Fang, R., & Lai, W. (2018). LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Molecular Medicine Reports, 17(1), 1191–1197.PubMed Si, Y., Bai, J., Wu, J., Li, Q., Mo, Y., Fang, R., & Lai, W. (2018). LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Molecular Medicine Reports, 17(1), 1191–1197.PubMed
92.
Zurück zum Zitat Chen, Z., Zhang, Z., Zhao, D., Feng, W., Meng, F., Han, S., Lin, B., & Shi, X. (2019). Long noncoding RNA (lncRNA) FOXD2-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by regulating MiR-185/AKT axis. Medical Science Monitor, 25, 9618.PubMedPubMedCentralCrossRef Chen, Z., Zhang, Z., Zhao, D., Feng, W., Meng, F., Han, S., Lin, B., & Shi, X. (2019). Long noncoding RNA (lncRNA) FOXD2-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by regulating MiR-185/AKT axis. Medical Science Monitor, 25, 9618.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Ge, X., Li, G.-Y., Jiang, L., Jia, L., Zhang, Z., Li, X., Wang, R., Zhou, M., Zhou, Y., & Zeng, Z. (2019). Long noncoding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene, 38(16), 3061–3076.PubMedPubMedCentralCrossRef Ge, X., Li, G.-Y., Jiang, L., Jia, L., Zhang, Z., Li, X., Wang, R., Zhou, M., Zhou, Y., & Zeng, Z. (2019). Long noncoding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene, 38(16), 3061–3076.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Li, M., Xie, Z., Wang, P., Li, J., Liu, W., Tang, S. A., Liu, Z., Wu, X., Wu, Y., & Shen, H. (2018). The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death & Disease, 9(5), 1–13.CrossRef Li, M., Xie, Z., Wang, P., Li, J., Liu, W., Tang, S. A., Liu, Z., Wu, X., Wu, Y., & Shen, H. (2018). The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death & Disease, 9(5), 1–13.CrossRef
95.
Zurück zum Zitat Han, Y., Wu, N., Xia, F., Liu, S., & Jia, D. (2020). Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. International Journal of Molecular Medicine, 45(3), 858–872.PubMedPubMedCentral Han, Y., Wu, N., Xia, F., Liu, S., & Jia, D. (2020). Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. International Journal of Molecular Medicine, 45(3), 858–872.PubMedPubMedCentral
96.
Zurück zum Zitat Liu, Z., Liu, L., Zhong, Y., Cai, M., Gao, J., Tan, C., Han, X., Guo, R., & Han, L. (2019). LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell & Bioscience, 9(1), 1–10.CrossRef Liu, Z., Liu, L., Zhong, Y., Cai, M., Gao, J., Tan, C., Han, X., Guo, R., & Han, L. (2019). LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell & Bioscience, 9(1), 1–10.CrossRef
97.
Zurück zum Zitat Liu, F., Yang, X.-C., Chen, M.-L., Zhuang, Z.-W., Jiang, Y., Wang, J., & Zhou, Y.-J. (2020). LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway. American Journal of Translational Research, 12(4), 1338.PubMedPubMedCentral Liu, F., Yang, X.-C., Chen, M.-L., Zhuang, Z.-W., Jiang, Y., Wang, J., & Zhou, Y.-J. (2020). LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway. American Journal of Translational Research, 12(4), 1338.PubMedPubMedCentral
99.
Zurück zum Zitat He, S., Yang, S., Zhang, Y., Li, X., Gao, D., Zhong, Y., Cao, L., Ma, H., Liu, Y., & Li, G. (2019). LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death & Disease, 10(12), 1–16.CrossRef He, S., Yang, S., Zhang, Y., Li, X., Gao, D., Zhong, Y., Cao, L., Ma, H., Liu, Y., & Li, G. (2019). LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death & Disease, 10(12), 1–16.CrossRef
100.
Zurück zum Zitat Wang, C.-G., Hu, Y.-H., Su, S.-L., & Zhong, D. (2020). LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Experimental & Molecular Medicine, 52(8), 1310–1325.CrossRef Wang, C.-G., Hu, Y.-H., Su, S.-L., & Zhong, D. (2020). LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Experimental & Molecular Medicine, 52(8), 1310–1325.CrossRef
101.
Zurück zum Zitat Xiang, J., Fu, H. Q., Xu, Z., Fan, W. J., Liu, F., & Chen, B. (2020). lncRNA SNHG1 attenuates osteogenic differentiation via the miR-101/DKK1 axis in bone marrow mesenchymal stem cells. Molecular Medicine Reports, 22(5), 3715–3722.PubMedPubMedCentral Xiang, J., Fu, H. Q., Xu, Z., Fan, W. J., Liu, F., & Chen, B. (2020). lncRNA SNHG1 attenuates osteogenic differentiation via the miR-101/DKK1 axis in bone marrow mesenchymal stem cells. Molecular Medicine Reports, 22(5), 3715–3722.PubMedPubMedCentral
102.
Zurück zum Zitat Li, D., Tian, Y., Yin, C., Huai, Y., Zhao, Y., Su, P., Wang, X., Pei, J., Zhang, K., & Yang, C. (2019). Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-Catenin/TCF1/Runx2 signaling axis. International Journal of Molecular Sciences, 20(24), 6229.PubMedCentralCrossRef Li, D., Tian, Y., Yin, C., Huai, Y., Zhao, Y., Su, P., Wang, X., Pei, J., Zhang, K., & Yang, C. (2019). Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-Catenin/TCF1/Runx2 signaling axis. International Journal of Molecular Sciences, 20(24), 6229.PubMedCentralCrossRef
103.
Zurück zum Zitat Li, D., Liu, Y., Gao, W., Han, J., Yuan, R., Zhang, M., & Ge, Z. (2020). LncRNA HCG11 inhibits adipocyte differentiation in human adipose-derived mesenchymal stem cells by sponging miR-204-5p to upregulate SIRT1. Cell Transplantation, 29, 0963689720968090.PubMedCentralCrossRef Li, D., Liu, Y., Gao, W., Han, J., Yuan, R., Zhang, M., & Ge, Z. (2020). LncRNA HCG11 inhibits adipocyte differentiation in human adipose-derived mesenchymal stem cells by sponging miR-204-5p to upregulate SIRT1. Cell Transplantation, 29, 0963689720968090.PubMedCentralCrossRef
104.
Zurück zum Zitat Guo, R., Zou, B., Liang, Y., Bian, J., Xu, J., Zhou, Q., Zhang, C., Chen, T., Yang, M., & Wang, H. (2021). LncRNA RCAT1 promotes tumor progression and metastasis via miR-214-5p/E2F2 axis in renal cell carcinoma. Cell Death & Disease, 12(7), 1–14.CrossRef Guo, R., Zou, B., Liang, Y., Bian, J., Xu, J., Zhou, Q., Zhang, C., Chen, T., Yang, M., & Wang, H. (2021). LncRNA RCAT1 promotes tumor progression and metastasis via miR-214-5p/E2F2 axis in renal cell carcinoma. Cell Death & Disease, 12(7), 1–14.CrossRef
105.
Zurück zum Zitat Jin, F., Li, M., Li, X., Zheng, Y., Zhang, K., Liu, X., Cai, B., & Yin, G. (2022). PlncRNA-1 stimulates hair follicle stem cell differentiation in wound healing via the EZH2/ZEB1/MAPK1 axis. The Journal of Gene Medicine, 2022, e3408. Jin, F., Li, M., Li, X., Zheng, Y., Zhang, K., Liu, X., Cai, B., & Yin, G. (2022). PlncRNA-1 stimulates hair follicle stem cell differentiation in wound healing via the EZH2/ZEB1/MAPK1 axis. The Journal of Gene Medicine, 2022, e3408.
106.
Zurück zum Zitat Yu, L., Qu, H., Yu, Y., Li, W., Zhao, Y., & Qiu, G. (2018). Lnc RNA-PCAT 1 targeting miR-145-5p promotes TLR 4-associated osteogenic differentiation of adipose-derived stem cells. Journal of Cellular and Molecular Medicine, 22(12), 6134–6147.PubMedPubMedCentralCrossRef Yu, L., Qu, H., Yu, Y., Li, W., Zhao, Y., & Qiu, G. (2018). Lnc RNA-PCAT 1 targeting miR-145-5p promotes TLR 4-associated osteogenic differentiation of adipose-derived stem cells. Journal of Cellular and Molecular Medicine, 22(12), 6134–6147.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Yu, Y., Chen, Y., Zhang, X., Lu, X., Hong, J., Guo, X., & Zhou, D. (2018). Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle, 17(19–20), 2374–2385.PubMedPubMedCentralCrossRef Yu, Y., Chen, Y., Zhang, X., Lu, X., Hong, J., Guo, X., & Zhou, D. (2018). Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle, 17(19–20), 2374–2385.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Zhang, M., Li, F., Sun, J.-W., Li, D.-H., Li, W.-T., Jiang, R.-R., Li, Z. J., Liu, X. J., Han, R. L., & Li, G.-X. (2019). LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Frontiers in Genetics, 10, 42.PubMedPubMedCentralCrossRef Zhang, M., Li, F., Sun, J.-W., Li, D.-H., Li, W.-T., Jiang, R.-R., Li, Z. J., Liu, X. J., Han, R. L., & Li, G.-X. (2019). LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Frontiers in Genetics, 10, 42.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Cao, X., Zhang, Z., Wang, Y., Shan, W., Wang, R., Mao, S., Ding, S., Pang, C., Li, B., & Zhou, J. (2021). MiR-27a-3p/Hoxa10 axis regulates angiotensin ii-induced cardiomyocyte hypertrophy by targeting Kv4. 3 expression. Frontiers in Pharmacology, 12, 970.CrossRef Cao, X., Zhang, Z., Wang, Y., Shan, W., Wang, R., Mao, S., Ding, S., Pang, C., Li, B., & Zhou, J. (2021). MiR-27a-3p/Hoxa10 axis regulates angiotensin ii-induced cardiomyocyte hypertrophy by targeting Kv4. 3 expression. Frontiers in Pharmacology, 12, 970.CrossRef
111.
Zurück zum Zitat Wang, Y., Zhu, P., Luo, J., Wang, J., Liu, Z., Wu, W., Du, Y., Ye, B., Wang, D., & He, L. (2019). LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. The EMBO Journal, 38(17), e101110.PubMedPubMedCentralCrossRef Wang, Y., Zhu, P., Luo, J., Wang, J., Liu, Z., Wu, W., Du, Y., Ye, B., Wang, D., & He, L. (2019). LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. The EMBO Journal, 38(17), e101110.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Wang, Y., Wang, K., Hu, Z., Zhou, H., Zhang, L., Wang, H., Li, G., Zhang, S., Cao, X., & Shi, F. (2018). MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death & Disease, 9(11), 1–16.CrossRef Wang, Y., Wang, K., Hu, Z., Zhou, H., Zhang, L., Wang, H., Li, G., Zhang, S., Cao, X., & Shi, F. (2018). MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death & Disease, 9(11), 1–16.CrossRef
113.
Zurück zum Zitat Shi, Z.-L., Zhang, H., Fan, Z.-Y., Ma, W., Song, Y.-Z., Li, M., Li, T. Q., Cao, S. X., & Feng, G.-J. (2020). Long noncoding RNA LINC00314 facilitates osteogenic differentiation of adipose-derived stem cells through the hsa-miR-129-5p/GRM5 axis via the Wnt signaling pathway. Stem Cell Research & Therapy, 11(1), 1–14.CrossRef Shi, Z.-L., Zhang, H., Fan, Z.-Y., Ma, W., Song, Y.-Z., Li, M., Li, T. Q., Cao, S. X., & Feng, G.-J. (2020). Long noncoding RNA LINC00314 facilitates osteogenic differentiation of adipose-derived stem cells through the hsa-miR-129-5p/GRM5 axis via the Wnt signaling pathway. Stem Cell Research & Therapy, 11(1), 1–14.CrossRef
114.
Zurück zum Zitat Zhang, H., Zhang, X., & Zhang, J. (2018). MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochemical and Biophysical Research Communications, 506(1), 272–277.PubMedCrossRef Zhang, H., Zhang, X., & Zhang, J. (2018). MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochemical and Biophysical Research Communications, 506(1), 272–277.PubMedCrossRef
115.
Zurück zum Zitat Jiang, W., Liu, Y., Liu, R., Zhang, K., & Zhang, Y. (2015). The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Reports, 11(1), 137–148.PubMedCrossRef Jiang, W., Liu, Y., Liu, R., Zhang, K., & Zhang, Y. (2015). The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Reports, 11(1), 137–148.PubMedCrossRef
116.
Zurück zum Zitat Gao, Z., Wang, Q., Ji, M., Guo, X., Li, L., & Su, X. (2021). Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. Journal of Translational Medicine, 19(1), 1–11.CrossRef Gao, Z., Wang, Q., Ji, M., Guo, X., Li, L., & Su, X. (2021). Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. Journal of Translational Medicine, 19(1), 1–11.CrossRef
117.
Zurück zum Zitat Zhou, G., Li, C., Feng, J., Zhang, J., & Fang, Y. (2018). lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Medicine, 8(2), 130–139.PubMedPubMedCentralCrossRef Zhou, G., Li, C., Feng, J., Zhang, J., & Fang, Y. (2018). lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Medicine, 8(2), 130–139.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Zhou, W., Wang, L., Miao, Y., & Xing, R. (2018). Novel long noncoding RNA GACAT3 promotes colorectal cancer cell proliferation, invasion, and migration through miR-149. OncoTargets and Therapy, 11, 1543.PubMedPubMedCentralCrossRef Zhou, W., Wang, L., Miao, Y., & Xing, R. (2018). Novel long noncoding RNA GACAT3 promotes colorectal cancer cell proliferation, invasion, and migration through miR-149. OncoTargets and Therapy, 11, 1543.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Zhu, Z., Li, J., Tong, R., Zhang, X., & Yu, B. (2021). miR-149 alleviates Ox-LDL-induced endothelial cell injury by promoting autophagy through Akt/mTOR pathway. Cardiology Research and Practice, 2021, 1.CrossRef Zhu, Z., Li, J., Tong, R., Zhang, X., & Yu, B. (2021). miR-149 alleviates Ox-LDL-induced endothelial cell injury by promoting autophagy through Akt/mTOR pathway. Cardiology Research and Practice, 2021, 1.CrossRef
120.
Zurück zum Zitat Chen, C., Wang, X., Liu, T., Tang, X., Liu, Y., Liu, T., & Zhu, J. (2020). Overexpression of long non-coding RNA RP11-363E7. 4 inhibits proliferation and invasion in gastric cancer. Cell Biochemistry and Function, 38(7), 921–931.PubMedPubMedCentralCrossRef Chen, C., Wang, X., Liu, T., Tang, X., Liu, Y., Liu, T., & Zhu, J. (2020). Overexpression of long non-coding RNA RP11-363E7. 4 inhibits proliferation and invasion in gastric cancer. Cell Biochemistry and Function, 38(7), 921–931.PubMedPubMedCentralCrossRef
121.
123.
Zurück zum Zitat Liu, C., Guo, X., Bai, S., Zeng, G., & Wang, H. (2020). lncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast-like synoviocytes by downregulating IL-17. Molecular Medicine Reports, 21(5), 2131–2137.PubMedPubMedCentral Liu, C., Guo, X., Bai, S., Zeng, G., & Wang, H. (2020). lncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast-like synoviocytes by downregulating IL-17. Molecular Medicine Reports, 21(5), 2131–2137.PubMedPubMedCentral
124.
Zurück zum Zitat Cao, X., & Fan, Q.-L. (2020). LncRNA MIR503HG promotes high-glucose-induced proximal tubular cell apoptosis by targeting miR-503-5p/bcl-2 pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 4507.PubMedPubMedCentralCrossRef Cao, X., & Fan, Q.-L. (2020). LncRNA MIR503HG promotes high-glucose-induced proximal tubular cell apoptosis by targeting miR-503-5p/bcl-2 pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 4507.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Tang, C., Cai, Y., Jiang, H., Lv, Z., Yang, C., Xu, H., Li, Z., & Li, Y. (2020). LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY), 12(24), 25547.CrossRef Tang, C., Cai, Y., Jiang, H., Lv, Z., Yang, C., Xu, H., Li, Z., & Li, Y. (2020). LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY), 12(24), 25547.CrossRef
126.
Zurück zum Zitat Li, X., Zhou, S., Fan, T., & Feng, X. (2020). lncRNA DGCR 5/miR-27a-3p/BNIP3 promotes cell apoptosis in pancreatic cancer by regulating the p38 MAPK pathway. International Journal of Molecular Medicine, 46(2), 729–739.PubMedPubMedCentralCrossRef Li, X., Zhou, S., Fan, T., & Feng, X. (2020). lncRNA DGCR 5/miR-27a-3p/BNIP3 promotes cell apoptosis in pancreatic cancer by regulating the p38 MAPK pathway. International Journal of Molecular Medicine, 46(2), 729–739.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Zhang, R., Feng, Y., Lu, J., Ge, Y., & Li, H. (2021). lncRNA Ttc3-209 promotes the apoptosis of retinal ganglion cells in retinal ischemia reperfusion injury by targeting the miR-484/Wnt8a axis. Investigative Ophthalmology & Visual Science, 62(3), 13–13.CrossRef Zhang, R., Feng, Y., Lu, J., Ge, Y., & Li, H. (2021). lncRNA Ttc3-209 promotes the apoptosis of retinal ganglion cells in retinal ischemia reperfusion injury by targeting the miR-484/Wnt8a axis. Investigative Ophthalmology & Visual Science, 62(3), 13–13.CrossRef
128.
Zurück zum Zitat Ren, K., Sun, J., Liu, L., Yang, Y., Li, H., Wang, Z., Deng, J., Hou, M., Qiu, J., & Zhao, W. (2021). TP53-activated lncRNA GHRLOS regulates cell proliferation, invasion, and apoptosis of non-small cell lung cancer by modulating the miR-346/APC axis. Frontiers in Oncology, 11, 1282.CrossRef Ren, K., Sun, J., Liu, L., Yang, Y., Li, H., Wang, Z., Deng, J., Hou, M., Qiu, J., & Zhao, W. (2021). TP53-activated lncRNA GHRLOS regulates cell proliferation, invasion, and apoptosis of non-small cell lung cancer by modulating the miR-346/APC axis. Frontiers in Oncology, 11, 1282.CrossRef
129.
Zurück zum Zitat Zhang, G., Li, S., Lu, J., Ge, Y., Wang, Q., Ma, G., Zhao, Q., Wu, D., Gong, W., & Du, M. (2018). LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Molecular Cancer, 17(1), 1–11.PubMedPubMedCentralCrossRef Zhang, G., Li, S., Lu, J., Ge, Y., Wang, Q., Ma, G., Zhao, Q., Wu, D., Gong, W., & Du, M. (2018). LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Molecular Cancer, 17(1), 1–11.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Liu, Y., Cai, X., Cai, Y., & Chang, Y. (2021). lncRNA OIP5-AS1 suppresses cell proliferation and invasion of endometrial cancer by regulating PTEN/AKT via sponging miR-200c-3p. Journal of Immunology Research, 2021, 1. Liu, Y., Cai, X., Cai, Y., & Chang, Y. (2021). lncRNA OIP5-AS1 suppresses cell proliferation and invasion of endometrial cancer by regulating PTEN/AKT via sponging miR-200c-3p. Journal of Immunology Research, 2021, 1.
131.
Zurück zum Zitat Wang, M., Liu, Y., Li, C., Zhang, Y., Zhou, X., & Lu, C. (2019). Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. American journal of Translational Research, 11(3), 1827.PubMedPubMedCentral Wang, M., Liu, Y., Li, C., Zhang, Y., Zhou, X., & Lu, C. (2019). Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. American journal of Translational Research, 11(3), 1827.PubMedPubMedCentral
132.
Zurück zum Zitat Wang, Y., Wang, H., Ruan, J., Zheng, W., Yang, Z., & Pan, W. (2020). Long non-coding RNA OIP5-AS1 suppresses multiple myeloma progression by sponging miR-27a-3p to activate TSC1 expression. Cancer cell international, 20(1), 1–13. Wang, Y., Wang, H., Ruan, J., Zheng, W., Yang, Z., & Pan, W. (2020). Long non-coding RNA OIP5-AS1 suppresses multiple myeloma progression by sponging miR-27a-3p to activate TSC1 expression. Cancer cell international, 20(1), 1–13.
133.
Zurück zum Zitat Chu, Q., Xu, T., Zheng, W., Chang, R., & Zhang, L. (2020). Long noncoding RNA MARL regulates antiviral responses through suppression miR-122-dependent MAVS downregulation in lower vertebrates. PLoS Pathogens, 16(7), e1008670.PubMedPubMedCentralCrossRef Chu, Q., Xu, T., Zheng, W., Chang, R., & Zhang, L. (2020). Long noncoding RNA MARL regulates antiviral responses through suppression miR-122-dependent MAVS downregulation in lower vertebrates. PLoS Pathogens, 16(7), e1008670.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Hu, C., Huang, S., Wu, F., & Ding, H. (2018). miR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Experimental and Therapeutic Medicine, 15(3), 2755–2760.PubMedPubMedCentral Hu, C., Huang, S., Wu, F., & Ding, H. (2018). miR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Experimental and Therapeutic Medicine, 15(3), 2755–2760.PubMedPubMedCentral
136.
Zurück zum Zitat Sun, C., Liu, H., Guo, J., Yu, Y., Yang, D., He, F., & Du, Z. (2017). MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Scientific Reports, 7(1), 1–11. Sun, C., Liu, H., Guo, J., Yu, Y., Yang, D., He, F., & Du, Z. (2017). MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Scientific Reports, 7(1), 1–11.
137.
Zurück zum Zitat Wang, Z., & Xu, R. (2020). lncRNA PART1 promotes breast cancer cell progression by directly targeting miR-4516. Cancer Management and Research, 12, 7753.PubMedPubMedCentralCrossRef Wang, Z., & Xu, R. (2020). lncRNA PART1 promotes breast cancer cell progression by directly targeting miR-4516. Cancer Management and Research, 12, 7753.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Zhang, Y., Lu, P., Du, H., & Zhang, L. (2019). LINK-A lncRNA promotes proliferation and inhibits apoptosis of mantle cell lymphoma cell by upregulating survivin. Medical Science Monitor, 25, 365.PubMedPubMedCentralCrossRef Zhang, Y., Lu, P., Du, H., & Zhang, L. (2019). LINK-A lncRNA promotes proliferation and inhibits apoptosis of mantle cell lymphoma cell by upregulating survivin. Medical Science Monitor, 25, 365.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Wang, J., Shen, C., Li, R., Wang, C., Xiao, Y., Kuang, Y., Lao, M., Xu, S., Shi, M., & Cai, X. (2021). Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight, 6(23), e146757.PubMedPubMedCentralCrossRef Wang, J., Shen, C., Li, R., Wang, C., Xiao, Y., Kuang, Y., Lao, M., Xu, S., Shi, M., & Cai, X. (2021). Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight, 6(23), e146757.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Li, E.-Y., Zhao, P.-J., Jian, J., Yin, B.-Q., Sun, Z.-Y., Xu, C.-X., Tang, Y. C., & Wu, H. (2019). LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle, 18(2), 156–166.PubMedCrossRef Li, E.-Y., Zhao, P.-J., Jian, J., Yin, B.-Q., Sun, Z.-Y., Xu, C.-X., Tang, Y. C., & Wu, H. (2019). LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle, 18(2), 156–166.PubMedCrossRef
141.
Zurück zum Zitat Cao, X., Ma, Q., Wang, B., Qian, Q., Liu, N., Liu, T., & Dong, X. (2021). Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY), 13(8), 11188.CrossRef Cao, X., Ma, Q., Wang, B., Qian, Q., Liu, N., Liu, T., & Dong, X. (2021). Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY), 13(8), 11188.CrossRef
142.
Zurück zum Zitat Li, X., Song, F., & Sun, H. (2020). Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncology Letters, 20(5), 1–1. Li, X., Song, F., & Sun, H. (2020). Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncology Letters, 20(5), 1–1.
Metadaten
Titel
Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients
verfasst von
Masoumeh Roohaninasab
Shadnaz fakhteh yavari
Motahareh Babazadeh
Rozita Adldoosti Hagh
Mahboubeh Pazoki
Mehran Amrovani
Publikationsdatum
04.05.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 7/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09742-w

Weitere Artikel der Ausgabe 7/2022

Cardiovascular Toxicology 7/2022 Zur Ausgabe