Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2022

20.10.2021

Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease

verfasst von: Farahnaz Nikdoust, Mahboubeh Pazoki, Mohammadjavad Mohammadtaghizadeh, Mahsa Karimzadeh Aghaali, Mehran Amrovani

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Exosomes are spherical bilayer membrane vesicles with an average diameter of 40–100 nm. These particles perform a wide range of biological activities due to their contents, including proteins, nucleic acids, lipids, lncRNA, and miRNA. Exosomes are involved in inflammation induction, oxidative stress and apoptosis, which can be effective in endothelial dysfunction. Due to the induction of mentioned processes in the endothelial cells, the intercellular connections are destroyed, cell permeability increases and finally cell efficiency decreases and functional defects occur. Cardiovascular disease (CVDs) are of consequences of endothelial dysfunction. Thus by identifying the exosome signaling pathways, which induce inflammation, oxidative stress, and apoptosis, endothelial dysfunction and subsequently CVDs can be reduced; exosomes can be used for appropriate target therapy.
Literatur
1.
Zurück zum Zitat Jokinen, E. (2014). Obesity and cardiovascular disease. Minerva Pediatrica, 67(1), 25–32.PubMed Jokinen, E. (2014). Obesity and cardiovascular disease. Minerva Pediatrica, 67(1), 25–32.PubMed
2.
Zurück zum Zitat Foley, R. N., Parfrey, P. S., & Sarnak, M. J. (1998). Epidemiology of cardiovascular disease in chronic renal disease. Journal of the American Society of Nephrology: JASN, 9(12 Suppl), S16-23.PubMed Foley, R. N., Parfrey, P. S., & Sarnak, M. J. (1998). Epidemiology of cardiovascular disease in chronic renal disease. Journal of the American Society of Nephrology: JASN, 9(12 Suppl), S16-23.PubMed
4.
Zurück zum Zitat Farsad, B. F., Alavi, S. M., Ghorbanian, G., Fahimi, F., Ghaemmaghami, Z., Mehr, A. Z., & Bakhshandeh, H. (2019). The therapeutic efficnecy of ranolazine in comparison with conventional therapy in diabetic individuals with ischemic heart disease; a randomized clinical trial. Journal of Renal Injury Prevention, 9(1), e04–e04. Farsad, B. F., Alavi, S. M., Ghorbanian, G., Fahimi, F., Ghaemmaghami, Z., Mehr, A. Z., & Bakhshandeh, H. (2019). The therapeutic efficnecy of ranolazine in comparison with conventional therapy in diabetic individuals with ischemic heart disease; a randomized clinical trial. Journal of Renal Injury Prevention, 9(1), e04–e04.
6.
Zurück zum Zitat Zhang, J., Tecson, K. M., & McCullough, P. A. (2020). Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Reviews in Cardiovascular Medicine, 21(3), 315–319.PubMedCrossRef Zhang, J., Tecson, K. M., & McCullough, P. A. (2020). Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Reviews in Cardiovascular Medicine, 21(3), 315–319.PubMedCrossRef
7.
Zurück zum Zitat Zhang, Y., Murugesan, P., Huang, K., & Cai, H. (2020). NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nature Reviews Cardiology, 17(3), 170–194.PubMedCrossRef Zhang, Y., Murugesan, P., Huang, K., & Cai, H. (2020). NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nature Reviews Cardiology, 17(3), 170–194.PubMedCrossRef
8.
Zurück zum Zitat Momtaz, H. E., Tanasan, A., & Godini, M. (2020). Evaluation of urinary NGAL level in children with congenital heart disease as a possible early indicator of nephropathy. Journal of Nephropharmacology, 10(2), e14–e14.CrossRef Momtaz, H. E., Tanasan, A., & Godini, M. (2020). Evaluation of urinary NGAL level in children with congenital heart disease as a possible early indicator of nephropathy. Journal of Nephropharmacology, 10(2), e14–e14.CrossRef
9.
Zurück zum Zitat Ooi, B. K., Chan, K.-G., Goh, B. H., & Yap, W. H. (2018). The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: Novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology, 9, 1308.PubMedPubMedCentralCrossRef Ooi, B. K., Chan, K.-G., Goh, B. H., & Yap, W. H. (2018). The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: Novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology, 9, 1308.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Bhattacharjee, R., Khalyfa, A., Khalyfa, A. A., Mokhlesi, B., Kheirandish-Gozal, L., Almendros, I., et al. (2018). Exosomal cargo properties, endothelial function and treatment of obesity hypoventilation syndrome: A proof of concept study. Journal of Clinical Sleep Medicine, 14(5), 797–807.PubMedPubMedCentralCrossRef Bhattacharjee, R., Khalyfa, A., Khalyfa, A. A., Mokhlesi, B., Kheirandish-Gozal, L., Almendros, I., et al. (2018). Exosomal cargo properties, endothelial function and treatment of obesity hypoventilation syndrome: A proof of concept study. Journal of Clinical Sleep Medicine, 14(5), 797–807.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Haybar, H., Shahrabi, S., Rezaeeyan, H., Jodat, H., & Saki, N. (2019). Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. Journal of Cellular Physiology, 234(9), 14500–14506.CrossRef Haybar, H., Shahrabi, S., Rezaeeyan, H., Jodat, H., & Saki, N. (2019). Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. Journal of Cellular Physiology, 234(9), 14500–14506.CrossRef
12.
Zurück zum Zitat Zhang, Y., Hu, Y.-W., Zheng, L., & Wang, Q. (2017). Characteristics and roles of exosomes in cardiovascular disease. DNA and Cell Biology, 36(3), 202–211.PubMedCrossRef Zhang, Y., Hu, Y.-W., Zheng, L., & Wang, Q. (2017). Characteristics and roles of exosomes in cardiovascular disease. DNA and Cell Biology, 36(3), 202–211.PubMedCrossRef
13.
Zurück zum Zitat Terrasini, N., & Lionetti, V. (2017). Exosomes in critical illness. Critical Care Medicine, 45(6), 1054–1060.PubMedCrossRef Terrasini, N., & Lionetti, V. (2017). Exosomes in critical illness. Critical Care Medicine, 45(6), 1054–1060.PubMedCrossRef
14.
Zurück zum Zitat Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47(7), 5503–5509.PubMedCrossRef Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47(7), 5503–5509.PubMedCrossRef
16.
Zurück zum Zitat Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.CrossRef Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.CrossRef
17.
Zurück zum Zitat Zhang, C., Ji, Q., Yang, Y., Li, Q., & Wang, Z. (2018). Exosome: Function and role in cancer metastasis and drug resistance. Technology in Cancer Research & Treatment, 17, 1533033818763450.CrossRef Zhang, C., Ji, Q., Yang, Y., Li, Q., & Wang, Z. (2018). Exosome: Function and role in cancer metastasis and drug resistance. Technology in Cancer Research & Treatment, 17, 1533033818763450.CrossRef
18.
Zurück zum Zitat Asgarpour, K., Shojaei, Z., Amiri, F., Ai, J., Mahjoubin-Tehran, M., Ghasemi, F., et al. (2020). Exosomal microRNAs derived from mesenchymal stem cells: Cell-to-cell messages. Cell Communication and Signaling, 18(1), 1–16.CrossRef Asgarpour, K., Shojaei, Z., Amiri, F., Ai, J., Mahjoubin-Tehran, M., Ghasemi, F., et al. (2020). Exosomal microRNAs derived from mesenchymal stem cells: Cell-to-cell messages. Cell Communication and Signaling, 18(1), 1–16.CrossRef
19.
Zurück zum Zitat Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208.PubMedCrossRef Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208.PubMedCrossRef
20.
Zurück zum Zitat Zhang, H., Wang, L., Li, C., Yu, Y., Yi, Y., Wang, J., & Chen, D. (2019). Exosome-induced regulation in inflammatory bowel disease. Frontiers in Immunology, 10, 1464.PubMedPubMedCentralCrossRef Zhang, H., Wang, L., Li, C., Yu, Y., Yi, Y., Wang, J., & Chen, D. (2019). Exosome-induced regulation in inflammatory bowel disease. Frontiers in Immunology, 10, 1464.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12(1), 19–30.PubMedCrossRef Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12(1), 19–30.PubMedCrossRef
22.
Zurück zum Zitat Van Niel, G., d’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228.PubMedCrossRef Van Niel, G., d’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228.PubMedCrossRef
24.
Zurück zum Zitat Bobrie, A., Colombo, M., Raposo, G., & Théry, C. (2011). Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic, 12(12), 1659–1668.PubMedCrossRef Bobrie, A., Colombo, M., Raposo, G., & Théry, C. (2011). Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic, 12(12), 1659–1668.PubMedCrossRef
25.
Zurück zum Zitat Zhu, L., Sun, H.-T., Wang, S., Huang, S.-L., Zheng, Y., Wang, C.-Q., et al. (2020). Isolation and characterization of exosomes for cancer research. Journal of Hematology & Oncology, 13(1), 1–24.CrossRef Zhu, L., Sun, H.-T., Wang, S., Huang, S.-L., Zheng, Y., Wang, C.-Q., et al. (2020). Isolation and characterization of exosomes for cancer research. Journal of Hematology & Oncology, 13(1), 1–24.CrossRef
26.
Zurück zum Zitat Mosquera-Heredia, M. I., Morales, L. C., Vidal, O. M., Barceló, E., Silvera-Redondo, C., Vélez, J. I., & Garavito-Galofre, P. (2021). Exosomes: Potential disease biomarkers and new therapeutic targets. Biomedicines, 9(8), 1061.PubMedPubMedCentralCrossRef Mosquera-Heredia, M. I., Morales, L. C., Vidal, O. M., Barceló, E., Silvera-Redondo, C., Vélez, J. I., & Garavito-Galofre, P. (2021). Exosomes: Potential disease biomarkers and new therapeutic targets. Biomedicines, 9(8), 1061.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Jiang, K., Dong, C., Yin, Z., Li, R., Mao, J., Wang, C., et al. (2020). Exosome-derived ENO1 regulates integrin α6β4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death & Disease, 11(11), 1–20.CrossRef Jiang, K., Dong, C., Yin, Z., Li, R., Mao, J., Wang, C., et al. (2020). Exosome-derived ENO1 regulates integrin α6β4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death & Disease, 11(11), 1–20.CrossRef
29.
Zurück zum Zitat Zamani, P., Fereydouni, N., Butler, A. E., Navashenaq, J. G., & Sahebkar, A. (2019). The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends in Cardiovascular Medicine, 29(6), 313–323.PubMedCrossRef Zamani, P., Fereydouni, N., Butler, A. E., Navashenaq, J. G., & Sahebkar, A. (2019). The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends in Cardiovascular Medicine, 29(6), 313–323.PubMedCrossRef
31.
Zurück zum Zitat Yuan, Y., Du, W., Liu, J., Ma, W., Zhang, L., Du, Z., & Cai, B. (2018). Stem cell-derived exosome in cardiovascular diseases: Macro roles of micro particles. Frontiers in Pharmacology, 9, 547.PubMedPubMedCentralCrossRef Yuan, Y., Du, W., Liu, J., Ma, W., Zhang, L., Du, Z., & Cai, B. (2018). Stem cell-derived exosome in cardiovascular diseases: Macro roles of micro particles. Frontiers in Pharmacology, 9, 547.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Jiang, K., Yang, J., Guo, S., Zhao, G., Wu, H., & Deng, G. (2019). Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Molecular Therapy, 27(10), 1758–1771.PubMedPubMedCentralCrossRef Jiang, K., Yang, J., Guo, S., Zhao, G., Wu, H., & Deng, G. (2019). Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Molecular Therapy, 27(10), 1758–1771.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Roohaninasab, M., Goodarzi, A., Ghassemi, M., Sadeghzadeh-Bazargan, A., Behrangi, E., & Najar Nobari, N. (2021). Systematic review of platelet-rich plasma in treating alopecia: Focusing on efficacy, safety, and therapeutic durability. Dermatologic Therapy, 34(2), e14768.PubMedCrossRef Roohaninasab, M., Goodarzi, A., Ghassemi, M., Sadeghzadeh-Bazargan, A., Behrangi, E., & Najar Nobari, N. (2021). Systematic review of platelet-rich plasma in treating alopecia: Focusing on efficacy, safety, and therapeutic durability. Dermatologic Therapy, 34(2), e14768.PubMedCrossRef
34.
Zurück zum Zitat Zheng, B., Yin, W.-N., Suzuki, T., Zhang, X.-H., Zhang, Y., Song, L.-L., et al. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25(6), 1279–1294.PubMedPubMedCentralCrossRef Zheng, B., Yin, W.-N., Suzuki, T., Zhang, X.-H., Zhang, Y., Song, L.-L., et al. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25(6), 1279–1294.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kuo, Y.-C., Li, Y.-S.J., Zhou, J., Shih, Y.-R.V., Miller, M., Broide, D., et al. (2013). Human mesenchymal stem cells suppress the stretch–induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS ONE, 8(8), e71342.PubMedPubMedCentralCrossRef Kuo, Y.-C., Li, Y.-S.J., Zhou, J., Shih, Y.-R.V., Miller, M., Broide, D., et al. (2013). Human mesenchymal stem cells suppress the stretch–induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS ONE, 8(8), e71342.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Sun, H.-J., Wu, Z.-Y., Nie, X.-W., & Bian, J.-S. (2020). Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Frontiers in Pharmacology, 10, 1568.PubMedPubMedCentralCrossRef Sun, H.-J., Wu, Z.-Y., Nie, X.-W., & Bian, J.-S. (2020). Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Frontiers in Pharmacology, 10, 1568.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Chung, H.-T., Choi, B.-M., Kwon, Y.-G., & Kim, Y.-M. (2008). Interactive relations between nitric oxide (NO) and carbon monoxide (CO): Heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods in Enzymology, 441, 329–338.PubMedCrossRef Chung, H.-T., Choi, B.-M., Kwon, Y.-G., & Kim, Y.-M. (2008). Interactive relations between nitric oxide (NO) and carbon monoxide (CO): Heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods in Enzymology, 441, 329–338.PubMedCrossRef
39.
Zurück zum Zitat Khademi, M., Roohaninasab, M., Goodarzi, A., Seirafianpour, F., Dodangeh, M., & Khademi, A. (2021). The healing effects of facial BOTOX injection on symptoms of depression alongside its effects on beauty preservation. Journal of Cosmetic Dermatology, 20(5), 1411–1415.PubMedCrossRef Khademi, M., Roohaninasab, M., Goodarzi, A., Seirafianpour, F., Dodangeh, M., & Khademi, A. (2021). The healing effects of facial BOTOX injection on symptoms of depression alongside its effects on beauty preservation. Journal of Cosmetic Dermatology, 20(5), 1411–1415.PubMedCrossRef
40.
Zurück zum Zitat Kong, L., Shen, X., Lin, L., Leitges, M., Rosario, R., Zou, Y. S., & Yan, S. F. (2013). PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(8), 1779–1787.PubMedCrossRef Kong, L., Shen, X., Lin, L., Leitges, M., Rosario, R., Zou, Y. S., & Yan, S. F. (2013). PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(8), 1779–1787.PubMedCrossRef
41.
Zurück zum Zitat Rahman, A., & Fazal, F. (2009). Hug tightly and say goodbye: Role of endothelial ICAM-1 in leukocyte transmigration. Antioxidants & Redox Signaling, 11(4), 823–839.CrossRef Rahman, A., & Fazal, F. (2009). Hug tightly and say goodbye: Role of endothelial ICAM-1 in leukocyte transmigration. Antioxidants & Redox Signaling, 11(4), 823–839.CrossRef
42.
Zurück zum Zitat Harrell, C. R., Djonov, V., & Volarevic, V. (2021). The cross-talk between mesenchymal stem cells and immune cells in tissue repair and regeneration. International Journal of Molecular Sciences, 22(5), 2472.PubMedPubMedCentralCrossRef Harrell, C. R., Djonov, V., & Volarevic, V. (2021). The cross-talk between mesenchymal stem cells and immune cells in tissue repair and regeneration. International Journal of Molecular Sciences, 22(5), 2472.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Mostofa, A., Punganuru, S. R., Madala, H. R., Al-Obaide, M., & Srivenugopal, K. S. (2017). The process and regulatory components of inflammation in brain oncogenesis. Biomolecules, 7(2), 34.PubMedCentralCrossRef Mostofa, A., Punganuru, S. R., Madala, H. R., Al-Obaide, M., & Srivenugopal, K. S. (2017). The process and regulatory components of inflammation in brain oncogenesis. Biomolecules, 7(2), 34.PubMedCentralCrossRef
45.
Zurück zum Zitat Melnikov, I., Kozlov, S., Saburova, O., Zubkova, E., Guseva, O., Domogatsky, S., et al. (2020). CRP is transported by monocytes and monocyte-derived exosomes in the blood of patients with coronary artery disease. Biomedicines, 8(10), 435.PubMedCentralCrossRef Melnikov, I., Kozlov, S., Saburova, O., Zubkova, E., Guseva, O., Domogatsky, S., et al. (2020). CRP is transported by monocytes and monocyte-derived exosomes in the blood of patients with coronary artery disease. Biomedicines, 8(10), 435.PubMedCentralCrossRef
47.
Zurück zum Zitat Dalvi, P., Sun, B., Tang, N., & Pulliam, L. (2017). Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MyD88 pathway. Scientific Reports, 7(1), 1–12.CrossRef Dalvi, P., Sun, B., Tang, N., & Pulliam, L. (2017). Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MyD88 pathway. Scientific Reports, 7(1), 1–12.CrossRef
48.
Zurück zum Zitat Egaña-Gorroño, L., López-Díez, R., Yepuri, G., Ramirez, L. S., Reverdatto, S., Gugger, P. F., et al. (2020). Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: Insights from human subjects and animal models. Frontiers in Cardiovascular Medicine, 7, 37.PubMedPubMedCentralCrossRef Egaña-Gorroño, L., López-Díez, R., Yepuri, G., Ramirez, L. S., Reverdatto, S., Gugger, P. F., et al. (2020). Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: Insights from human subjects and animal models. Frontiers in Cardiovascular Medicine, 7, 37.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Dohare, P., Cheng, B., Ahmed, E., Yadala, V., Singla, P., Thomas, S., et al. (2018). Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiology of Disease, 118, 22–39.PubMedPubMedCentralCrossRef Dohare, P., Cheng, B., Ahmed, E., Yadala, V., Singla, P., Thomas, S., et al. (2018). Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiology of Disease, 118, 22–39.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Hong, H.-Y., Jeon, W.-K., & Kim, B.-C. (2008). Up-regulation of heme oxygenase-1 expression through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the anti-inflammatory effect of 15-deoxy-Δ12, 14-prostaglandin J2 in murine macrophages. FEBS Letters, 582(6), 861–868.PubMedCrossRef Hong, H.-Y., Jeon, W.-K., & Kim, B.-C. (2008). Up-regulation of heme oxygenase-1 expression through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the anti-inflammatory effect of 15-deoxy-Δ12, 14-prostaglandin J2 in murine macrophages. FEBS Letters, 582(6), 861–868.PubMedCrossRef
55.
Zurück zum Zitat Kafi, F., Bolourian, A., Mojtahedi, Z., & Pouramini, A. (2021). High mobility group box 1 (HMGB1) in COVID-19. Journal of Preventive Epidemiology, 6(1), e11.CrossRef Kafi, F., Bolourian, A., Mojtahedi, Z., & Pouramini, A. (2021). High mobility group box 1 (HMGB1) in COVID-19. Journal of Preventive Epidemiology, 6(1), e11.CrossRef
56.
Zurück zum Zitat Wei, F., Liu, S. Y., Luo, L., Gu, N. N., Zeng, Y., Chen, X. Y., et al. (2017). Anti-inflammatory mechanism of ulinastatin: Inhibiting the hyperpermeability of vascular endothelial cells induced by TNF-α via the RhoA/ROCK signal pathway. International Immunopharmacology, 46, 220–227.PubMedCrossRef Wei, F., Liu, S. Y., Luo, L., Gu, N. N., Zeng, Y., Chen, X. Y., et al. (2017). Anti-inflammatory mechanism of ulinastatin: Inhibiting the hyperpermeability of vascular endothelial cells induced by TNF-α via the RhoA/ROCK signal pathway. International Immunopharmacology, 46, 220–227.PubMedCrossRef
57.
Zurück zum Zitat Wang, C. C. L., Hess, C. N., Hiatt, W. R., & Goldfine, A. B. (2016). Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes–mechanisms, management, and clinical considerations. Circulation, 133(24), 2459.CrossRef Wang, C. C. L., Hess, C. N., Hiatt, W. R., & Goldfine, A. B. (2016). Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes–mechanisms, management, and clinical considerations. Circulation, 133(24), 2459.CrossRef
58.
Zurück zum Zitat Wang, X., Sun, Y., Yang, H., Lu, Y., & Li, L. (2016). Oxidized low-density lipoprotein induces apoptosis in cultured neonatal rat cardiomyocytes by modulating the TLR4/NF-κB pathway. Scientific Reports, 6(1), 1–8. Wang, X., Sun, Y., Yang, H., Lu, Y., & Li, L. (2016). Oxidized low-density lipoprotein induces apoptosis in cultured neonatal rat cardiomyocytes by modulating the TLR4/NF-κB pathway. Scientific Reports, 6(1), 1–8.
59.
Zurück zum Zitat Kim, S., Lee, K.-S., Choi, S., Kim, J., Lee, D.-K., Park, M., et al. (2018). NF-κB–responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. Journal of Biological Chemistry, 293(49), 18989–19000.PubMedPubMedCentralCrossRef Kim, S., Lee, K.-S., Choi, S., Kim, J., Lee, D.-K., Park, M., et al. (2018). NF-κB–responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. Journal of Biological Chemistry, 293(49), 18989–19000.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Ko, K.-W., Yoo, Y.-I., Kim, J. Y., Choi, B., Park, S.-B., Park, W., et al. (2020). Attenuation of tumor necrosis factor-α induced inflammation by umbilical cord-mesenchymal stem cell derived exosome-mimetic nanovesicles in endothelial cells. Tissue Engineering and Regenerative Medicine, 17(2), 155–163.PubMedPubMedCentralCrossRef Ko, K.-W., Yoo, Y.-I., Kim, J. Y., Choi, B., Park, S.-B., Park, W., et al. (2020). Attenuation of tumor necrosis factor-α induced inflammation by umbilical cord-mesenchymal stem cell derived exosome-mimetic nanovesicles in endothelial cells. Tissue Engineering and Regenerative Medicine, 17(2), 155–163.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Song, Y., Li, H., Ren, X., Li, H., & Feng, C. (2020). SNHG9, delivered by adipocyte-derived exosomes, alleviates inflammation and apoptosis of endothelial cells through suppressing TRADD expression. European Journal of Pharmacology, 872, 172977.PubMedCrossRef Song, Y., Li, H., Ren, X., Li, H., & Feng, C. (2020). SNHG9, delivered by adipocyte-derived exosomes, alleviates inflammation and apoptosis of endothelial cells through suppressing TRADD expression. European Journal of Pharmacology, 872, 172977.PubMedCrossRef
62.
Zurück zum Zitat Gano, L. B., Donato, A. J., Pasha, H. M., Hearon, C. M., Jr., Sindler, A. L., & Seals, D. R. (2014). The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. American Journal of Physiology-Heart and Circulatory Physiology, 307(12), H1754–H1763.PubMedPubMedCentralCrossRef Gano, L. B., Donato, A. J., Pasha, H. M., Hearon, C. M., Jr., Sindler, A. L., & Seals, D. R. (2014). The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. American Journal of Physiology-Heart and Circulatory Physiology, 307(12), H1754–H1763.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(1), 1–11.CrossRef Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(1), 1–11.CrossRef
65.
Zurück zum Zitat Lü, J.-M., Jiang, J., Jamaluddin, M. S., Liang, Z., Yao, Q., & Chen, C. (2019). Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and eNOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. International Journal of Molecular Sciences, 20(2), 294.PubMedCentralCrossRef Lü, J.-M., Jiang, J., Jamaluddin, M. S., Liang, Z., Yao, Q., & Chen, C. (2019). Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and eNOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. International Journal of Molecular Sciences, 20(2), 294.PubMedCentralCrossRef
66.
Zurück zum Zitat Wilkerson, B. A., & Argraves, K. M. (2014). The role of sphingosine-1-phosphate in endothelial barrier function. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841(10), 1403–1412. Wilkerson, B. A., & Argraves, K. M. (2014). The role of sphingosine-1-phosphate in endothelial barrier function. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841(10), 1403–1412.
67.
Zurück zum Zitat Gioscia-Ryan, R. A., LaRocca, T. J., Sindler, A. L., Zigler, M. C., Murphy, M. P., & Seals, D. R. (2014). Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. The Journal of Physiology, 592(12), 2549–2561.PubMedPubMedCentralCrossRef Gioscia-Ryan, R. A., LaRocca, T. J., Sindler, A. L., Zigler, M. C., Murphy, M. P., & Seals, D. R. (2014). Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. The Journal of Physiology, 592(12), 2549–2561.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Lee, V. V., Muravlyova, L. E., Bakirova, R. Y., Kiziltunc, A., Turkhanova, Z. Z., & Ashirbekova, B. D. (2021). Molecular patterns of oxidative stress in drug-induced nephropathy. Journal of Nephropathology, 10(3). Lee, V. V., Muravlyova, L. E., Bakirova, R. Y., Kiziltunc, A., Turkhanova, Z. Z., & Ashirbekova, B. D. (2021). Molecular patterns of oxidative stress in drug-induced nephropathy. Journal of Nephropathology, 10(3).
69.
Zurück zum Zitat Gurunathan, S., Kang, M.-H., Jeyaraj, M., & Kim, J.-H. (2021). Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. International Journal of Nanomedicine, 16, 515.PubMedPubMedCentralCrossRef Gurunathan, S., Kang, M.-H., Jeyaraj, M., & Kim, J.-H. (2021). Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. International Journal of Nanomedicine, 16, 515.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Parsaee, M., Akiash, N., Azarkeivan, A., Alizadeh Sani, Z., Amin, A., Pazoki, M., et al. (2018). The correlation between cardiac magnetic resonance T2* and left ventricular global longitudinal strain in people with β-thalassemia. Echocardiography, 35(4), 438–444.PubMedCrossRef Parsaee, M., Akiash, N., Azarkeivan, A., Alizadeh Sani, Z., Amin, A., Pazoki, M., et al. (2018). The correlation between cardiac magnetic resonance T2* and left ventricular global longitudinal strain in people with β-thalassemia. Echocardiography, 35(4), 438–444.PubMedCrossRef
72.
Zurück zum Zitat Amiri, M. (2018). Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. Journal of Nephropathology, 7(3). Amiri, M. (2018). Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. Journal of Nephropathology, 7(3).
73.
Zurück zum Zitat Kanikarla-Marie, P., & Jain, S. K. (2016). 1, 25 (OH) 2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis). The Journal of Steroid Biochemistry and Molecular Biology, 159, 94–101.PubMedPubMedCentralCrossRef Kanikarla-Marie, P., & Jain, S. K. (2016). 1, 25 (OH) 2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis). The Journal of Steroid Biochemistry and Molecular Biology, 159, 94–101.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Touyz, R. M., Anagnostopoulou, A., Camargo, L. L., Rios, F. J., & Montezano, A. C. (2019). Vascular biology of superoxide-generating NADPH oxidase 5—implications in hypertension and cardiovascular disease. Antioxidants & Redox Signaling, 30(7), 1027–1040.CrossRef Touyz, R. M., Anagnostopoulou, A., Camargo, L. L., Rios, F. J., & Montezano, A. C. (2019). Vascular biology of superoxide-generating NADPH oxidase 5—implications in hypertension and cardiovascular disease. Antioxidants & Redox Signaling, 30(7), 1027–1040.CrossRef
75.
Zurück zum Zitat Sabbatino, F., Conti, V., Liguori, L., Polcaro, G., Corbi, G., Manzo, V., et al. (2021). Molecules and mechanisms to overcome oxidative stress inducing cardiovascular disease in cancer patients. Life, 11(2), 105.PubMedPubMedCentralCrossRef Sabbatino, F., Conti, V., Liguori, L., Polcaro, G., Corbi, G., Manzo, V., et al. (2021). Molecules and mechanisms to overcome oxidative stress inducing cardiovascular disease in cancer patients. Life, 11(2), 105.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020). Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Critical Care, 24(1), 1–18.CrossRef Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020). Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Critical Care, 24(1), 1–18.CrossRef
77.
Zurück zum Zitat Pei, H., Zhang, J., Nie, J., Ding, N., Hu, W., Hua, J., et al. (2017). RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle, 16(1), 113–122.PubMedCrossRef Pei, H., Zhang, J., Nie, J., Ding, N., Hu, W., Hua, J., et al. (2017). RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle, 16(1), 113–122.PubMedCrossRef
78.
Zurück zum Zitat Boytard, L., Hadi, T., Silvestro, M., Qu, H., Kumpfbeck, A., Sleiman, R., et al. (2020). Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nature Communications, 11(1), 1–17.CrossRef Boytard, L., Hadi, T., Silvestro, M., Qu, H., Kumpfbeck, A., Sleiman, R., et al. (2020). Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nature Communications, 11(1), 1–17.CrossRef
79.
Zurück zum Zitat Lang, A., Grether-Beck, S., Singh, M., Kuck, F., Jakob, S., Kefalas, A., et al. (2016). MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY), 8(3), 484.CrossRef Lang, A., Grether-Beck, S., Singh, M., Kuck, F., Jakob, S., Kefalas, A., et al. (2016). MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY), 8(3), 484.CrossRef
80.
Zurück zum Zitat Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019). Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. International Journal of Molecular Medicine, 43(5), 2033–2043.PubMedPubMedCentral Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019). Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. International Journal of Molecular Medicine, 43(5), 2033–2043.PubMedPubMedCentral
81.
Zurück zum Zitat Jin, Y., Guan, Z., Wang, X., Wang, Z., Zeng, R., Xu, L., & Cao, P. (2018). ALA-PDT promotes HPV-positive cervical cancer cells apoptosis and DCs maturation via miR-34a regulated HMGB1 exosomes secretion. Photodiagnosis and Photodynamic Therapy, 24, 27–35.PubMedCrossRef Jin, Y., Guan, Z., Wang, X., Wang, Z., Zeng, R., Xu, L., & Cao, P. (2018). ALA-PDT promotes HPV-positive cervical cancer cells apoptosis and DCs maturation via miR-34a regulated HMGB1 exosomes secretion. Photodiagnosis and Photodynamic Therapy, 24, 27–35.PubMedCrossRef
82.
Zurück zum Zitat Seif, F., Kheirollah, A., & Babaahmadi-Rezaei, H. (2020). Efficient isolation and identification of primary endothelial cells from bovine aorta by collagenase P. Immunopathologia Persa, 6(2), e15–e15.CrossRef Seif, F., Kheirollah, A., & Babaahmadi-Rezaei, H. (2020). Efficient isolation and identification of primary endothelial cells from bovine aorta by collagenase P. Immunopathologia Persa, 6(2), e15–e15.CrossRef
83.
Zurück zum Zitat Zheng, P., Tang, Z., Xiong, J., Wang, B., Xu, J., Chen, L., et al. (2021). RAGE: A potential therapeutic target during FGF1 treatment of diabetes-mediated liver injury. Journal of Cellular and Molecular Medicine, 25(10), 4776–4785.PubMedPubMedCentralCrossRef Zheng, P., Tang, Z., Xiong, J., Wang, B., Xu, J., Chen, L., et al. (2021). RAGE: A potential therapeutic target during FGF1 treatment of diabetes-mediated liver injury. Journal of Cellular and Molecular Medicine, 25(10), 4776–4785.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Chen, J., Jing, J., Yu, S., Song, M., Tan, H., Cui, B., & Huang, L. (2016). Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. American Journal of Translational Research, 8(5), 2169.PubMedPubMedCentral Chen, J., Jing, J., Yu, S., Song, M., Tan, H., Cui, B., & Huang, L. (2016). Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. American Journal of Translational Research, 8(5), 2169.PubMedPubMedCentral
85.
Zurück zum Zitat Chen, L., Wang, J., Wang, B., Yang, J., Gong, Z., Zhao, X., et al. (2016). MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Annals of Hematology, 95(3), 365–374.PubMedCrossRef Chen, L., Wang, J., Wang, B., Yang, J., Gong, Z., Zhao, X., et al. (2016). MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Annals of Hematology, 95(3), 365–374.PubMedCrossRef
87.
Zurück zum Zitat Parodi-Rullán, R., Sone, J. Y., & Fossati, S. (2019). Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. Journal of Alzheimer’s Disease, 72(4), 1019–1039.PubMedCrossRef Parodi-Rullán, R., Sone, J. Y., & Fossati, S. (2019). Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. Journal of Alzheimer’s Disease, 72(4), 1019–1039.PubMedCrossRef
88.
Zurück zum Zitat Jayaraman, T., Paget, A., Shin, Y. S., Li, X., Mayer, J., Chaudhry, H. W., et al. (2008). TNF-α-mediated inflammation in cerebral aneurysms: A potential link to growth and rupture. Vascular Health and Risk Management, 4(4), 805.PubMedPubMedCentralCrossRef Jayaraman, T., Paget, A., Shin, Y. S., Li, X., Mayer, J., Chaudhry, H. W., et al. (2008). TNF-α-mediated inflammation in cerebral aneurysms: A potential link to growth and rupture. Vascular Health and Risk Management, 4(4), 805.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Hajsadeghi, S., Mirshafiee, S., Pazoki, M., Moradians, V., Mansouri, P., Kianmehr, N., & Iranpour, A. (2020). The relationship between global longitudinal strain and pulmonary function tests in patients with scleroderma and normal ejection fraction and pulmonary artery pressure: A case–control study. The International Journal of Cardiovascular Imaging. https://doi.org/10.1007/s10554-020-01788-7.pdfCrossRefPubMed Hajsadeghi, S., Mirshafiee, S., Pazoki, M., Moradians, V., Mansouri, P., Kianmehr, N., & Iranpour, A. (2020). The relationship between global longitudinal strain and pulmonary function tests in patients with scleroderma and normal ejection fraction and pulmonary artery pressure: A case–control study. The International Journal of Cardiovascular Imaging. https://​doi.​org/​10.​1007/​s10554-020-01788-7.​pdfCrossRefPubMed
90.
Zurück zum Zitat Zhang, H., Dellsperger, K. C., & Zhang, C. (2012). The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: An update. Basic Research in Cardiology, 107(1), 1–11.CrossRef Zhang, H., Dellsperger, K. C., & Zhang, C. (2012). The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: An update. Basic Research in Cardiology, 107(1), 1–11.CrossRef
92.
Zurück zum Zitat Frey, R. S., Ushio-Fukai, M., & Malik, A. B. (2009). NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxidants & redox signaling, 11(4), 791–810.CrossRef Frey, R. S., Ushio-Fukai, M., & Malik, A. B. (2009). NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxidants & redox signaling, 11(4), 791–810.CrossRef
93.
Zurück zum Zitat Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274.PubMedPubMedCentralCrossRef Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Veluthakal, R., Kumar, B., Mohammad, G., Kowluru, A., & Kowluru, R. A. (2015). Tiam1-Rac1 axis promotes activation of p38 MAP kinase in the development of diabetic retinopathy: Evidence for a requisite role for protein palmitoylation. Cellular Physiology and Biochemistry, 36(1), 208–220.PubMedCrossRef Veluthakal, R., Kumar, B., Mohammad, G., Kowluru, A., & Kowluru, R. A. (2015). Tiam1-Rac1 axis promotes activation of p38 MAP kinase in the development of diabetic retinopathy: Evidence for a requisite role for protein palmitoylation. Cellular Physiology and Biochemistry, 36(1), 208–220.PubMedCrossRef
95.
Zurück zum Zitat Liu, Y., Song, J.-W., Lin, J.-Y., Miao, R., & Zhong, J.-C. (2020). Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovascular Toxicology, 20(5), 463–473.PubMedPubMedCentralCrossRef Liu, Y., Song, J.-W., Lin, J.-Y., Miao, R., & Zhong, J.-C. (2020). Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovascular Toxicology, 20(5), 463–473.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Geng, T., Song, Z.-Y., Xing, J.-X., Wang, B.-X., Dai, S.-P., & Xu, Z.-S. (2020). Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. International Journal of Nanomedicine, 15, 2647.PubMedPubMedCentralCrossRef Geng, T., Song, Z.-Y., Xing, J.-X., Wang, B.-X., Dai, S.-P., & Xu, Z.-S. (2020). Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. International Journal of Nanomedicine, 15, 2647.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Samiei, N., Akiash, N., Naeini, S. D., Nikpajouh, A., & Pazoki, M. (2020). The presence of patent foramen ovale in the superior type of sinus venosus atrial septal defect. The Journal of Tehran University Heart Center, 15(3), 98.PubMedPubMedCentral Samiei, N., Akiash, N., Naeini, S. D., Nikpajouh, A., & Pazoki, M. (2020). The presence of patent foramen ovale in the superior type of sinus venosus atrial septal defect. The Journal of Tehran University Heart Center, 15(3), 98.PubMedPubMedCentral
98.
Zurück zum Zitat Ling, H., Guo, Z., Shi, Y., Zhang, L., & Song, C. (2020). Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Frontiers in Physiology, 11, 654.PubMedPubMedCentralCrossRef Ling, H., Guo, Z., Shi, Y., Zhang, L., & Song, C. (2020). Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Frontiers in Physiology, 11, 654.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Bang, C., Batkai, S., Dangwal, S., Gupta, S. K., Foinquinos, A., Holzmann, A., et al. (2014). Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of clinical investigation, 124(5), 2136–2146.PubMedPubMedCentralCrossRef Bang, C., Batkai, S., Dangwal, S., Gupta, S. K., Foinquinos, A., Holzmann, A., et al. (2014). Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of clinical investigation, 124(5), 2136–2146.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Sun, W., Zhao, L., Song, X., Zhang, J., Xing, Y., Liu, N., et al. (2017). MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes. Cellular Physiology and Biochemistry, 43(1), 383–394.PubMedCrossRef Sun, W., Zhao, L., Song, X., Zhang, J., Xing, Y., Liu, N., et al. (2017). MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes. Cellular Physiology and Biochemistry, 43(1), 383–394.PubMedCrossRef
101.
Zurück zum Zitat Wang, L., Jia, Q., Xinnong, C., Xie, Y., Yang, Y., Zhang, A., et al. (2019). Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. Journal of Cellular and Molecular Medicine, 23(11), 7124–7131.PubMedPubMedCentralCrossRef Wang, L., Jia, Q., Xinnong, C., Xie, Y., Yang, Y., Zhang, A., et al. (2019). Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. Journal of Cellular and Molecular Medicine, 23(11), 7124–7131.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Yang, Y., Li, Y., Chen, X., Cheng, X., Liao, Y., & Yu, X. (2016). Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. Journal of Molecular Medicine, 94(6), 711–724.PubMedCrossRef Yang, Y., Li, Y., Chen, X., Cheng, X., Liao, Y., & Yu, X. (2016). Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. Journal of Molecular Medicine, 94(6), 711–724.PubMedCrossRef
103.
Zurück zum Zitat Aoyagi, T., & Matsui, T. (2011). Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current Pharmaceutical Design, 17(18), 1818–1824.PubMedPubMedCentralCrossRef Aoyagi, T., & Matsui, T. (2011). Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current Pharmaceutical Design, 17(18), 1818–1824.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Ranek, M. J., Stachowski, M. J., Kirk, J. A., & Willis, M. S. (2018). The role of heat shock proteins and co-chaperones in heart failure. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1738), 20160530.CrossRef Ranek, M. J., Stachowski, M. J., Kirk, J. A., & Willis, M. S. (2018). The role of heat shock proteins and co-chaperones in heart failure. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1738), 20160530.CrossRef
105.
Zurück zum Zitat Zhang, Y., Jiang, D. S., Yan, L., Cheng, K. J., Bian, Z. Y., & Lin, G. S. (2011). HSP75 protects against cardiac hypertrophy and fibrosis. Journal of Cellular Biochemistry, 112(7), 1787–1794.PubMedCrossRef Zhang, Y., Jiang, D. S., Yan, L., Cheng, K. J., Bian, Z. Y., & Lin, G. S. (2011). HSP75 protects against cardiac hypertrophy and fibrosis. Journal of Cellular Biochemistry, 112(7), 1787–1794.PubMedCrossRef
107.
Zurück zum Zitat Barile, L., Cervio, E., Lionetti, V., Milano, G., Ciullo, A., Biemmi, V., et al. (2018). Cardioprotection by cardiac progenitor cell-secreted exosomes: Role of pregnancy-associated plasma protein-A. Cardiovascular research, 114(7), 992–1005.PubMedCrossRef Barile, L., Cervio, E., Lionetti, V., Milano, G., Ciullo, A., Biemmi, V., et al. (2018). Cardioprotection by cardiac progenitor cell-secreted exosomes: Role of pregnancy-associated plasma protein-A. Cardiovascular research, 114(7), 992–1005.PubMedCrossRef
109.
Zurück zum Zitat Hu, J., Wang, S., Xiong, Z., Cheng, Z., Yang, Z., Lin, J., et al. (2018). Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(11), 3639–3649.CrossRef Hu, J., Wang, S., Xiong, Z., Cheng, Z., Yang, Z., Lin, J., et al. (2018). Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(11), 3639–3649.CrossRef
110.
Zurück zum Zitat Hervera, A., De Virgiliis, F., Palmisano, I., Zhou, L., Tantardini, E., Kong, G., et al. (2018). Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nature Cell Biology, 20(3), 307–319.PubMedCrossRef Hervera, A., De Virgiliis, F., Palmisano, I., Zhou, L., Tantardini, E., Kong, G., et al. (2018). Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nature Cell Biology, 20(3), 307–319.PubMedCrossRef
111.
Zurück zum Zitat Yang, T.-C., Chen, Y.-J., Chang, S.-F., Chen, C.-H., Chang, P.-Y., & Lu, S.-C. (2014). Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation. Journal of Biomedical Science, 21(1), 1–12.CrossRef Yang, T.-C., Chen, Y.-J., Chang, S.-F., Chen, C.-H., Chang, P.-Y., & Lu, S.-C. (2014). Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation. Journal of Biomedical Science, 21(1), 1–12.CrossRef
112.
Zurück zum Zitat Yao, Y., Wang, Y., Zhang, Y., & Liu, C. (2017). Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids in Health and Disease, 16(1), 1–10.CrossRef Yao, Y., Wang, Y., Zhang, Y., & Liu, C. (2017). Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids in Health and Disease, 16(1), 1–10.CrossRef
113.
Zurück zum Zitat Shang, X., Lin, K., Yu, R., Zhu, P., Zhang, Y., Wang, L., et al. (2019). Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 9290.CrossRef Shang, X., Lin, K., Yu, R., Zhu, P., Zhang, Y., Wang, L., et al. (2019). Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 9290.CrossRef
114.
Zurück zum Zitat Yan, Y., Song, D., Song, X., & Song, C. (2020). The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life, 72(3), 334–342.PubMedCrossRef Yan, Y., Song, D., Song, X., & Song, C. (2020). The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life, 72(3), 334–342.PubMedCrossRef
115.
Zurück zum Zitat Mao, Q., Liang, X.-L., Zhang, C.-L., Pang, Y.-H., & Lu, Y.-X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 1–14.CrossRef Mao, Q., Liang, X.-L., Zhang, C.-L., Pang, Y.-H., & Lu, Y.-X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 1–14.CrossRef
116.
Zurück zum Zitat Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.PubMedCrossRef Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.PubMedCrossRef
117.
Zurück zum Zitat Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.PubMedCrossRef Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.PubMedCrossRef
118.
Zurück zum Zitat Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.PubMedCrossRef Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.PubMedCrossRef
119.
Zurück zum Zitat Ibrahim, A.G.-E., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.PubMedPubMedCentralCrossRef Ibrahim, A.G.-E., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.PubMedCrossRef Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.PubMedCrossRef
121.
Zurück zum Zitat Zheng, L., Li, Z., Ling, W., Zhu, D., Feng, Z., & Kong, L. (2018). Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 cells after ischemia reperfusion. Cellular Physiology and Biochemistry, 46(2), 740–756.PubMedCrossRef Zheng, L., Li, Z., Ling, W., Zhu, D., Feng, Z., & Kong, L. (2018). Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 cells after ischemia reperfusion. Cellular Physiology and Biochemistry, 46(2), 740–756.PubMedCrossRef
Metadaten
Titel
Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease
verfasst von
Farahnaz Nikdoust
Mahboubeh Pazoki
Mohammadjavad Mohammadtaghizadeh
Mahsa Karimzadeh Aghaali
Mehran Amrovani
Publikationsdatum
20.10.2021
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09700-y

Weitere Artikel der Ausgabe 3/2022

Cardiovascular Toxicology 3/2022 Zur Ausgabe