Skip to main content
Erschienen in: Infectious Diseases and Therapy 1/2021

Open Access 26.10.2020 | Original Research

Fecal Microbiota Transplantation May Be the Best Option in Treating Multiple Clostridioides difficile Infection: A Network Meta-Analysis

verfasst von: Fanni Dembrovszky, Noémi Gede, Zsolt Szakács, Péter Hegyi, Szabolcs Kiss, Nelli Farkas, Zsolt Molnár, Marcell Imrei, Dóra Dohos, Zoltán Péterfi

Erschienen in: Infectious Diseases and Therapy | Ausgabe 1/2021

Abstract

Introduction

Clostridioides difficile (formerly Clostridium) infection (CDI) is the most common cause of healthcare-associated diarrhea with high mortality and recurrence rate; furthermore, the treatment of recurrent cases is a challenge. In this network meta-analysis, we aimed to compare all available therapies against multiple recurrent CDI (mrCDI) and rank them by efficacy.

Methods

After a systematic search, randomized controlled trials (RCT) with any interventions against mrCDI were included. Data were extracted to the study database using Excel. Risk of bias assessment was performed with the Cochrane RoB 2 tool. The primary outcome was the clinical cure of CDI and the secondary outcome was the recurrence of CDI. A Bayesian method was performed to investigate the efficacy rank order of therapies. We registered our protocol with the Prospero Center for Reviews and Dissemination (registration no. CRD42020160365).

Results

Six RCTs with seven interventions were included in the quantitative synthesis. According to the surface under the cumulative ranking curve values, fecal microbiota transplantation (FMT) after a short course of vancomycin therapy (83%) shows the highest efficacy for clinical cure. Tolevamer and vancomycin + FMT seemed to be the most effective in preventing recurrence (87% and 75%, respectively).

Conclusion

Vancomycin + FMT is perhaps the most effective option for the treatment and prevention of mrCDI, while tolevamer is also effective in preventing recurrence.
Hinweise

Electronic Supplementary Material

The online version of this article (https://​doi.​org/​10.​1007/​s40121-020-00356-9) contains supplementary material, which is available to authorized users.
Key Summary Points
Many patients infected with Clostridioides difficile experience the recurrence of symptoms after successful treatment.
The treatment of multiple recurrent Clostridioides difficile infection is a challenge worldwide.
Our network meta-analysis advocates that fecal microbiota transplantation after a course of vancomycin therapy seems to be the best treatment option among different interventions tested in randomized controlled trials.
Since fecal microbiota transplantation after vancomycin therapy is effective in reducing symptoms and recurrence rate while being safe, its use can be encouraged in everyday practice.
The limitations of the evidence prompt future randomized controlled trials to validate our findings.

Digital Features

This article is published with digital features, including a summary slide, to facilitate understanding of the article. To view digital features for this article go to https://​doi.​org/​10.​6084/​m9.​figshare.​13055657.

Introduction

Clostridioides difficile (CD) (formerly known as Clostridium difficile) is considered to be the pathogen for one of the most common nosocomial infections. CD is a Gram-positive anerobic spore- and toxin-forming motile bacterium [1], which forms colonies in the colon as part of the normal microbiome in 2–5% of healthy adults [2].
Clostridioides difficile infection (CDI) is only diagnosed if symptomatic diarrhea occurs (Bristol stool chart types 5–7 more frequently than normally), and its causative role is confirmed by microbiological evidence of fecal CD toxin and toxin-producing CD [310]. The symptoms of CDI vary from slight to heavy, with mild cases characterized by watery diarrhea (≥ 2–3/day), mild abdominal cramping, or tenderness. In severe CDI, patients experience frequent voiding (diarrhea 10–15 times/day) and the scale of symptoms ranges from strong abdominal pain, nausea, and fever to serious local and systemic complications, such as toxic megacolon, pseudomembranous colitis, sepsis, multi-organ failure, and death [11].
CDI can be community-acquired (if the symptoms occur in the community or within 48 h of admission to a hospital, after no hospitalization in the past 12 weeks) or healthcare-acquired (if symptoms occur more than 48 h after admission or less than 4 weeks after discharge from a healthcare facility or other healthcare-related actions) [12]. The former type is less frequent, since 20–27% of all CDI cases are community-associated, with an incidence of 20–30 per 100,000 population [13, 14]; according to the 2008 survey of European Centre for Disease Prevention and Control conducted in 106 laboratories in 34 European countries, the weighted mean incidence of CDI was 4.1 per 10,000 patient-days per hospital (range 0.0–36.3), and this shows an increasing tendency [15].
The cause of the infection is the disruption of the normal flora in the gastrointestinal tract. This is usually due to previous antibiotic therapy [16], but other healthcare-related actions, such as abdominal surgeries, endoscopic examinations, hospitalization, or living in a sheltered home, are known risk factors. Other important predisposing factors are old age (> 65 years), comorbidities, use of certain medications, such as proton-pump inhibitors or nonsteroidal anti-inflammatory drugs, chemotherapy, and immunodeficiency [17].
CDI is a potentially life-threatening infection. In addition to its increasing mortality (6–30%) [6, 18] and high recurrence rate (15–30% after the first episode of CDI, 40% after the second, and 45–65% after the third), [19, 20] the treatment of CDI is still a major challenge. The first-line recommendations for initial CDI episodes are metronidazole, vancomycin, or fidaxomicin, but, in spite of an initial amelioration of symptoms, a considerable fraction of patients experience relapse [4, 17, 21]. However, it is important to highlight that the Infectious Diseases Society of America recommends both vancomycin and fidaxomicin over metronidazole for initial episodes and does not recommend metronidazole for recurrent CDI (rCDI) [4]. These antibiotics are options after multiple recurrence as well, but other treatments, such as fecal microbiota transplantation (FMT; in combination with antibiotics or alone), probiotics, or even passive immunotherapy with immune whey are available for this indication [17]. Choosing the most successful cure still presents a challenge and imposes an economic burden on the healthcare system so that identification of the most effective treatment option for CDI, especially for multiple recurrent CDI (mrCDI), is a cardinal question.
To rank and compare multiple treatments, a network meta-analysis may be the ideal choice. Although there have been network analyses (NMA) conducted on the efficacy of treatments in CDI [2227], only one investigated a study population with mrCDI, which was restricted to the efficacy of different FMT methods [22]. Since there are many other therapeutic options available for treating rCDI, expansion of the network to pharmacological therapeutic modalities may provide further evidence when ranking treatments by efficacy. Hence, our aim was to rank and compare the efficacy of all available treatment regimens for mrCDI, thereby contributing to the development of future guidelines.

Methods

This NMA was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension statement for interventions (PRISMA-NMA) [28]. We registered our protocol in PROSPERO under registration number CRD42020160365 and fully adhered to it during the study. This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.
A systematic literature search was performed in four databases, MEDLINE (via PubMed), Embase, Scopus, and Cochrane Central Register of Controlled Trials (CENTRAL), from inception to 29 September 2020, using the following search string: “recurren*” AND “clostridium” AND “random*”. The search was not limited by any restrictions. In addition, the reference lists in the included studies, previous meta-analyses, and published editorials were screened for eligible studies.

Selection and Eligibility

Two authors (FD and MI) independently screened titles for eligibility, then abstracts and finally full-text papers. Any disagreement was settled after a discussion with a third author until a consensus was reached. We included randomized controlled trials (RCTs) and used the PICO(ST) framework to form our clinical question: P (population)—adult patients with mrCDI (more than one recurrence); I (intervention), C (comparison)—any interventions used to treat CDI; O (outcome)—clinical cure and recurrence of the infection (recurrence is defined as the reoccurrence of CDI within 8 weeks or within the follow-up period in the case of RCTs analyzed after the onset of a previous episode, provided the symptoms from the previous episode were resolved after completing initial treatment of CDI-related symptoms) [6, 29]; S (study type)—RCT; T (timing)—6–10 weeks.
Patients had to be adults (aged at least 18 years) with confirmed CDI (defined as diarrhea plus a positive CD nucleic acid amplification test, positive cytotoxin assay result, or pseudomembranous colitis). Studies of patients with primary or non-multiple recurrence of CDI (which would have a different prognosis from the overall patient cohort with CDI) were excluded from the analysis. The studies also had to report the symptomatic cure.
The primary outcome of our NMA was sustained clinical cure, which was defined as the number of patients cured (defined as the resolution of diarrhea, as defined by individual trial criteria at the end of the follow-up period). The secondary outcome was the recurrence of CDI-associated diarrhea within the follow-up period.

Data Extraction and Analysis

The extraction was independently conducted by two authors (FD and MI) in duplicate, with any disagreement settled after discussion with a third author until consensus was reached. A predesigned Excel spreadsheet (Microsoft Corporation, Redmond, WA, USA) was used to extract the following data: general details of the study (authors, year of publication, and study site), participants’ information (sample size, age, and gender), the characteristics of the treatments, and the main outcome measures according to per protocol data. Only data published in the original articles were extracted; no supplementary information was obtained. There was no overlapping population or duplicate data.
A Bayesian method was used to perform pairwise meta-analyses and a network meta-analysis with the random effect model. Risk ratios (RR) were calculated for dichotomous data with 95% credible intervals (95% CrI). We optimized the model and generated posterior samples using four-chain Markov chain Monte Carlo methods. We set at least 20,000 adaptation iterations to achieve convergence and 10,000 simulation iterations. Network estimates (pooled direct and indirect data) of each intervention compared to standard medical therapy and to other interventions are presented in forest plots, summarized in a league table. We also ranked interventions by their posterior probability by calculating the surface under the cumulative ranking (SUCRA) curve values. Funnel plots were created for both outcomes, and Egger’s tests were performed to assess the small-study effect. All calculations were performed with the gemtc package (V. 0.8-2) in R (V. 3.5.2) along with the Markov chain Monte Carlo engine JAGS (V. 3.4.0), the netmeta package (V. 1.1-0), and STATA 16.0 (StataCorp LLC).

Risk of Bias Assessment and Certainty of Evidence

Version 2 of the Cochrane risk of bias tool (RoB 2) [30], which is dedicated to assessing RCTs, was used by two authors to appraise risk of bias (RoB) in each of the included studies. Any disagreement was settled after a discussion with a third author until a consensus was reached. The assessment was first completed on the individual study level. Then we chose the one individual study which showed the highest risk of bias, and we summarized the overall RoB assessment of the interventions on the comparison level with the same method. The Grading of Recommendations Assessment, Development and Evaluation Working Group modality (GRADE) approach was used to assess certainty of evidence for both outcomes for each pairwise comparison [31]. A grading process was independently used by two authors (FD and MI), and disagreements were resolved by a third author. A detailed description of the quality assessment process can be found in the Supplementary Material.

Results

Systematic Search and Selection

The process of the systematic search and study selection is illustrated in Fig. 1. After careful selection, six RCTs [3237] were eligible for the quantitative synthesis.

Study Characteristics

The characteristics of the included articles are presented in Table 1. The studies reported on 310 patients with mrCDI, were published between 2008 and 2019, and investigated seven different interventions for mrCDI. The follow-up period ranged between 6 and 10 weeks. All included trials had an active comparator (three two-arm and three three-arm trials). All studies reported on both outcomes. The geometry of the network is shown in Fig. 2a.
Table 1
Study characteristics of randomized controlled trials included in the systematic review and network meta-analysis
Author, year
Design, study site
Arm 1
Arm 2
Arm 3
Follow-up (weeks)
Blinding
Trial registration number
Intervention
No. of patients
Intervention
No. of patients
Intervention
No. of patients
van Nood, 2013
Single center: Amsterdam (Netherlands)
Vancomycin + FMT
16
Vancomycin
13
Vancomycin + lavage
13
10
Open-label
NTR1177
Mattila, 2008
Multicenter: 12 centers in Finland
CDIW
18
Metronidazole
20
10
Double-blind
EudraCT20004-000499-16
Hvas, 2019
Single center: Denmark
Vancomycin + FMT
24
Fidaxomicin
24
Vancomycin
16
8
Open-label
NCT02743234
Cammarota, 2015
Single center: Rome (Italy)
Vancomycin + FMT
20
Vancomycin
19
10
Open-label
NCT02148601
Johnson, 2014
Multicenter: Canada, USA, Australia, Austria, Belgium, Canada, Czech Republic, Denmark, France, Germany, Ireland, Norway, Portugal, Spain, Sweden, Switzerland, and the UK
Tolevamer
46
Vancomycin
33
Metronidazole
20
6
Double-blind
NCT00106509, NCT00196794
Hota, 2017
Single center: Ontario (Canada)
Vancomycin + FMT
16
Vancomycin
12
6
Open-label
NCT01226992
FMT fecal microbiota transplantation, CDIW Clostridioides difficile immune whey

Ranking and Pairwise Comparisons

An analysis which compares the resolution of CDI symptoms after completing certain therapies found no statistically significant difference between the interventions. However, FMT after vancomycin pretreatment showed the best SUCRA probability (83%) (see Fig. 2b and Supplementary Fig. 2A), while the SUCRA values of the most frequently used antibiotics were lower (fidaxomicin, 60%; metronidazole, 51%; vancomycin, 47%). Therefore, a combination of vancomycin and FMT seems to be the most effective option for treating mrCDI. In the case of our secondary outcome, recurrence of symptoms, tolevamer and vancomycin + FMT were ranked first and second (with SUCRAs of 87% and 75%, respectively) compared to the other interventions (51–32%). The pairwise comparisons of the interventions are shown in Fig. 2b for primary outcome and in the league table in Supplementary Fig. S1 for secondary outcome.

Risk of Bias Assessment and Quality of Evidence

The overall risk of bias of the head-to-head comparisons for our primary outcome are shown in Fig. 2c, while Supplementary Fig. S1 shows the secondary outcome. Most of the pairwise comparisons raise some problems because only two studies used blinding and only one study has a statistical analysis plan. Two pairwise comparisons have a low risk of bias for each outcome. We do not report any publication bias, since a visual assessment and the results of Egger’s test do not suggest that it is present. The risk of bias assessment of the included studies is presented in Supplementary Fig. S3A and B.
The quality of evidence in the studies was variable (see Fig. 2c, Supplementary Fig. S1, Table S1). The grade of evidence was of low or very low quality for each pairwise comparison between interventions.

Discussion

The present NMA was conducted to compare the different treatments for mrCDI. Our aim was to assemble a rank order of the interventions and determine the most effective one in treating this infection and in preventing a further recurrence. Our NMA of RCTs showed that FMT after vancomycin therapy is the most effective cure, and it is the second option in effectiveness as regards recurrence. Although tolevamer ranked the highest for recurrence, it must be noted that it is no longer used in routine clinical practice. One of the main reasons for its withdrawal from daily clinical practice may be side effects, such as intestinal disturbances, including loss of appetite, nausea, vomiting, and constipation. Changes in blood electrolytes, such as hypomagnesemia, hypocalcemia, and hypokalemia, could also contribute to unwanted effects.
To the best of our knowledge, this study is the first NMA to investigate the effectiveness of all the treatments (not only FMT) against multiple recurrent cases of CDI included in the published RCTs. In Rokkas et al.’s previous NMA comparing different modalities of FMT with certain antibiotics, donor FMT showed the highest efficacy in comparison with other therapeutic options [22]. It is important to highlight that they only analyzed RCTs which compared FMT with other therapeutic interventions against rCDI, while we included RCTs with any intervention. In contrast with our results on mrCDI, one NMA which analyzed 13 different pharmacological interventions in a population of first and second CDI found that fidaxomicin and teicoplanin were the most effective [24]. FMT was not included to this analysis, since it is not recommended for primary infection. Other NMAs only investigated the efficacy of determined interventions (FMT, bezlotoxumab, only probiotics, only antibiotics or other antimicrobial agents [23, 2527]), so our NMA can provide a more comprehensive result.
The current guidelines recommend vancomycin or fidaxomicin for non-severe mrCDI cases with the same effectiveness [4, 17] or vancomycin in the first line [21]. However, as a result of the release date of the latest European guideline, FMT is only mentioned as an option for multiple recurrent cases, since the first RCT on FMT was published in 2013. On the other hand, the latest Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) guidelines only advocate the use of FMT for mrCDI after a failed appropriate antibiotic treatment [4]. Furthermore, in its updated guidelines, the Australasian Society of Infectious Diseases recommends the use of FMT following the failure of less invasive options and claims that there are no data comparing the acceptability and effectiveness of FMT, fidaxomicin, and orally administered vancomycin for multiple CDI recurrences [21]. However, the Australian consensus statement for the use of FMT recommends it for recurrent CDI cases with a high quality of evidence [38]. Considering how recently the RCTs were analyzed, our findings may provide additional information for the current guidelines.
The aim of FMT is to reconstitute normal flora by transplanting healthy donor feces. In addition to its efficacy, FMT appears to be a safe intervention with mild to moderate adverse events, such as abdominal discomfort and nausea, but they are generally self-limited [33, 34]. It is important to note that failure to preserve the normal gastrointestinal flora is a factor in severe, recurrent, and prolonged CDI cases [39].
Despite the positive message on the efficacy of FMT in mrCDI, the current NMA has some limitations. Risk of bias in some of the RCTs cannot be ruled out. For example, more than half of the studies did not report if participants were blinded to the intervention. Because of this, most of the studies using this analysis were graded as being of very low or low quality. Most of them did not publish a pre-specified statistical analysis plan, hence suggesting an increased risk of bias. Another major limitation is that almost all the trials included a small sample of patients. Furthermore, different FMT protocols were used, including variable FMT routes and preparations, antibiotic dosage, and follow-up time.

Conclusion

The results of our NMA show that FMT after vancomycin pretreatment has a high success rate for treating mrCDI. This finding is expected to have an influence on therapeutic guidelines in the future and to help make FMT a highly recommended therapy for mrCDI.
However, there are still some unanswered questions. Well-designed RCTs with bigger study populations, well-defined interventions, and longer follow-up periods are needed to ensure the effectiveness and safety of FMT.

Acknowledgements

Funding

The article was funded by the GINOP-2.3.2-15-2016-00048—STAY ALIVE project co-financed by the European Union (European Regional Development Fund) within the framework of the Széchenyi 2020 program and a Human Resources Development Operational Program Grant, Grant Number: EFOP‐3.6.2‐16‐2017‐00006—LIVE LONGER co-financed by the European Union (European Regional Development Fund) within the framework of the Széchenyi 2020 program. The Rapid Service Fee was funded by the authors.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosures

Fanni Dembrovszky, Noémi Gede, Zsolt Szakács, Péter Hegyi, Szabolcs Kiss, Nelli Farkas, Zsolt Molnár, Marcell Imrei, Dóra Dohos and Zoltán Péterfi declare that they have no conflict of interest with respect to the research, authorship and/or publication of this article.

Compliance with Ethic Guidelines

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Data Availability

The data that support the findings in this study are available from the corresponding author upon reasonable request.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.
Anhänge
Literatur
1.
Zurück zum Zitat Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol. 2011;65:501–21.CrossRef Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol. 2011;65:501–21.CrossRef
2.
Zurück zum Zitat Schäffler H, Breitrück A. Clostridium difficile - from colonization to infection. Front Microbiol. 2018;9:646.CrossRef Schäffler H, Breitrück A. Clostridium difficile - from colonization to infection. Front Microbiol. 2018;9:646.CrossRef
3.
Zurück zum Zitat Bauer MP, Kuijper EJ, Van Dissel JT, European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2009;15(12):1067–79.CrossRef Bauer MP, Kuijper EJ, Van Dissel JT, European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2009;15(12):1067–79.CrossRef
4.
Zurück zum Zitat McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.CrossRef McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.CrossRef
5.
Zurück zum Zitat Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S12–8.CrossRef Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S12–8.CrossRef
6.
Zurück zum Zitat Kuijper EJ, Coignard B, Tüll P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect. 2006;12(Suppl 6):2–18.CrossRef Kuijper EJ, Coignard B, Tüll P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect. 2006;12(Suppl 6):2–18.CrossRef
7.
Zurück zum Zitat Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect. 2009;15(12):1053–66.CrossRef Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect. 2009;15(12):1053–66.CrossRef
8.
Zurück zum Zitat Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32(9):920–4.CrossRef Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32(9):920–4.CrossRef
9.
Zurück zum Zitat McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007;28(2):140–5.CrossRef McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007;28(2):140–5.CrossRef
10.
Zurück zum Zitat O’Donnell LJ, Virjee J, Heaton KW. Detection of pseudodiarrhoea by simple clinical assessment of intestinal transit rate. BMJ. 1990;300(6722):439–40.CrossRef O’Donnell LJ, Virjee J, Heaton KW. Detection of pseudodiarrhoea by simple clinical assessment of intestinal transit rate. BMJ. 1990;300(6722):439–40.CrossRef
11.
Zurück zum Zitat Knoop FC, Owens M, Crocker IC. Clostridium difficile: clinical disease and diagnosis. Clin Microbiol Rev. 1993;6(3):251–65.CrossRef Knoop FC, Owens M, Crocker IC. Clostridium difficile: clinical disease and diagnosis. Clin Microbiol Rev. 1993;6(3):251–65.CrossRef
12.
Zurück zum Zitat Gupta A, Khanna S. Community-acquired Clostridium difficile infection: an increasing public health threat. Infect Drug Resist. 2014;7:63–72.PubMedPubMedCentral Gupta A, Khanna S. Community-acquired Clostridium difficile infection: an increasing public health threat. Infect Drug Resist. 2014;7:63–72.PubMedPubMedCentral
13.
Zurück zum Zitat Centers for Disease Control and Prevention (CDC). Severe Clostridium difficile-associated disease in populations previously at low risk—four states, 2005. MMWR Morb Mortal Wkly Rep. 2005;54(47):1201–1205. Centers for Disease Control and Prevention (CDC). Severe Clostridium difficile-associated disease in populations previously at low risk—four states, 2005. MMWR Morb Mortal Wkly Rep. 2005;54(47):1201–1205.
14.
Zurück zum Zitat Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008;62(2):388–96.CrossRef Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008;62(2):388–96.CrossRef
15.
Zurück zum Zitat Bauer MP, Notermans DW, van Benthem BHB, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73.CrossRef Bauer MP, Notermans DW, van Benthem BHB, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73.CrossRef
16.
Zurück zum Zitat Freedberg DE, Salmasian H, Cohen B, Abrams JA, Larson EL. Receipt of antibiotics in hospitalized patients and risk for Clostridium difficile infection in subsequent patients who occupy the same bed. JAMA Intern Med. 2016;176(12):1801–8.CrossRef Freedberg DE, Salmasian H, Cohen B, Abrams JA, Larson EL. Receipt of antibiotics in hospitalized patients and risk for Clostridium difficile infection in subsequent patients who occupy the same bed. JAMA Intern Med. 2016;176(12):1801–8.CrossRef
17.
Zurück zum Zitat Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20(Suppl 2):1–26.CrossRef Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20(Suppl 2):1–26.CrossRef
18.
Zurück zum Zitat Cambridge B, Cina SJ. The accuracy of death certificate completion in a suburban community. Am J Forensic Med Pathol. 2010;31(3):232–5.CrossRef Cambridge B, Cina SJ. The accuracy of death certificate completion in a suburban community. Am J Forensic Med Pathol. 2010;31(3):232–5.CrossRef
19.
Zurück zum Zitat Doh YS, Kim YS, Jung HJ, et al. Long-term clinical outcome of Clostridium difficile infection in hospitalized patients: a single center study. Intest Res. 2014;12(4):299–305.CrossRef Doh YS, Kim YS, Jung HJ, et al. Long-term clinical outcome of Clostridium difficile infection in hospitalized patients: a single center study. Intest Res. 2014;12(4):299–305.CrossRef
20.
Zurück zum Zitat Marsh JW, Arora R, Schlackman JL, Shutt KA, Curry SR, Harrison LH. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J Clin Microbiol. 2012;50(12):4078.CrossRef Marsh JW, Arora R, Schlackman JL, Shutt KA, Curry SR, Harrison LH. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J Clin Microbiol. 2012;50(12):4078.CrossRef
21.
Zurück zum Zitat Trubiano JA, Cheng AC, Korman TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J. 2016;46(4):479–93.CrossRef Trubiano JA, Cheng AC, Korman TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J. 2016;46(4):479–93.CrossRef
22.
Zurück zum Zitat Rokkas T, Gisbert JP, Gasbarrini A, et al. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. United Eur Gastroenterol J. 2019;7(8):1051–63.CrossRef Rokkas T, Gisbert JP, Gasbarrini A, et al. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. United Eur Gastroenterol J. 2019;7(8):1051–63.CrossRef
23.
Zurück zum Zitat Alhifany AA, Almutairi AR, Almangour TA, et al. Comparing the efficacy and safety of faecal microbiota transplantation with bezlotoxumab in reducing the risk of recurrent Clostridium difficile infections: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMJ Open. 2019;9(11):e031145.CrossRef Alhifany AA, Almutairi AR, Almangour TA, et al. Comparing the efficacy and safety of faecal microbiota transplantation with bezlotoxumab in reducing the risk of recurrent Clostridium difficile infections: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMJ Open. 2019;9(11):e031145.CrossRef
24.
Zurück zum Zitat Beinortas T, Burr NE, Wilcox MH, Subramanian V. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect Dis. 2018;18(9):1035–44.CrossRef Beinortas T, Burr NE, Wilcox MH, Subramanian V. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect Dis. 2018;18(9):1035–44.CrossRef
25.
Zurück zum Zitat Ma Y, Yang JY, Peng X, Xiao KY, Xu Q, Wang C. Which probiotic has the best effect on preventing Clostridium difficile-associated diarrhea? A systematic review and network meta-analysis. J Dig Dis. 2020;21(2):69–80.CrossRef Ma Y, Yang JY, Peng X, Xiao KY, Xu Q, Wang C. Which probiotic has the best effect on preventing Clostridium difficile-associated diarrhea? A systematic review and network meta-analysis. J Dig Dis. 2020;21(2):69–80.CrossRef
26.
Zurück zum Zitat Okumura H, Fukushima A, Taieb V, Shoji S, English M. Fidaxomicin compared with vancomycin and metronidazole for the treatment of Clostridioides (Clostridium) difficile infection: a network meta-analysis. J Infect Chemother. 2020;26(1):43–50.CrossRef Okumura H, Fukushima A, Taieb V, Shoji S, English M. Fidaxomicin compared with vancomycin and metronidazole for the treatment of Clostridioides (Clostridium) difficile infection: a network meta-analysis. J Infect Chemother. 2020;26(1):43–50.CrossRef
27.
Zurück zum Zitat Sridharan K, Sivaramakrishnan G. Which antimicrobial agent is likely to be the best for treating Clostridium difficile infections? A bayesian network meta-analysis of randomized clinical trials. Drug Res. 2019;69(4):194–200.CrossRef Sridharan K, Sivaramakrishnan G. Which antimicrobial agent is likely to be the best for treating Clostridium difficile infections? A bayesian network meta-analysis of randomized clinical trials. Drug Res. 2019;69(4):194–200.CrossRef
28.
Zurück zum Zitat Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRef Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRef
29.
Zurück zum Zitat Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–98 (quiz 499).CrossRef Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–98 (quiz 499).CrossRef
32.
Zurück zum Zitat Hvas CL et al. Fecal Microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile Infection. Gastroenterology, 2019; 156(5):1324–32.CrossRef Hvas CL et al. Fecal Microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile Infection. Gastroenterology, 2019; 156(5):1324–32.CrossRef
33.
Zurück zum Zitat Hota SS, Sales V, Tomlinson G, et al. Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent Clostridium difficile infection: an open-label, randomized controlled trial. Clin Infect Dis. 2017;64:265–71.CrossRef Hota SS, Sales V, Tomlinson G, et al. Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent Clostridium difficile infection: an open-label, randomized controlled trial. Clin Infect Dis. 2017;64:265–71.CrossRef
34.
Zurück zum Zitat van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.CrossRef van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.CrossRef
35.
Zurück zum Zitat Cammarota G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015;41(9):835–43.CrossRef Cammarota G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015;41(9):835–43.CrossRef
36.
Zurück zum Zitat Johnson S, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–54.CrossRef Johnson S, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–54.CrossRef
37.
Zurück zum Zitat Mattila E, et al. A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: efficacy and safety data of a prematurely interrupted trial. Scand J Infect Dis. 2008;40(9):702–8.CrossRef Mattila E, et al. A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: efficacy and safety data of a prematurely interrupted trial. Scand J Infect Dis. 2008;40(9):702–8.CrossRef
38.
Zurück zum Zitat Haifer C, Kelly CR, Paramsothy S, Andresen D, Papanicolas LE, McKew GL, Borody TJ, Kamm M, Costello SP, Andrews JM, Begun J, Chan HT, Connor S, Ghaly S, Johnson PDR, Lemberg DA, Paramsothy R, Redmond A, Sheorey H, van der Poorten D, Leong RW. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020;69(5):801–10.CrossRef Haifer C, Kelly CR, Paramsothy S, Andresen D, Papanicolas LE, McKew GL, Borody TJ, Kamm M, Costello SP, Andrews JM, Begun J, Chan HT, Connor S, Ghaly S, Johnson PDR, Lemberg DA, Paramsothy R, Redmond A, Sheorey H, van der Poorten D, Leong RW. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020;69(5):801–10.CrossRef
39.
Zurück zum Zitat Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent–associated Diarrhea. J Infect Dis. 2008;197(3):435–8.CrossRef Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent–associated Diarrhea. J Infect Dis. 2008;197(3):435–8.CrossRef
Metadaten
Titel
Fecal Microbiota Transplantation May Be the Best Option in Treating Multiple Clostridioides difficile Infection: A Network Meta-Analysis
verfasst von
Fanni Dembrovszky
Noémi Gede
Zsolt Szakács
Péter Hegyi
Szabolcs Kiss
Nelli Farkas
Zsolt Molnár
Marcell Imrei
Dóra Dohos
Zoltán Péterfi
Publikationsdatum
26.10.2020
Verlag
Springer Healthcare
Erschienen in
Infectious Diseases and Therapy / Ausgabe 1/2021
Print ISSN: 2193-8229
Elektronische ISSN: 2193-6382
DOI
https://doi.org/10.1007/s40121-020-00356-9

Weitere Artikel der Ausgabe 1/2021

Infectious Diseases and Therapy 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.