Skip to main content
Erschienen in: European Radiology 8/2022

12.03.2022 | Imaging Informatics and Artificial Intelligence

Glioma survival prediction from whole-brain MRI without tumor segmentation using deep attention network: a multicenter study

verfasst von: Zhi-Cheng Li, Jing Yan, Shenghai Zhang, Chaofeng Liang, Xiaofei Lv, Yan Zou, Huailing Zhang, Dong Liang, Zhenyu Zhang, Yinsheng Chen

Erschienen in: European Radiology | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop and validate a deep learning model for predicting overall survival from whole-brain MRI without tumor segmentation in patients with diffuse gliomas.

Methods

In this multicenter retrospective study, two deep learning models were built for survival prediction from MRI, including a DeepRisk model built from whole-brain MRI, and an original ResNet model built from expert-segmented tumor images. Both models were developed using a training dataset (n = 935) and an internal tuning dataset (n = 156) and tested on two external test datasets (n = 194 and 150) and a TCIA dataset (n = 121). C-index, integrated Brier score (IBS), prediction error curves, and calibration curves were used to assess the model performance.

Results

In total, 1556 patients were enrolled (age, 49.0 ± 13.1 years; 830 male). The DeepRisk score was an independent predictor and can stratify patients in each test dataset into three risk subgroups. The IBS and C-index for DeepRisk were 0.14 and 0.83 in external test dataset 1, 0.15 and 0.80 in external dataset 2, and 0.16 and 0.77 in TCIA dataset, respectively, which were comparable with those for original ResNet. The AUCs at 6, 12, 24, 26, and 48 months for DeepRisk ranged between 0.77 and 0.94. Combining DeepRisk score with clinicomolecular factors resulted in a nomogram with a better calibration and classification accuracy (net reclassification improvement 0.69, p < 0.001) than the clinical nomogram.

Conclusions

DeepRisk that obviated the need of tumor segmentation can predict glioma survival from whole-brain MRI and offers incremental prognostic value.

Key Points

DeepRisk can predict overall survival directly from whole-brain MRI without tumor segmentation.
DeepRisk achieves comparable accuracy in survival prediction with deep learning model built using expert-segmented tumor images.
DeepRisk has independent and incremental prognostic value over existing clinical parameters and IDH mutation status.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM (2015) Glioma. Nat Rev Dis Primers 1:1–18CrossRef Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM (2015) Glioma. Nat Rev Dis Primers 1:1–18CrossRef
2.
Zurück zum Zitat Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Int Agency for Res on Cancer 114:97–109 Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Int Agency for Res on Cancer 114:97–109
3.
Zurück zum Zitat Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRef Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRef
4.
Zurück zum Zitat Van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in Neuro-Oncol (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRef Van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in Neuro-Oncol (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRef
5.
Zurück zum Zitat Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014CrossRef Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014CrossRef
6.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Int Agency for Res on Cancer 131:803–820 Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Int Agency for Res on Cancer 131:803–820
8.
Zurück zum Zitat Gittleman H, Sloan AE, Barnholtz-Sloan JS (2020) An independently validated survival nomogram for lower-grade glioma. Neuro-Oncol 22:665–674CrossRef Gittleman H, Sloan AE, Barnholtz-Sloan JS (2020) An independently validated survival nomogram for lower-grade glioma. Neuro-Oncol 22:665–674CrossRef
9.
Zurück zum Zitat Gittleman H, Lim D, Kattan MW et al (2017) An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro-Oncol 19:669–677CrossRef Gittleman H, Lim D, Kattan MW et al (2017) An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro-Oncol 19:669–677CrossRef
10.
Zurück zum Zitat Gittleman H, Cioffi G, Chunduru P et al (2019) An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neuro-Oncol Adv 1:vdz007CrossRef Gittleman H, Cioffi G, Chunduru P et al (2019) An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neuro-Oncol Adv 1:vdz007CrossRef
11.
Zurück zum Zitat Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRef Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRef
12.
Zurück zum Zitat Kickingereder P, Neuberger U, Bonekamp D et al (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncol 20:848–857CrossRef Kickingereder P, Neuberger U, Bonekamp D et al (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncol 20:848–857CrossRef
13.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
14.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef
15.
Zurück zum Zitat Kermany DS, Goldbaum M, Cai W et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172:1122–1131CrossRef Kermany DS, Goldbaum M, Cai W et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172:1122–1131CrossRef
16.
Zurück zum Zitat Jiang Y, Liang X, Wang W et al (2021) Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open 4:e2032269CrossRef Jiang Y, Liang X, Wang W et al (2021) Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open 4:e2032269CrossRef
17.
Zurück zum Zitat Kim H, Goo JM, Lee KH, Kim YT, Park CM (2020) Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology 296:216–224CrossRef Kim H, Goo JM, Lee KH, Kim YT, Park CM (2020) Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology 296:216–224CrossRef
20.
Zurück zum Zitat Tang Z, Xu Y, Jin L et al (2020) Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans Med Imaging 39:2100–2109CrossRef Tang Z, Xu Y, Jin L et al (2020) Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans Med Imaging 39:2100–2109CrossRef
21.
Zurück zum Zitat Lao J, Chen Y, Li Z-C et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017:7 Lao J, Chen Y, Li Z-C et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017:7
22.
Zurück zum Zitat Sahm F, Capper D, Jeibmann A et al (2012) Addressing diffuse glioma as a systemic brain disease with single-cell analysis. JAMA Neurol 69:523–526 Sahm F, Capper D, Jeibmann A et al (2012) Addressing diffuse glioma as a systemic brain disease with single-cell analysis. JAMA Neurol 69:523–526
23.
Zurück zum Zitat Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med 13:e17CrossRef Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med 13:e17CrossRef
24.
Zurück zum Zitat Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98CrossRef Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98CrossRef
25.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR):770-778. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR):770-778.
26.
Zurück zum Zitat Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259CrossRef Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259CrossRef
27.
Zurück zum Zitat Steyerberg EW, Vickers AJ, Cook NR et al (2010) Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21:128–138CrossRef Steyerberg EW, Vickers AJ, Cook NR et al (2010) Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21:128–138CrossRef
28.
Zurück zum Zitat Cordova JS, Shu H-KG, Liang Z et al (2016) Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro-Oncology 18:1180–1189CrossRef Cordova JS, Shu H-KG, Liang Z et al (2016) Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro-Oncology 18:1180–1189CrossRef
29.
Zurück zum Zitat Li X, Strasser B, Jafari-Khouzani K et al (2020) Super-resolution whole-brain 3D MR spectroscopic imaging for mapping D-2-hydroxyglutarate and tumor metabolism in isocitrate dehydrogenase 1–mutated human gliomas. Radiology 294:589–597CrossRef Li X, Strasser B, Jafari-Khouzani K et al (2020) Super-resolution whole-brain 3D MR spectroscopic imaging for mapping D-2-hydroxyglutarate and tumor metabolism in isocitrate dehydrogenase 1–mutated human gliomas. Radiology 294:589–597CrossRef
30.
Zurück zum Zitat Waldman AD, Jackson A, Price SJ et al (2009) Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 6:445–454CrossRef Waldman AD, Jackson A, Price SJ et al (2009) Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 6:445–454CrossRef
31.
Zurück zum Zitat Fang L, Wang C, Li S, Rabbani H, Chen X, Liu Z (2019) Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imaging 38:1959–1970CrossRef Fang L, Wang C, Li S, Rabbani H, Chen X, Liu Z (2019) Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imaging 38:1959–1970CrossRef
32.
Zurück zum Zitat Zhang J, Xie Y, Xia Y, Shen C (2019) Attention residual learning for skin lesion classification. IEEE Trans Med Imaging 38:2092–2103CrossRef Zhang J, Xie Y, Xia Y, Shen C (2019) Attention residual learning for skin lesion classification. IEEE Trans Med Imaging 38:2092–2103CrossRef
33.
Zurück zum Zitat Guo X, Yuan Y (2020) Semi-supervised WCE image classification with adaptive aggregated attention. Med Image Anal 64:101733CrossRef Guo X, Yuan Y (2020) Semi-supervised WCE image classification with adaptive aggregated attention. Med Image Anal 64:101733CrossRef
34.
Zurück zum Zitat Wang H, Wang S, Qin Z, Zhang Y, Li R, Xia Y (2021) Triple attention learning for classification of 14 thoracic diseases using chest radiography. Med Image Anal 67:101846CrossRef Wang H, Wang S, Qin Z, Zhang Y, Li R, Xia Y (2021) Triple attention learning for classification of 14 thoracic diseases using chest radiography. Med Image Anal 67:101846CrossRef
35.
Zurück zum Zitat Zhang Y, Li H, Du J et al (2021) 3D multi-attention guided multi-task learning network for automatic gastric tumor segmentation and lymph node classification. IEEE Trans Med Imaging 40:1618–1631CrossRef Zhang Y, Li H, Du J et al (2021) 3D multi-attention guided multi-task learning network for automatic gastric tumor segmentation and lymph node classification. IEEE Trans Med Imaging 40:1618–1631CrossRef
36.
Zurück zum Zitat Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRef Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRef
37.
Zurück zum Zitat Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10(53) Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10(53)
38.
Zurück zum Zitat Lou B, Doken S, Zhuang T et al (2019) An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. Lancet Digital Health 1:e136–e147CrossRef Lou B, Doken S, Zhuang T et al (2019) An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. Lancet Digital Health 1:e136–e147CrossRef
39.
Zurück zum Zitat Zhang B, Yan J, Chen W et al (2021) Machine learning classifier for predicting 3-year progression-free survival and overall survival in patients with gliomas after surgery. J Cancer 12:1604–1615CrossRef Zhang B, Yan J, Chen W et al (2021) Machine learning classifier for predicting 3-year progression-free survival and overall survival in patients with gliomas after surgery. J Cancer 12:1604–1615CrossRef
40.
Zurück zum Zitat Sun Q, Chen Y, Liang C et al (2021) Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 301:654–663CrossRef Sun Q, Chen Y, Liang C et al (2021) Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 301:654–663CrossRef
41.
Zurück zum Zitat Yan J, Zhao Y, Chen Y et al (2021) Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 72:103583CrossRef Yan J, Zhao Y, Chen Y et al (2021) Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 72:103583CrossRef
42.
Zurück zum Zitat Gorlia T, Van den Bent M, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38CrossRef Gorlia T, Van den Bent M, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38CrossRef
43.
Zurück zum Zitat Yang T, Mao P, Chen X et al (2019) Inflammatory biomarkers in prognostic analysis for patients with glioma and the establishment of a nomogram. Oncol Lett 17:2516–2522PubMed Yang T, Mao P, Chen X et al (2019) Inflammatory biomarkers in prognostic analysis for patients with glioma and the establishment of a nomogram. Oncol Lett 17:2516–2522PubMed
Metadaten
Titel
Glioma survival prediction from whole-brain MRI without tumor segmentation using deep attention network: a multicenter study
verfasst von
Zhi-Cheng Li
Jing Yan
Shenghai Zhang
Chaofeng Liang
Xiaofei Lv
Yan Zou
Huailing Zhang
Dong Liang
Zhenyu Zhang
Yinsheng Chen
Publikationsdatum
12.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08640-7

Weitere Artikel der Ausgabe 8/2022

European Radiology 8/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.