Skip to main content
Erschienen in: best practice onkologie 9/2022

10.08.2022 | Sarkome | CME

Immuntherapie und zielgerichtete Therapie von Gliomen

verfasst von: J.-M. Werner, G. Ceccon, G. R. Fink, Univ.-Prof. Dr. med. N. Galldiks

Erschienen in: best practice onkologie | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Der Erfolg von Immuntherapien bei extrakranialen Tumoren führte zur Entwicklung verschiedener immunvermittelter Ansätze zur Behandlung von Gliomen. So gelang vor kurzem beispielsweise die Herstellung eines mutationsspezifischen Impfstoffs gegen IDH-mutierte (IDH: Isozitratdehydrogenase) Gliome. Weitere immuntherapeutische Ansätze sind T‑Zell-Therapien, die Blockade bestimmter Immuncheckpoints und die Behandlung mit onkolytischen Viren. Zudem scheinen zielgerichtete Therapien bei Gliompatienten mit seltenen molekulargenetischen Veränderungen wie z. B. einer BRAF-Mutation (BRAF: Serin-Threonin-Kinase B‑Raf, „v-Raf murine sarcoma viral oncogene homolog B“) oder NTRK-Gen-Fusion (NTRK: „neurotrophic tyrosine kinase receptor“) wirksam zu sein. Dieser Artikel bietet eine Übersicht über den aktuellen Stand der Therapieoptionen von Gliomen mittels Immuntherapien sowie zielgerichteter Behandlungen.
Literatur
1.
Zurück zum Zitat Ostrom QT, Cioffi G, Waite K et al (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 23:iii1–iii105PubMedCrossRef Ostrom QT, Cioffi G, Waite K et al (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 23:iii1–iii105PubMedCrossRef
2.
Zurück zum Zitat Weller M, Van Den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186PubMedCrossRef Weller M, Van Den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186PubMedCrossRef
3.
Zurück zum Zitat Ceccon G, Werner JM, Dunkl V et al (2018) Dabrafenib treatment in a patient with an epithelioid glioblastoma and BRAF V600E mutation. Int J Mol Sci 19:1090PubMedCentralCrossRef Ceccon G, Werner JM, Dunkl V et al (2018) Dabrafenib treatment in a patient with an epithelioid glioblastoma and BRAF V600E mutation. Int J Mol Sci 19:1090PubMedCentralCrossRef
5.
Zurück zum Zitat Gonzalez-Tablas Pimenta M, Otero A, Arandia Guzman DA et al (2021) Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. Brain Pathol 31:365–380PubMedPubMedCentralCrossRef Gonzalez-Tablas Pimenta M, Otero A, Arandia Guzman DA et al (2021) Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. Brain Pathol 31:365–380PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27PubMedPubMedCentralCrossRef Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Sampson JH, Gunn MD, Fecci PE et al (2020) Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 20:12–25PubMedCrossRef Sampson JH, Gunn MD, Fecci PE et al (2020) Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 20:12–25PubMedCrossRef
8.
Zurück zum Zitat Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol 234:8509–8521PubMedCrossRef Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol 234:8509–8521PubMedCrossRef
9.
Zurück zum Zitat Rammensee HG, Loffler MW, Walz JS et al (2020) Tumor vaccines-therapeutic vaccination against cancer. Internist (Berl) 61:690–698CrossRef Rammensee HG, Loffler MW, Walz JS et al (2020) Tumor vaccines-therapeutic vaccination against cancer. Internist (Berl) 61:690–698CrossRef
10.
Zurück zum Zitat Weller M, Roth P, Preusser M et al (2017) Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 13:363–374PubMedCrossRef Weller M, Roth P, Preusser M et al (2017) Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 13:363–374PubMedCrossRef
12.
Zurück zum Zitat Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327PubMedCrossRef Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327PubMedCrossRef
14.
Zurück zum Zitat Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729PubMedPubMedCentralCrossRef Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Weller M, Butowski N, Tran DD et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18:1373–1385PubMedCrossRef Weller M, Butowski N, Tran DD et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18:1373–1385PubMedCrossRef
16.
Zurück zum Zitat Bagley SJ, Desai AS, Linette GP et al (2018) CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 20:1429–1438PubMedPubMedCentralCrossRef Bagley SJ, Desai AS, Linette GP et al (2018) CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 20:1429–1438PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Goff SL, Morgan RA, Yang JC et al (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother 42:126–135PubMedPubMedCentralCrossRef Goff SL, Morgan RA, Yang JC et al (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother 42:126–135PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569PubMedPubMedCentralCrossRef Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Brown CE, Badie B, Barish ME et al (2015) Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21:4062–4072PubMedPubMedCentralCrossRef Brown CE, Badie B, Barish ME et al (2015) Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21:4062–4072PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Ahmed N, Brawley V, Hegde M et al (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3:1094–1101PubMedPubMedCentralCrossRef Ahmed N, Brawley V, Hegde M et al (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3:1094–1101PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Preusser M, Lim M, Hafler DA et al (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514PubMedPubMedCentralCrossRef Preusser M, Lim M, Hafler DA et al (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Jacobs JF, Idema AJ, Bol KF et al (2009) Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol 11:394–402PubMedPubMedCentralCrossRef Jacobs JF, Idema AJ, Bol KF et al (2009) Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol 11:394–402PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol 6:1003–1010PubMedCrossRef Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol 6:1003–1010PubMedCrossRef
24.
27.
Zurück zum Zitat Brahm CG, Van Linde ME, Enting RH et al (2020) The current status of immune checkpoint inhibitors in neuro-oncology: a systematic review. Cancers (Basel) 12:586CrossRef Brahm CG, Van Linde ME, Enting RH et al (2020) The current status of immune checkpoint inhibitors in neuro-oncology: a systematic review. Cancers (Basel) 12:586CrossRef
28.
Zurück zum Zitat Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25:470–476PubMedCrossRef Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25:470–476PubMedCrossRef
29.
Zurück zum Zitat Cloughesy TF, Mochizuki AY, Orpilla JR et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486PubMedPubMedCentralCrossRef Cloughesy TF, Mochizuki AY, Orpilla JR et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486PubMedPubMedCentralCrossRef
30.
31.
Zurück zum Zitat Cloughesy TF, Petrecca K, Walbert T et al (2020) Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol 6:1939–1946PubMedCrossRef Cloughesy TF, Petrecca K, Walbert T et al (2020) Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol 6:1939–1946PubMedCrossRef
32.
33.
Zurück zum Zitat Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef
34.
Zurück zum Zitat Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Komori T (2021) The molecular framework of pediatric-type diffuse gliomas: shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol 38:1–3PubMedCrossRef Komori T (2021) The molecular framework of pediatric-type diffuse gliomas: shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol 38:1–3PubMedCrossRef
36.
Zurück zum Zitat Behling F, Barrantes-Freer A, Skardelly M et al (2016) Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol 11:55PubMedPubMedCentralCrossRef Behling F, Barrantes-Freer A, Skardelly M et al (2016) Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol 11:55PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Korshunov A, Chavez L, Sharma T et al (2018) Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol 28:656–662PubMedCrossRef Korshunov A, Chavez L, Sharma T et al (2018) Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol 28:656–662PubMedCrossRef
38.
Zurück zum Zitat Wen PY, Stein A, Van Den Bent M et al (2021) Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23:53–64PubMedCrossRef Wen PY, Stein A, Van Den Bent M et al (2021) Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23:53–64PubMedCrossRef
39.
Zurück zum Zitat Vaishnavi A, Le AT, Doebele RC (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34PubMedCrossRef Vaishnavi A, Le AT, Doebele RC (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34PubMedCrossRef
41.
Zurück zum Zitat Ferguson SD, Zhou S, Huse JT et al (2018) Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol 77:437–442PubMedPubMedCentralCrossRef Ferguson SD, Zhou S, Huse JT et al (2018) Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol 77:437–442PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Persico P, Lorenzi E, Losurdo A et al (2022) Precision oncology in lower-grade gliomas: promises and pitfalls of therapeutic strategies targeting IDH-mutations. Cancers (Basel) 14:1125CrossRef Persico P, Lorenzi E, Losurdo A et al (2022) Precision oncology in lower-grade gliomas: promises and pitfalls of therapeutic strategies targeting IDH-mutations. Cancers (Basel) 14:1125CrossRef
45.
Zurück zum Zitat Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478PubMedPubMedCentralCrossRef Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Konteatis Z, Artin E, Nicolay B et al (2020) Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med Chem Lett 11:101–107PubMedPubMedCentralCrossRef Konteatis Z, Artin E, Nicolay B et al (2020) Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med Chem Lett 11:101–107PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Mellinghoff IK, Penas-Prado M, Peters KB et al (2021) Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res 27:4491–4499PubMedPubMedCentralCrossRef Mellinghoff IK, Penas-Prado M, Peters KB et al (2021) Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res 27:4491–4499PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mellinghoff IK, Ellingson BM, Touat M et al (2020) Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. J Clin Oncol 38:3398–3406PubMedPubMedCentralCrossRef Mellinghoff IK, Ellingson BM, Touat M et al (2020) Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. J Clin Oncol 38:3398–3406PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Le Rhun E, Preusser M, Roth P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896PubMedCrossRef Le Rhun E, Preusser M, Roth P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896PubMedCrossRef
50.
Zurück zum Zitat Abou-Elkacem L, Arns S, Brix G et al (2013) Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther 12:1322–1331PubMedCrossRef Abou-Elkacem L, Arns S, Brix G et al (2013) Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther 12:1322–1331PubMedCrossRef
51.
Zurück zum Zitat Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255PubMedCrossRef Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255PubMedCrossRef
52.
Zurück zum Zitat Chen R, Li Q, Xu S et al (2022) Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 22:73PubMedPubMedCentralCrossRef Chen R, Li Q, Xu S et al (2022) Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 22:73PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Wong ML, Prawira A, Kaye AH et al (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130PubMedCrossRef Wong ML, Prawira A, Kaye AH et al (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130PubMedCrossRef
54.
Zurück zum Zitat Lombardi G, De Salvo GL, Brandes AA et al (2019) Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 20:110–119PubMedCrossRef Lombardi G, De Salvo GL, Brandes AA et al (2019) Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 20:110–119PubMedCrossRef
55.
Zurück zum Zitat Lombardi G, Del Bianco P, Brandes AA et al (2021) Patient-reported outcomes in a phase II randomised study of regorafenib compared with lomustine in patients with relapsed glioblastoma (the REGOMA trial). Eur J Cancer 155:179–190PubMedCrossRef Lombardi G, Del Bianco P, Brandes AA et al (2021) Patient-reported outcomes in a phase II randomised study of regorafenib compared with lomustine in patients with relapsed glioblastoma (the REGOMA trial). Eur J Cancer 155:179–190PubMedCrossRef
Metadaten
Titel
Immuntherapie und zielgerichtete Therapie von Gliomen
verfasst von
J.-M. Werner
G. Ceccon
G. R. Fink
Univ.-Prof. Dr. med. N. Galldiks
Publikationsdatum
10.08.2022
Verlag
Springer Medizin
Erschienen in
best practice onkologie / Ausgabe 9/2022
Print ISSN: 0946-4565
Elektronische ISSN: 1862-8559
DOI
https://doi.org/10.1007/s11654-022-00422-3

Weitere Artikel der Ausgabe 9/2022

best practice onkologie 9/2022 Zur Ausgabe

onko-aktuell

onko-aktuell