Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2022

21.01.2022 | Heart Failure

Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches

verfasst von: Mohammad Sheibani, Yaser Azizi, Maryam Shayan, Sadaf Nezamoleslami, Faezeh Eslami, Mohammad Hadi Farjoo, Ahmad Reza Dehpour

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Doxorubicin is an effective chemotherapeutic agent prescribed to treat solid tumors (e.g., ovary, breast, and gastrointestinal cancers). This anti-cancer drug has various side effects, such as allergic reactions, cardiac damage, hair loss, bone marrow suppression, vomiting, and bladder irritation. The most dangerous side effect of doxorubicin is cardiomyopathy, leading to congestive heart failure. The exact mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Alteration in myocardial structure and functional cardiac disorders is provoked by doxorubicin administration; subsequently, cardiomyopathy and congestive heart failure can occur. Congestive heart failure due to doxorubicin is associated with mortality and morbidity. Probably, doxorubicin-induced cardiotoxicity starts from myocardial cell injury and is followed by left ventricular dysfunction. Many factors and multiple pathways are responsible for the creation of doxorubicin-induced cardiotoxicity. Inflammatory cytokines, oxidative stress pathways, mitochondrial damage, intracellular Ca2+ overload, iron-free radical production, DNA, and myocyte membrane injuries have critical roles in the pathophysiology of doxorubicin-induced cardiotoxicity. Unfortunately, there are currently a few medications for the treatment of doxorubicin-induced cardiotoxicity in clinical settings. Extensive basic and clinical researches have been carried out to discover preventive treatments. This review briefly discusses the basic and experimental approaches for treating or preventing doxorubicin-mediated cardiotoxicity based on its pathophysiological mechanisms.
Literatur
1.
Zurück zum Zitat Najafi, M., Shayesteh, M. R. H., Mortezaee, K., Farhood, B., & Haghi-Aminjan, H. (2020). The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sciences, 241, 117173.PubMed Najafi, M., Shayesteh, M. R. H., Mortezaee, K., Farhood, B., & Haghi-Aminjan, H. (2020). The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sciences, 241, 117173.PubMed
2.
Zurück zum Zitat Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249.
3.
Zurück zum Zitat Young, R. C., Ozols, R. F., & Myers, C. E. (1981). The anthracycline antineoplastic drugs. New England Journal of Medicine, 305, 139–153. Young, R. C., Ozols, R. F., & Myers, C. E. (1981). The anthracycline antineoplastic drugs. New England Journal of Medicine, 305, 139–153.
4.
Zurück zum Zitat Narkiewicz, K., Ratcliffe, L. E., Hart, E. C., Briant, L. J., Chrostowska, M., Wolf, J., Szyndler, A., Hering, D., Abdala, A. P., & Manghat, N. (2016). Unilateral carotid body resection in resistant hypertension: A safety and feasibility trial. JACC: Basic to Translational Science, 1, 313–324.PubMedPubMedCentral Narkiewicz, K., Ratcliffe, L. E., Hart, E. C., Briant, L. J., Chrostowska, M., Wolf, J., Szyndler, A., Hering, D., Abdala, A. P., & Manghat, N. (2016). Unilateral carotid body resection in resistant hypertension: A safety and feasibility trial. JACC: Basic to Translational Science, 1, 313–324.PubMedPubMedCentral
5.
Zurück zum Zitat Hardaway, B. W. (2019). Adriamycin-associated cardiomyopathy: Where are we now? Updates in pathophysiology, dose recommendations, prognosis, and outcomes. Current Opinion in Cardiology, 34, 289–295.PubMed Hardaway, B. W. (2019). Adriamycin-associated cardiomyopathy: Where are we now? Updates in pathophysiology, dose recommendations, prognosis, and outcomes. Current Opinion in Cardiology, 34, 289–295.PubMed
6.
Zurück zum Zitat Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., & Spalla, C. (1969). Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and Bioengineering, 11, 1101–1110.PubMed Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., & Spalla, C. (1969). Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and Bioengineering, 11, 1101–1110.PubMed
7.
Zurück zum Zitat Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed
8.
Zurück zum Zitat Yu, J., Wang, C., Kong, Q., Wu, X., Lu, J.-J., & Chen, X. (2018). Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine, 40, 125–139.PubMed Yu, J., Wang, C., Kong, Q., Wu, X., Lu, J.-J., & Chen, X. (2018). Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine, 40, 125–139.PubMed
9.
Zurück zum Zitat Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring. Molecular Pharmacology, 96, 219–232.PubMed Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring. Molecular Pharmacology, 96, 219–232.PubMed
13.
Zurück zum Zitat Ganz, P. A., Hussey, M. A., Moinpour, C. M., Unger, J. M., Hutchins, L. F., Dakhil, S. R., Giguere, J. K., Goodwin, J. W., Martino, S., & Albain, K. S. (2008). Late cardiac effects of adjuvant chemotherapy in breast cancer survivors treated on Southwest Oncology Group protocol s8897. Journal of Clinical Oncology, 26, 1223–1230. https://doi.org/10.1200/jco.2007.11.8877CrossRefPubMed Ganz, P. A., Hussey, M. A., Moinpour, C. M., Unger, J. M., Hutchins, L. F., Dakhil, S. R., Giguere, J. K., Goodwin, J. W., Martino, S., & Albain, K. S. (2008). Late cardiac effects of adjuvant chemotherapy in breast cancer survivors treated on Southwest Oncology Group protocol s8897. Journal of Clinical Oncology, 26, 1223–1230. https://​doi.​org/​10.​1200/​jco.​2007.​11.​8877CrossRefPubMed
18.
Zurück zum Zitat Lehenbauer Ludke, A. R., Al-Shudiefat, A.A.-R.S., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763. Lehenbauer Ludke, A. R., Al-Shudiefat, A.A.-R.S., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763.
19.
Zurück zum Zitat Pecoraro, M., Del Pizzo, M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G., Pinto, A., & Popolo, A. (2016). Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and applied pharmacology, 293, 44–52.PubMed Pecoraro, M., Del Pizzo, M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G., Pinto, A., & Popolo, A. (2016). Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and applied pharmacology, 293, 44–52.PubMed
20.
Zurück zum Zitat Osataphan, N., Phrommintikul, A., Chattipakorn, S. C., & Chattipakorn, N. (2020). Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine, 24, 6534–6557.PubMedPubMedCentral Osataphan, N., Phrommintikul, A., Chattipakorn, S. C., & Chattipakorn, N. (2020). Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine, 24, 6534–6557.PubMedPubMedCentral
21.
Zurück zum Zitat Singal, P., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanisms and modulation. Molecular and Cellular Biochemistry, 207, 77–86.PubMed Singal, P., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanisms and modulation. Molecular and Cellular Biochemistry, 207, 77–86.PubMed
22.
Zurück zum Zitat Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed
23.
Zurück zum Zitat Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.PubMed Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.PubMed
24.
Zurück zum Zitat Aldieri, E., Bergandi, L., Riganti, C., Costamagna, C., Bosia, A., & Ghigo, D. (2002). Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicology and Applied Pharmacology, 185, 85–90.PubMed Aldieri, E., Bergandi, L., Riganti, C., Costamagna, C., Bosia, A., & Ghigo, D. (2002). Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicology and Applied Pharmacology, 185, 85–90.PubMed
25.
Zurück zum Zitat Bahadır, A., Kurucu, N., Kadıoğlu, M., & Yenilme, E. (2014). The role of nitric oxide in Doxorubicin-induced cardiotoxicity: Experimental study. Turkish Journal of Hematology, 31, 68.PubMedPubMedCentral Bahadır, A., Kurucu, N., Kadıoğlu, M., & Yenilme, E. (2014). The role of nitric oxide in Doxorubicin-induced cardiotoxicity: Experimental study. Turkish Journal of Hematology, 31, 68.PubMedPubMedCentral
26.
Zurück zum Zitat Nozaki, N., Shishido, T., Takeishi, Y., & Kubota, I. (2004). Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation, 110, 2869–2874.PubMed Nozaki, N., Shishido, T., Takeishi, Y., & Kubota, I. (2004). Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation, 110, 2869–2874.PubMed
27.
Zurück zum Zitat Riad, A., Bien, S., Gratz, M., Escher, F., Heimesaat, M. M., Bereswill, S., Krieg, T., Felix, S. B., Schultheiss, H. P., & Kroemer, H. K. (2008). Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. European Journal of Heart Failure, 10, 233–243.PubMed Riad, A., Bien, S., Gratz, M., Escher, F., Heimesaat, M. M., Bereswill, S., Krieg, T., Felix, S. B., Schultheiss, H. P., & Kroemer, H. K. (2008). Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. European Journal of Heart Failure, 10, 233–243.PubMed
28.
Zurück zum Zitat Hu, C., Zhang, X., Zhang, N., Wei, W. Y., Li, L. L., Ma, Z. G., & Tang, Q. Z. (2020). Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clinical and Translational Medicine, 10, e124.PubMedPubMedCentral Hu, C., Zhang, X., Zhang, N., Wei, W. Y., Li, L. L., Ma, Z. G., & Tang, Q. Z. (2020). Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clinical and Translational Medicine, 10, e124.PubMedPubMedCentral
29.
Zurück zum Zitat Pecoraro, M., Sorrentino, R., Franceschelli, S., Del Pizzo, M., Pinto, A., & Popolo, A. (2015). Doxorubicin-mediated cardiotoxicity: Role of mitochondrial connexin 43. Cardiovascular Toxicology, 15, 366–376.PubMed Pecoraro, M., Sorrentino, R., Franceschelli, S., Del Pizzo, M., Pinto, A., & Popolo, A. (2015). Doxorubicin-mediated cardiotoxicity: Role of mitochondrial connexin 43. Cardiovascular Toxicology, 15, 366–376.PubMed
30.
Zurück zum Zitat Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ–mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.PubMed Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ–mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.PubMed
31.
Zurück zum Zitat Horie, T., Ono, K., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Kuwabara, Y., Nakashima, Y., Takanabe-Mori, R., & Nishi, E. (2010). Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovascular Research, 87, 656–664.PubMedPubMedCentral Horie, T., Ono, K., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Kuwabara, Y., Nakashima, Y., Takanabe-Mori, R., & Nishi, E. (2010). Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovascular Research, 87, 656–664.PubMedPubMedCentral
32.
Zurück zum Zitat Rohrbach, S., Muller-Werdan, U., Werdan, K., Koch, S., Gellerich, N. F., & Holtz, J. (2005). Apoptosis-modulating interaction of the neuregulin/erbB pathway with antracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 38, 485–493.PubMed Rohrbach, S., Muller-Werdan, U., Werdan, K., Koch, S., Gellerich, N. F., & Holtz, J. (2005). Apoptosis-modulating interaction of the neuregulin/erbB pathway with antracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 38, 485–493.PubMed
33.
Zurück zum Zitat Renu, K., Abilash, V., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. European Journal of Pharmacology, 818, 241–253.PubMed Renu, K., Abilash, V., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. European Journal of Pharmacology, 818, 241–253.PubMed
34.
Zurück zum Zitat Lebrecht, D., Setzer, B., Ketelsen, U.-P., Haberstroh, J. R., & Walker, U. A. (2003). Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108, 2423–2429.PubMed Lebrecht, D., Setzer, B., Ketelsen, U.-P., Haberstroh, J. R., & Walker, U. A. (2003). Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108, 2423–2429.PubMed
35.
Zurück zum Zitat Lebrecht, D., Geist, A., Ketelsen, U. P., Haberstroh, J., Setzer, B., & Walker, U. (2007). Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. British Journal of Pharmacology, 151, 771–778.PubMedPubMedCentral Lebrecht, D., Geist, A., Ketelsen, U. P., Haberstroh, J., Setzer, B., & Walker, U. (2007). Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. British Journal of Pharmacology, 151, 771–778.PubMedPubMedCentral
36.
Zurück zum Zitat Montaigne, D., Marechal, X., Baccouch, R., Modine, T., Preau, S., Zannis, K., Marchetti, P., Lancel, S., & Neviere, R. (2010). Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart. Toxicology and Applied Pharmacology, 244, 300–307.PubMed Montaigne, D., Marechal, X., Baccouch, R., Modine, T., Preau, S., Zannis, K., Marchetti, P., Lancel, S., & Neviere, R. (2010). Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart. Toxicology and Applied Pharmacology, 244, 300–307.PubMed
37.
Zurück zum Zitat Danz, E. D. B., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine, 46, 1589–1597.PubMed Danz, E. D. B., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine, 46, 1589–1597.PubMed
38.
Zurück zum Zitat Liu, Y., Asnani, A., Zou, L., Bentley, V. L., Yu, M., Wang, Y., Dellaire, G., Sarkar, K. S., Dai, M., Chen, H. H., Sosnovik, D. E., Shin, J. T., Haber, D. A., Berman, J. N., Chao, W., & Peterson, R. T. (2014). Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Science Translational Medicine, 6, 266ra170. https://doi.org/10.1126/scitranslmed.3010189CrossRefPubMedPubMedCentral Liu, Y., Asnani, A., Zou, L., Bentley, V. L., Yu, M., Wang, Y., Dellaire, G., Sarkar, K. S., Dai, M., Chen, H. H., Sosnovik, D. E., Shin, J. T., Haber, D. A., Berman, J. N., Chao, W., & Peterson, R. T. (2014). Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Science Translational Medicine, 6, 266ra170. https://​doi.​org/​10.​1126/​scitranslmed.​3010189CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Yourtee, D. M., Elkins, L. L., Nalvarte, E. L., & Smith, R. E. (1992). Amplification of doxorubicin mutagenicity by cupric ion. Toxicology and Applied Pharmacology, 116, 57–65.PubMed Yourtee, D. M., Elkins, L. L., Nalvarte, E. L., & Smith, R. E. (1992). Amplification of doxorubicin mutagenicity by cupric ion. Toxicology and Applied Pharmacology, 116, 57–65.PubMed
42.
Zurück zum Zitat Colombo, R., Dalle Donne, I., & Milzani, A. (1990). Metal ions modulate the effect of doxorubicin on actin assembly. Cancer Biochemistry Biophysics, 11, 217–226.PubMed Colombo, R., Dalle Donne, I., & Milzani, A. (1990). Metal ions modulate the effect of doxorubicin on actin assembly. Cancer Biochemistry Biophysics, 11, 217–226.PubMed
43.
Zurück zum Zitat Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36, 296–305.PubMed Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36, 296–305.PubMed
44.
Zurück zum Zitat Panjrath, G. S., Patel, V., Valdiviezo, C. I., Narula, N., Narula, J., & Jain, D. (2007). Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. Journal of the American College of Cardiology, 49, 2457–2464.PubMed Panjrath, G. S., Patel, V., Valdiviezo, C. I., Narula, N., Narula, J., & Jain, D. (2007). Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. Journal of the American College of Cardiology, 49, 2457–2464.PubMed
46.
Zurück zum Zitat Al-Harbi, M., Al-Gharably, N. M., Al-Shabanah, O. A., Al-Bekairi, A. M., Osman, A. M. M., & Tawfik, H. N. (1992). Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator desferrioxamine. Cancer Chemotherapy and Pharmacology, 31, 200–204.PubMed Al-Harbi, M., Al-Gharably, N. M., Al-Shabanah, O. A., Al-Bekairi, A. M., Osman, A. M. M., & Tawfik, H. N. (1992). Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator desferrioxamine. Cancer Chemotherapy and Pharmacology, 31, 200–204.PubMed
47.
Zurück zum Zitat Ammar, E.-S.M., Said, S. A., Suddek, G. M., & El-Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276. Ammar, E.-S.M., Said, S. A., Suddek, G. M., & El-Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276.
48.
Zurück zum Zitat van Acker, S. A., van Balen, G. P., van den Berg, D. J., Bast, A., & van der Vijgh, W. J. (1998). Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology, 56, 935–943.PubMed van Acker, S. A., van Balen, G. P., van den Berg, D. J., Bast, A., & van der Vijgh, W. J. (1998). Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology, 56, 935–943.PubMed
49.
Zurück zum Zitat Van Acker, S. A., Tromp, M. N., Griffioen, D. H., Van Bennekom, W. P., Van Der Vijgh, W. J., & Bast, A. (1996). Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 20, 331–342.PubMed Van Acker, S. A., Tromp, M. N., Griffioen, D. H., Van Bennekom, W. P., Van Der Vijgh, W. J., & Bast, A. (1996). Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 20, 331–342.PubMed
50.
Zurück zum Zitat Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. Cardiovascular Toxicology, 7, 154–159.PubMed Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. Cardiovascular Toxicology, 7, 154–159.PubMed
51.
Zurück zum Zitat Willems, A. M., Bruynzeel, A. M., Kedde, M. A., Van Groeningen, C. J., Bast, A., & Van Der Vijgh, W. J. (2006). A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemotherapy and Pharmacology, 57, 678–684.PubMed Willems, A. M., Bruynzeel, A. M., Kedde, M. A., Van Groeningen, C. J., Bast, A., & Van Der Vijgh, W. J. (2006). A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemotherapy and Pharmacology, 57, 678–684.PubMed
52.
Zurück zum Zitat Bast, A., Kaiserová, H., Den Hartog, G., Haenen, G., & Van Der Vijgh, W. (2007). Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biology and Toxicology, 23, 39–47.PubMed Bast, A., Kaiserová, H., Den Hartog, G., Haenen, G., & Van Der Vijgh, W. (2007). Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biology and Toxicology, 23, 39–47.PubMed
53.
Zurück zum Zitat Ehrke, M. J., Ryoyama, K., & Cohen, S. A. (1984). Cellular basis for adriamycin-induced augmentation of cell-mediated cytotoxicity in culture. Cancer Research, 44, 2497–2504.PubMed Ehrke, M. J., Ryoyama, K., & Cohen, S. A. (1984). Cellular basis for adriamycin-induced augmentation of cell-mediated cytotoxicity in culture. Cancer Research, 44, 2497–2504.PubMed
54.
Zurück zum Zitat Maccubbin, D. L., Wing, K. R., Mace, K. F., Ho, R. L., Ehrke, M. J., & Mihich, E. (1992). Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Research, 52, 3572–3576.PubMed Maccubbin, D. L., Wing, K. R., Mace, K. F., Ho, R. L., Ehrke, M. J., & Mihich, E. (1992). Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Research, 52, 3572–3576.PubMed
55.
Zurück zum Zitat Nagai, K., Fukuno, S., Oda, A., & Konishi, H. (2016). Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-cancer Drugs, 27, 17–23.PubMed Nagai, K., Fukuno, S., Oda, A., & Konishi, H. (2016). Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-cancer Drugs, 27, 17–23.PubMed
56.
Zurück zum Zitat Wang, S., Kotamraju, S., Konorev, E., Kalivendi, S., Joseph, J., & Kalyanaraman, B. (2002). Activation of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochemical Journal, 367, 729–740.PubMedCentral Wang, S., Kotamraju, S., Konorev, E., Kalivendi, S., Joseph, J., & Kalyanaraman, B. (2002). Activation of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochemical Journal, 367, 729–740.PubMedCentral
57.
Zurück zum Zitat Sheibani, M., Nezamoleslami, S., Faghir-Ghanesefat, H., Hossein Emami, A., & Dehpour, A. R. (2020). Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 85, 563–571.PubMed Sheibani, M., Nezamoleslami, S., Faghir-Ghanesefat, H., Hossein Emami, A., & Dehpour, A. R. (2020). Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 85, 563–571.PubMed
58.
Zurück zum Zitat Sun, Z., Yan, B., Yu, W. Y., Yao, X., Ma, X., Sheng, G., & Ma, Q. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine, 12, 1879–1884.PubMedPubMedCentral Sun, Z., Yan, B., Yu, W. Y., Yao, X., Ma, X., Sheng, G., & Ma, Q. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine, 12, 1879–1884.PubMedPubMedCentral
59.
Zurück zum Zitat Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19, 1–10. Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19, 1–10.
60.
Zurück zum Zitat Inchiosa, M. A., Jr., & Smith, C. M. (1990). Effects of ibuprofen on doxorubicin toxicity. Research Communications in Chemical Pathology and Pharmacology, 67, 63–78.PubMed Inchiosa, M. A., Jr., & Smith, C. M. (1990). Effects of ibuprofen on doxorubicin toxicity. Research Communications in Chemical Pathology and Pharmacology, 67, 63–78.PubMed
61.
Zurück zum Zitat Guo, R., Wu, K., Chen, J., Mo, L., Hua, X., Zheng, D., Chen, P., Chen, G., Xu, W., & Feng, J. (2013). Exogenous hydrogen sulfide protects against doxorubicin-induced inflammation and cytotoxicity by inhibiting p38MAPK/NFκB pathway in H9c2 cardiac cells. Cellular Physiology and Biochemistry, 32, 1668–1680.PubMed Guo, R., Wu, K., Chen, J., Mo, L., Hua, X., Zheng, D., Chen, P., Chen, G., Xu, W., & Feng, J. (2013). Exogenous hydrogen sulfide protects against doxorubicin-induced inflammation and cytotoxicity by inhibiting p38MAPK/NFκB pathway in H9c2 cardiac cells. Cellular Physiology and Biochemistry, 32, 1668–1680.PubMed
62.
Zurück zum Zitat Yarmohammadi, F., Rezaee, R., & Karimi, G. (2021). Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research, 35, 1163–1175.PubMed Yarmohammadi, F., Rezaee, R., & Karimi, G. (2021). Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research, 35, 1163–1175.PubMed
63.
Zurück zum Zitat Xiong, C., Wu, Y. Z., Zhang, Y., Wu, Z. X., Chen, X. Y., Jiang, P., Guo, H. C., Xie, K. R., Wang, K. X., & Su, S. W. (2018). Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncology Letters, 15, 5721–5729.PubMedPubMedCentral Xiong, C., Wu, Y. Z., Zhang, Y., Wu, Z. X., Chen, X. Y., Jiang, P., Guo, H. C., Xie, K. R., Wang, K. X., & Su, S. W. (2018). Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncology Letters, 15, 5721–5729.PubMedPubMedCentral
64.
Zurück zum Zitat Asensio-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE, 12, e0172803.PubMedPubMedCentral Asensio-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE, 12, e0172803.PubMedPubMedCentral
66.
Zurück zum Zitat Zhao, Y., Miriyala, S., Miao, L., Mitov, M., Schnell, D., Dhar, S. K., Cai, J., Klein, J. B., Sultana, R., Butterfield, D. A., Vore, M., Batinic-Haberle, I., Bondada, S., & St Clair, D. K. (2014). Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radical Biology & Medicine, 72, 55–65. https://doi.org/10.1016/j.freeradbiomed.2014.03.001CrossRef Zhao, Y., Miriyala, S., Miao, L., Mitov, M., Schnell, D., Dhar, S. K., Cai, J., Klein, J. B., Sultana, R., Butterfield, D. A., Vore, M., Batinic-Haberle, I., Bondada, S., & St Clair, D. K. (2014). Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radical Biology & Medicine, 72, 55–65. https://​doi.​org/​10.​1016/​j.​freeradbiomed.​2014.​03.​001CrossRef
74.
Zurück zum Zitat El-Agamy, D. S., El-Harbi, K. M., Khoshhal, S., Ahmed, N., Elkablawy, M. A., Shaaban, A. A., & Abo-Haded, H. M. (2019). Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Management and Research, 11, 47–61. https://doi.org/10.2147/cmar.s186696CrossRefPubMed El-Agamy, D. S., El-Harbi, K. M., Khoshhal, S., Ahmed, N., Elkablawy, M. A., Shaaban, A. A., & Abo-Haded, H. M. (2019). Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Management and Research, 11, 47–61. https://​doi.​org/​10.​2147/​cmar.​s186696CrossRefPubMed
75.
Zurück zum Zitat Fadillioglu, E., Oztas, E., Erdogan, H., Yagmurca, M., Sogut, S., Ucar, M., & Irmak, M. K. (2004). Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. Journal of Applied Toxicology: An International Journal, 24, 47–52. Fadillioglu, E., Oztas, E., Erdogan, H., Yagmurca, M., Sogut, S., Ucar, M., & Irmak, M. K. (2004). Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. Journal of Applied Toxicology: An International Journal, 24, 47–52.
76.
Zurück zum Zitat Alkreathy, H., Damanhouri, Z. A., Ahmed, N., Slevin, M., Ali, S. S., & Osman, A.-M.M. (2010). Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 951–956.PubMed Alkreathy, H., Damanhouri, Z. A., Ahmed, N., Slevin, M., Ali, S. S., & Osman, A.-M.M. (2010). Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 951–956.PubMed
77.
Zurück zum Zitat Sheibani, M., Faghir-Ghanesefat, H., Dehpour, S., Keshavarz-Bahaghighat, H., Sepand, M. R., Ghahremani, M. H., Azizi, Y., Rahimi, N., & Dehpour, A. R. (2019). Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology, 27, 1071–1080. https://doi.org/10.1007/s10787-019-00586-5CrossRefPubMed Sheibani, M., Faghir-Ghanesefat, H., Dehpour, S., Keshavarz-Bahaghighat, H., Sepand, M. R., Ghahremani, M. H., Azizi, Y., Rahimi, N., & Dehpour, A. R. (2019). Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology, 27, 1071–1080. https://​doi.​org/​10.​1007/​s10787-019-00586-5CrossRefPubMed
79.
Zurück zum Zitat Eslami, F., Rahimi, N., Ostovaneh, A., Ghasemi, M., Dejban, P., Abbasi, A., & Dehpour, A. R. (2021). Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT(1B/D) receptors in rats: A pharmacological-based evidence. Fundamental & Clinical Pharmacology, 35, 131–140. https://doi.org/10.1111/fcp.12590CrossRef Eslami, F., Rahimi, N., Ostovaneh, A., Ghasemi, M., Dejban, P., Abbasi, A., & Dehpour, A. R. (2021). Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT(1B/D) receptors in rats: A pharmacological-based evidence. Fundamental & Clinical Pharmacology, 35, 131–140. https://​doi.​org/​10.​1111/​fcp.​12590CrossRef
80.
81.
Zurück zum Zitat Iqbal, M., Dubey, K., Anwer, T., Ashish, A., & Pillai, K. K. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacological Reports, 60, 382.PubMed Iqbal, M., Dubey, K., Anwer, T., Ashish, A., & Pillai, K. K. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacological Reports, 60, 382.PubMed
84.
Zurück zum Zitat Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283–289.PubMed Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283–289.PubMed
85.
Zurück zum Zitat Sadzuka, Y., Sugiyama, T., Shimoi, K., Kinae, N., & Hirota, S. (1997). Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicology letters, 92, 1–7.PubMed Sadzuka, Y., Sugiyama, T., Shimoi, K., Kinae, N., & Hirota, S. (1997). Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicology letters, 92, 1–7.PubMed
86.
Zurück zum Zitat Zhang, Y., Ma, C., Liu, C., & Wei, F. (2020). Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ, 8, e8845.PubMedPubMedCentral Zhang, Y., Ma, C., Liu, C., & Wei, F. (2020). Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ, 8, e8845.PubMedPubMedCentral
87.
Zurück zum Zitat Chen, J.-Y., Hu, R.-Y., & Chou, H.-C. (2013). Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science, 20, 1–11.PubMedPubMedCentral Chen, J.-Y., Hu, R.-Y., & Chou, H.-C. (2013). Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science, 20, 1–11.PubMedPubMedCentral
88.
Zurück zum Zitat Kaiserová, H., Šimůnek, T., van der Vijgh, W. J., Bast, A., & Kvasničková, E. (2007). Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772, 1065–1074. Kaiserová, H., Šimůnek, T., van der Vijgh, W. J., Bast, A., & Kvasničková, E. (2007). Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772, 1065–1074.
89.
Zurück zum Zitat Laughton, M. J., Halliwell, B., Evans, P. J., Robin, J., & Hoult, S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.PubMed Laughton, M. J., Halliwell, B., Evans, P. J., Robin, J., & Hoult, S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.PubMed
90.
Zurück zum Zitat Chang, D., Li, H., Qian, C., & Wang, Y. (2019). Diohf protects against doxorubicin-induced cardiotoxicity through ERK1 signaling pathway. Frontiers in Pharmacology, 10, 1081.PubMedPubMedCentral Chang, D., Li, H., Qian, C., & Wang, Y. (2019). Diohf protects against doxorubicin-induced cardiotoxicity through ERK1 signaling pathway. Frontiers in Pharmacology, 10, 1081.PubMedPubMedCentral
95.
Zurück zum Zitat Kobashigawa, L. C., Xu, Y. C., Padbury, J. F., Tseng, Y.-T., & Yano, N. (2014). Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE, 9, e104888.PubMedPubMedCentral Kobashigawa, L. C., Xu, Y. C., Padbury, J. F., Tseng, Y.-T., & Yano, N. (2014). Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE, 9, e104888.PubMedPubMedCentral
100.
102.
Zurück zum Zitat Zhao, D., Xue, C., Li, J., Feng, K., Zeng, P., Chen, Y., Duan, Y., Zhang, S., Li, X., & Han, J. (2020). Adiponectin agonist ADP355 ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and oxidative stress. Biochemical and Biophysical Research Communications, 533, 304–312.PubMed Zhao, D., Xue, C., Li, J., Feng, K., Zeng, P., Chen, Y., Duan, Y., Zhang, S., Li, X., & Han, J. (2020). Adiponectin agonist ADP355 ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and oxidative stress. Biochemical and Biophysical Research Communications, 533, 304–312.PubMed
106.
Zurück zum Zitat Chen, Y. L., Chung, S. Y., Chai, H. T., Chen, C. H., Liu, C. F., Chen, Y. L., Huang, T. H., Zhen, Y. Y., Sung, P. H., Sun, C. K., Chua, S., Lu, H. I., Lee, F. Y., Sheu, J. J., & Yip, H. K. (2015). Early administration of carvedilol protected against doxorubicin-induced cardiomyopathy. The Journal of Pharmacology and Experimental Therapeutics, 355, 516–527. https://doi.org/10.1124/jpet.115.225375CrossRefPubMed Chen, Y. L., Chung, S. Y., Chai, H. T., Chen, C. H., Liu, C. F., Chen, Y. L., Huang, T. H., Zhen, Y. Y., Sung, P. H., Sun, C. K., Chua, S., Lu, H. I., Lee, F. Y., Sheu, J. J., & Yip, H. K. (2015). Early administration of carvedilol protected against doxorubicin-induced cardiomyopathy. The Journal of Pharmacology and Experimental Therapeutics, 355, 516–527. https://​doi.​org/​10.​1124/​jpet.​115.​225375CrossRefPubMed
107.
Zurück zum Zitat Dulhunty, A., & Casarotto, B. (2011). The ryanodine receptor: A pivotal Ca2+ regulatory protein and potential therapeutic drug target. Current Drug Targets, 12, 709–723.PubMed Dulhunty, A., & Casarotto, B. (2011). The ryanodine receptor: A pivotal Ca2+ regulatory protein and potential therapeutic drug target. Current Drug Targets, 12, 709–723.PubMed
108.
Zurück zum Zitat Dewenter, M., von der Lieth, A., Katus, H. A., & Backs, J. (2017). Calcium signaling and transcriptional regulation in cardiomyocytes. Circulation Research, 121, 1000–1020.PubMed Dewenter, M., von der Lieth, A., Katus, H. A., & Backs, J. (2017). Calcium signaling and transcriptional regulation in cardiomyocytes. Circulation Research, 121, 1000–1020.PubMed
109.
Zurück zum Zitat Aziz, A. U. R., Geng, C., Li, W., Yu, X., Qin, K.-R., Wang, H., & Liu, B. (2019). Doxorubicin induces ER calcium release via Src in rat ovarian follicles. Toxicological Sciences, 168, 171–178.PubMed Aziz, A. U. R., Geng, C., Li, W., Yu, X., Qin, K.-R., Wang, H., & Liu, B. (2019). Doxorubicin induces ER calcium release via Src in rat ovarian follicles. Toxicological Sciences, 168, 171–178.PubMed
110.
Zurück zum Zitat Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed
111.
Zurück zum Zitat Yarmohmmadi, F., Rahimi, N., Faghir-Ghanesefat, H., Javadian, N., Abdollahi, A., Pasalar, P., Jazayeri, F., Ejtemaeemehr, S., & Dehpour, A. R. (2017). Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. European Journal of Pharmacology, 796, 39–44.PubMed Yarmohmmadi, F., Rahimi, N., Faghir-Ghanesefat, H., Javadian, N., Abdollahi, A., Pasalar, P., Jazayeri, F., Ejtemaeemehr, S., & Dehpour, A. R. (2017). Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. European Journal of Pharmacology, 796, 39–44.PubMed
112.
Zurück zum Zitat Khalilzadeh, M., Abdollahi, A., Abdolahi, F., Abdolghaffari, A. H., Dehpour, A. R., & Jazaeri, F. (2018). Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sciences, 207, 436–441.PubMed Khalilzadeh, M., Abdollahi, A., Abdolahi, F., Abdolghaffari, A. H., Dehpour, A. R., & Jazaeri, F. (2018). Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sciences, 207, 436–441.PubMed
113.
Zurück zum Zitat Gross, R. A., Moises, H. C., Uhler, M. D., & Macdonald, R. L. (1990). Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proceedings of the National Academy of Sciences, 87, 7025–7029. Gross, R. A., Moises, H. C., Uhler, M. D., & Macdonald, R. L. (1990). Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proceedings of the National Academy of Sciences, 87, 7025–7029.
114.
Zurück zum Zitat North, R. A., Williams, J. T., Surprenant, A., & Christie, M. J. (1987). Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proceedings of the National Academy of Sciences, 84, 5487–5491. North, R. A., Williams, J. T., Surprenant, A., & Christie, M. J. (1987). Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proceedings of the National Academy of Sciences, 84, 5487–5491.
115.
Zurück zum Zitat Lashgari, N. A., Roudsari, N. M., Zandi, N., Pazoki, B., Rezaei, A., Hashemi, M., Momtaz, S., Rahimi, R., Shayan, M., Dehpour, A. R., & Abdolghaffari, A. H. (2021). Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Molecular Biology Reports, 48, 855–874. https://doi.org/10.1007/s11033-020-06095-xCrossRefPubMed Lashgari, N. A., Roudsari, N. M., Zandi, N., Pazoki, B., Rezaei, A., Hashemi, M., Momtaz, S., Rahimi, R., Shayan, M., Dehpour, A. R., & Abdolghaffari, A. H. (2021). Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Molecular Biology Reports, 48, 855–874. https://​doi.​org/​10.​1007/​s11033-020-06095-xCrossRefPubMed
116.
Zurück zum Zitat Zamanian, G., Shayan, M., Rahimi, N., Bahremand, T., Shafaroodi, H., Ejtemaei-Mehr, S., Aghaei, I., & Dehpour, A. R. (2020). Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: The role of NMDA-receptor/NO pathway. Epilepsy & Behavior, 112, 107343. https://doi.org/10.1016/j.yebeh.2020.107343CrossRef Zamanian, G., Shayan, M., Rahimi, N., Bahremand, T., Shafaroodi, H., Ejtemaei-Mehr, S., Aghaei, I., & Dehpour, A. R. (2020). Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: The role of NMDA-receptor/NO pathway. Epilepsy & Behavior, 112, 107343. https://​doi.​org/​10.​1016/​j.​yebeh.​2020.​107343CrossRef
117.
Zurück zum Zitat Kelishomi, R. B., Ejtemaeemehr, S., Tavangar, S. M., Rahimian, R., Mobarakeh, J. I., & Dehpour, A. R. (2008). Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology, 243, 96–104.PubMed Kelishomi, R. B., Ejtemaeemehr, S., Tavangar, S. M., Rahimian, R., Mobarakeh, J. I., & Dehpour, A. R. (2008). Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology, 243, 96–104.PubMed
118.
119.
Zurück zum Zitat Severs, N. J. (1994). Pathophysiology of gap junctions in heart disease. Journal of Cardiovascular Electrophysiology, 5, 462–475.PubMed Severs, N. J. (1994). Pathophysiology of gap junctions in heart disease. Journal of Cardiovascular Electrophysiology, 5, 462–475.PubMed
120.
Zurück zum Zitat Siti, H. N., Jalil, J., Asmadi, A. Y., & Kamisah, Y. (2020). Effects of quercetin on cardiac function in pressure overload and postischemic cardiac injury in rodents: A systematic review and meta-analysis. Cardiovascular Drugs and Therapy, 16, 1–15. Siti, H. N., Jalil, J., Asmadi, A. Y., & Kamisah, Y. (2020). Effects of quercetin on cardiac function in pressure overload and postischemic cardiac injury in rodents: A systematic review and meta-analysis. Cardiovascular Drugs and Therapy, 16, 1–15.
121.
Zurück zum Zitat Srisakuldee, W., Makazan, Z., Nickel, B. E., Zhang, F., Thliveris, J. A., Pasumarthi, K. B., & Kardami, E. (2014). The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovascular Research, 103, 72–80.PubMed Srisakuldee, W., Makazan, Z., Nickel, B. E., Zhang, F., Thliveris, J. A., Pasumarthi, K. B., & Kardami, E. (2014). The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovascular Research, 103, 72–80.PubMed
124.
Zurück zum Zitat Zhang, H., Zhang, A., Guo, C., Shi, C., Zhang, Y., Liu, Q., Sparatore, A., & Wang, C. (2011). S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS ONE, 6, e26441.PubMedPubMedCentral Zhang, H., Zhang, A., Guo, C., Shi, C., Zhang, Y., Liu, Q., Sparatore, A., & Wang, C. (2011). S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS ONE, 6, e26441.PubMedPubMedCentral
125.
Zurück zum Zitat Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: Insights into their biological function. Biochemical Journal, 404, 1–13. Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: Insights into their biological function. Biochemical Journal, 404, 1–13.
126.
Zurück zum Zitat Tomaselli, D., Steegborn, C., Mai, A., & Rotili, D. (2020). Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Frontiers in Oncology, 10, 474.PubMedPubMedCentral Tomaselli, D., Steegborn, C., Mai, A., & Rotili, D. (2020). Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Frontiers in Oncology, 10, 474.PubMedPubMedCentral
127.
Zurück zum Zitat Dolinsky, V. W. (2017). The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biological Chemistry, 398, 955–974.PubMed Dolinsky, V. W. (2017). The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biological Chemistry, 398, 955–974.PubMed
128.
Zurück zum Zitat Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., Hatch, G. M., Tong, Q., & Dolinsky, V. W. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993. Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., Hatch, G. M., Tong, Q., & Dolinsky, V. W. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993.
129.
Zurück zum Zitat Liu, M. H., Shan, J., Li, J., Zhang, Y., & Lin, X. L. (2016). Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Experimental and Therapeutic Medicine, 12, 1113–1118.PubMedPubMedCentral Liu, M. H., Shan, J., Li, J., Zhang, Y., & Lin, X. L. (2016). Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Experimental and Therapeutic Medicine, 12, 1113–1118.PubMedPubMedCentral
130.
Zurück zum Zitat Ruan, Y., Dong, C., Patel, J., Duan, C., Wang, X., Wu, X., Cao, Y., Pu, L., Lu, D., & Shen, T. (2015). SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cellular Physiology and Biochemistry, 35, 1116–1124.PubMed Ruan, Y., Dong, C., Patel, J., Duan, C., Wang, X., Wu, X., Cao, Y., Pu, L., Lu, D., & Shen, T. (2015). SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cellular Physiology and Biochemistry, 35, 1116–1124.PubMed
131.
Zurück zum Zitat Pillai, V. B., Kanwal, A., Fang, Y. H., Sharp, W. W., Samant, S., Arbiser, J., & Gupta, M. P. (2017). Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 8, 34082.PubMedPubMedCentral Pillai, V. B., Kanwal, A., Fang, Y. H., Sharp, W. W., Samant, S., Arbiser, J., & Gupta, M. P. (2017). Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 8, 34082.PubMedPubMedCentral
132.
Zurück zum Zitat Needham, D. M., Shufelt, K. A., Tomlinson, G., Scholey, J. W., & Newton, G. E. (2004). Troponin I and T levels in renal failure patients without acute coronary syndrome: A systematic review of the literature. The Canadian Journal of Cardiology, 20, 1212–1218.PubMed Needham, D. M., Shufelt, K. A., Tomlinson, G., Scholey, J. W., & Newton, G. E. (2004). Troponin I and T levels in renal failure patients without acute coronary syndrome: A systematic review of the literature. The Canadian Journal of Cardiology, 20, 1212–1218.PubMed
133.
Zurück zum Zitat Jin, J.-P. (2016). Evolution, regulation, and function of N-terminal variable region of troponin T: Modulation of muscle contractility and beyond. International Review of Cell and Molecular Biology, 321, 1–28.PubMed Jin, J.-P. (2016). Evolution, regulation, and function of N-terminal variable region of troponin T: Modulation of muscle contractility and beyond. International Review of Cell and Molecular Biology, 321, 1–28.PubMed
134.
Zurück zum Zitat Bleuel, H., Deschl, U., Bertsch, T., Bölz, G., & Rebel, W. (1995). Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Experimental and Toxicologic Pathology, 47, 121–127.PubMed Bleuel, H., Deschl, U., Bertsch, T., Bölz, G., & Rebel, W. (1995). Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Experimental and Toxicologic Pathology, 47, 121–127.PubMed
135.
Zurück zum Zitat Mair, J., & Apple, F. (1997). Progress in myocardial damage detection: New biochemical markers for clinicians. Critical Reviews in Clinical Laboratory Sciences, 34, 1–66.PubMed Mair, J., & Apple, F. (1997). Progress in myocardial damage detection: New biochemical markers for clinicians. Critical Reviews in Clinical Laboratory Sciences, 34, 1–66.PubMed
140.
Zurück zum Zitat Blinova, K., Dang, Q., Millard, D., Smith, G., Pierson, J., Guo, L., Brock, M., Lu, H. R., Kraushaar, U., Zeng, H., Shi, H., Zhang, X., Sawada, K., Osada, T., Kanda, Y., Sekino, Y., Pang, L., Feaster, T. K., Kettenhofen, R., … Gintant, G. (2018). International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Reports, 24, 3582–3592. https://doi.org/10.1016/j.celrep.2018.08.079CrossRefPubMed Blinova, K., Dang, Q., Millard, D., Smith, G., Pierson, J., Guo, L., Brock, M., Lu, H. R., Kraushaar, U., Zeng, H., Shi, H., Zhang, X., Sawada, K., Osada, T., Kanda, Y., Sekino, Y., Pang, L., Feaster, T. K., Kettenhofen, R., … Gintant, G. (2018). International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Reports, 24, 3582–3592. https://​doi.​org/​10.​1016/​j.​celrep.​2018.​08.​079CrossRefPubMed
142.
Zurück zum Zitat Maillet, A., Tan, K., Chai, X., Sadananda, S. N., Mehta, A., Ooi, J., Hayden, M. R., Pouladi, M. A., Ghosh, S., Shim, W., & Brunham, L. R. (2016). Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Science and Reports, 6, 25333. https://doi.org/10.1038/srep25333CrossRef Maillet, A., Tan, K., Chai, X., Sadananda, S. N., Mehta, A., Ooi, J., Hayden, M. R., Pouladi, M. A., Ghosh, S., Shim, W., & Brunham, L. R. (2016). Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Science and Reports, 6, 25333. https://​doi.​org/​10.​1038/​srep25333CrossRef
143.
Zurück zum Zitat Burridge, P. W., Li, Y. F., Matsa, E., Wu, H., Ong, S. G., Sharma, A., Holmström, A., Chang, A. C., Coronado, M. J., Ebert, A. D., Knowles, J. W., Telli, M. L., Witteles, R. M., Blau, H. M., Bernstein, D., Altman, R. B., & Wu, J. C. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 22, 547–556. https://doi.org/10.1038/nm.4087CrossRefPubMedPubMedCentral Burridge, P. W., Li, Y. F., Matsa, E., Wu, H., Ong, S. G., Sharma, A., Holmström, A., Chang, A. C., Coronado, M. J., Ebert, A. D., Knowles, J. W., Telli, M. L., Witteles, R. M., Blau, H. M., Bernstein, D., Altman, R. B., & Wu, J. C. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 22, 547–556. https://​doi.​org/​10.​1038/​nm.​4087CrossRefPubMedPubMedCentral
147.
Zurück zum Zitat Li, J., Wang, P. Y., Long, N. A., Zhuang, J., Springer, D. A., Zou, J., Lin, Y., Bleck, C. K. E., Park, J. H., Kang, J. G., & Hwang, P. M. (2019). p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 116, 19626–19634. https://doi.org/10.1073/pnas.1904979116CrossRefPubMedPubMedCentral Li, J., Wang, P. Y., Long, N. A., Zhuang, J., Springer, D. A., Zou, J., Lin, Y., Bleck, C. K. E., Park, J. H., Kang, J. G., & Hwang, P. M. (2019). p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 116, 19626–19634. https://​doi.​org/​10.​1073/​pnas.​1904979116CrossRefPubMedPubMedCentral
Metadaten
Titel
Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches
verfasst von
Mohammad Sheibani
Yaser Azizi
Maryam Shayan
Sadaf Nezamoleslami
Faezeh Eslami
Mohammad Hadi Farjoo
Ahmad Reza Dehpour
Publikationsdatum
21.01.2022
Verlag
Springer US
Schlagwort
Heart Failure
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09721-1

Weitere Artikel der Ausgabe 4/2022

Cardiovascular Toxicology 4/2022 Zur Ausgabe