Skip to main content
Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2021

Open Access 13.01.2021 | Original article

Herbst–multibracket appliance treatment: is there an association between lower incisor position changes and the development of labial gingival recessions?

verfasst von: S. Südwasser, N. C. Bock, J. Jost, S. Killat, S. Ruf

Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Ausgabe 6/2021

Abstract

Purpose

To assess a potential association between lower incisor (LI) position changes during Herbst–multibracket appliance (Herbst–MBA) treatment and the development of labial gingival recessions (LGR).

Methods

All class II patients (Department of Orthodontics, University of Giessen, Giessen, Germany) who had undergone Herbst–MBA treatment until 2015 with study models and lateral cephalograms available from before (T0) and after treatment plus ≥24 months of retention (T3) were included (n = 259). Lateral cephalograms were evaluated regarding LI position changes: iiL/ML (angle between LI long axis and mandibular plane [MP]), ii-MLPg (distance between LI incisal edge and a line perpendicular to MP through pogonion), apex-MLPg (distance between LI apex and a line perpendicular to MP through pogonion), ii-MLii (distance between LI incisal edge and MP on a line perpendicular to MP through incisal edge). Using study models the distance between the cementoenamel junction and the deepest point of the gingival margin was defined as LGR.

Results

The following cephalometric mean changes were recorded (T0–T3): iiL/ML +5.9 ± 5.76° (p = 0.929), ii-MLPg −0.2 ± 0.25 mm (p = 0.430), apex-MLPg +0.1 ± 0.32 mm (p = 0.363), ii-MLii +0.1 ± 0.36 mm (p = 0.206). The mean increase of LGR magnitude measured on the study models was 0.1 ± 0.35 mm. However, no association with the cephalometric LI position changes was found (|R| ≤ 0.2).

Conclusion

There is no association between the amount of LI position changes and the development of LGR during Herbst–MBA treatment plus retention. Nevertheless, individual predisposition or excessive treatment changes and extraordinary treatment approaches, respectively, might still lead to development of LGR.
Hinweise
S. Südwasser and N.C. Bock share the first authorship.

Introduction

Labial gingival recessions (LGR) result not only in esthetic impairment but are also associated with tooth hypersensitivity and a greater susceptibility to root caries [36].
Since the 1970s it has been hypothesized that the development of LGR is a result of bone dehiscences after proclination of lower incisors [5, 34]. However, it still remains controversial whether orthodontic proclination of the lower incisors really promotes the development of LGR [15, 18, 23]. Nevertheless, proclination of lower incisors has been described as a risk factor [1, 3, 11].
Protrusion and proclination of the lower incisors are side effects of Herbst treatment [12, 16, 17, 22, 24, 25, 27, 31]. Previous investigations have already assessed whether Herbst treatment and the respective proclination of lower incisors is associated with LGR [79, 26, 31]. The highest incidence was seen in lower incisors. However, due to the fairly small average magnitude of LGR development, the clinical relevance was considered insignificant. In another study using cone-beam computed tomography to investigate whether Herbst treatment induces alveolar bone loss around the mandibular incisors, no statistically significant effects were found regarding the vertical alveolar bone level or the alveolar bone thickness [32].
An investigation assessing lower incisor inclination and position changes during Herbst treatment (for an average of 6 months) in 98 patients revealed no direct relationship with LGR development, neither for patients with high (16.4 ± 1.9°) nor for patients with low inclination changes of the lower incisors (2.7 ± 1.7°) [31]. Also Renkema et al. [29, 30] found no association between lower incisor inclination changes during treatment and the development of LGR in multibracket appliance (MBA) patients over a period of 5 years postretention. Another study evaluated the long-term prevalence of gingival recessions focusing on the effects of mandibular incisor proclination. They concluded that orthodontic treatment is not a major risk factor for recession development [23]. In contrast, an investigation published in 2019 described an association between gingival recessions and incisor proclination (>10°) in 25% of 126 patients after 7.3 years of active fixed appliance treatment and retention. The authors also examined the relationship between the development of recessions and mandibular morphology; only the height of the symphysis was found to be related to the prevalence of lingual recessions on the lateral incisors [28].
Thus, there is currently only little and inconclusive data regarding an association between the amount of proclination of the lower incisors and the development of LGR during Herbst–MBA treatment plus retention—especially not long-term or for large cohorts. Most previous long-term investigations examined patients treated with MBA only [29], patients with large proclination values of the lower incisors after treatment [30] or analyzed small patient samples [26].
Therefore, the aim of the present investigation was to assess a large, representative sample of consecutive class II patients treated with a Herbst–MBA for inclination/position changes of the lower incisors and a possible association with the incidence or progression of LGR on the lower incisors.

Materials and methods

After obtaining ethical approval (No. 80/14), the records of all class II patients who had been treated with a Herbst–MBA at the study center (Department of Orthodontics, University of Giessen, Giessen, Germany) since 1986 were screened for the following inclusion criteria:
  • Active treatment completed by 1 January 2015
  • Lateral cephalograms and unaltered study casts available from before treatment (T0) and after Herbst–MBA treatment plus ≥24 months of retention (T3); both records had to be taken at the same occasion (±0 months).
In addition, the lateral cephalograms from immediately after the Herbst period (T1) and after the subsequent MBA period (T2) were evaluated if available.
The lower incisor inclination/position was evaluated on lateral cephalograms using the following variables (Fig. 1):
  • iiL/ML (angle between the lower incisors’ long axis and the mandibular plane)
  • ii-MLPg (distance between the lower incisors’ incisal edge and a line perpendicular to the mandibular plane through pogonion)
  • apex-MLPg (distance between the lower incisors’ apex and a line perpendicular to the mandibular plane through pogonion)
  • ii-MLii (distance between the lower incisors’ incisal edge and the mandibular plane on a line perpendicular to the mandibular plane through the incisal edge).
The measurements were made to the nearest 0.5° or 0.5 mm. No correction was performed for radiographic enlargement (approximately 7% in the median plane). Inclination/position changes were calculated as the difference between the measurements undertaken at T0, T1, T2, and T3.
The distance between the cementoenamel junction and the deepest point of the gingival margin was assessed and—in case of a positive value—defined as LGR (Fig. 2). Measurements were made to the nearest 0.5 mm using a manual caliper (HSL247-52, Karl Hammacher GmbH, Solingen, Germany).
One operator (J.J.) performed all measurements for class II:1 and one operator (S.K.) performed all measurements for class II:2 on study models as part of their doctoral thesis [7, 8]. To assess observer reliability, the study models of 20 randomly selected class II:1 and class II:2 patients each were evaluated twice after 4 weeks and the Kendall’s tau correlation coefficient was calculated. The respective values range between 0.71 for class II:1 and 0.84 for class II:2, indicating high consistency [10].
Due to severe gingival swelling/hyperplasia being often present upon debonding, the study casts from directly after debonding the Herbst appliance (T1) and the MBA (T2) were excluded and only those from after retention (T3), where marked swelling is unusual, were used. In any case, the inclusion of patients was performed irrespective of treatment outcome.
For the evaluation of the LGR changes under Herbst–MBA treatment plus retention, both the maximum change in a single lower incisor (most severe value per patient) and the mean of all four lower incisors were considered.
All cephalometric measurements were performed by one single operator blinded for the LGR data (S.S.). To assess the observer reliability, 20 randomly selected cephalograms were evaluated twice with an intermediate time interval of at least 4 weeks. The Pearson correlation coefficient was ≥0.86 for all variables, which corresponds to a very high consistency [10].
All statistical analyses were performed using the software IBM® SPSS® Statistics Version 25 (IBM Corporation, Armonk, NY, USA). For the changes which occurred during Herbst–MBA treatment and retention (T0–T3), an explorative statistical analysis was performed. The mean, standard deviation, minimum, maximum and median values are given for all variables. Kendall’s tau test was used for data analysis and to assess a possible interrelation between tooth-position changes and the incidence or progression of LGR. The level of significance was set at p 0.05.

Results

A total of 259 class II patients (59.5% females, 40.5% males) with a pretreatment age of 14.6 ± 3.7 years (range 10.3–43.5 years) fulfilled all inclusion criteria and were included in the investigation.
The mean duration for active treatment (Herbst–MBA) was 23.3 ± 7.7 months (range 11.2–52.6 months); the mean total observation period (active treatment including retention) was 58.6 ± 11.5 months (range 36.1–212.7 months). For retention, upper and lower bonded retainers (canine to canine) were used in 141 patients (54.4%), in 11 patients (4.3%) a bonded retainer was used in the upper jaw only, while in 89 patients (34.4%) a bonded retainer was only used in the lower jaw. The remaining 6.9% had removable upper and/or lower retention plates or no retention at all.
Table 1 shows the inclination and position values of the lower incisors as well as the magnitude of LGR at all four observation time points. The corresponding changes are given in Table 2.
Table 1
Position and inclination values of the lower incisors determined from lateral cephalograms from before treatment (T0), after Herbst treatment (T1), after subsequent multibracket appliance (MBA) treatment (T2) and after at least 24 months of retention (T3) as well as labial gingival recession (LGR) magnitude values from before treatment (T0) and after active treatment plus at least 24 months of retention (T3). The mean value and standard deviation as well as the median, minimum and maximum values are given
Tab. 1
Positions- und Inklinationswerte der unteren Schneidezähne ermittelt aus den Fernröntgenseitenbildern der Zeitpunkte vor Behandlung (T0), nach Herbst-Behandlung (T1), nach anschließender MBA(Multibracket-Apparatur)-Behandlung (T2), nach mindestens 24 Monaten Retention (T3) sowie das Ausmaß von LGR (labiale gingivale Rezession) der Zeitpunkte vor Behandlung (T0) und nach aktiver Behandlung plus mindestens 24 Monaten Retention (T3). Mittelwert und Standardabweichung sowie Median, Minimum und Maximum sind angegeben
 
T0 (n = 259)
T1 (n = 249)
T2 (n = 249)
T3 (n = 259)
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Lateral cephalometric evaluation
iiL/ML
°
97.6
7.25
69.5
112.0
98.0
109.9
8.32
82.0
128.0
110.0
104.0
7.40
79.0
126.5
104.0
103.5
7.52
77.0
129.0
103.5
ii-MLPg
mm
0.1
0.38
0.1
2.6
0.9
0.6
0.38
−0.3
2.2
0.5
0.8
0.38
−0.1
2.5
0.8
0.8
0.39
0.0
2.5
0.8
Apex-MLPg
mm
1.3
0.22
0.2
2.0
1.3
1.4
0.22
0.7
2.0
1.4
1.4
0.22
0.8
2.0
1.4
1.4
0.24
0.1
2.0
1.4
ii-ML on MLii
mm
4.1
0.42
1.1
5.2
4.2
4.0
0.37
3.1
5.2
4.0
4.1
0.38
3.3
5.2
4.1
4.2
0.38
3.3
5.2
4.2
Study model evaluation
Tooth 32
mm
0.0
0.13
0.0
1.0
0.0
n.a.
n.a.
0.1
0.30
0.0
2.0
0.0
Tooth 31
mm
0.1
0.24
0.0
2.0
0.0
n.a.
n.a.
0.1
0.37
0.0
2.5
0.0
Tooth 41
mm
0.1
0.35
0.0
4.0
0.0
n.a.
n.a.
0.2
0.51
0.0
4.0
0.0
Tooth 42
mm
0.0
0.27
0.0
4.0
0.0
n.a.
n.a.
0.2
0.58
0.0
4.0
0.0
Average (Teeth 32–42)
mm
0.0
0.18
0.0
1.5
0.0
n.a.
n.a.
0.1
0.31
0.0
2.1
0.0
n.a. not available, SD standard deviation, Min minimum, Max maximum
Table 2
Position and inclination changes of the lower incisors during Herbst treatment (T0–T1), during subsequent multibracket appliance (MBA) treatment (T1–T2), during retention (T2–T3) and the total observation period (T0–T3) as well as labial gingival recession (LGR) magnitude changes during treatment plus retention (T0–T3). The mean value and standard deviation as well as the median, minimum and maximum values are given
Tab. 2
Positions- und Inklinationsveränderungen der unteren Schneidezähne während Herbst-Behandlung (T0–T1), anschließender MBA(Multibracket-Apparatur)-Behandlung (T1–T2), Retention (T2–T3) und gesamter Beobachtungsperiode (T0–T3), sowie Ausmaßveränderungen der LGR (labiale gingivale Rezession) während aktiver Behandlung plus Retention (T0–T3). Mittelwert und Standardabweichung sowie Median, Minimum und Maximum sind angegeben
 
T0–T3 (n = 259)
T0–T1 (n = 249)
T1–T2 (n = 249)
T2–T3 (n = 249)
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Mean
SD
Min
Max
Median
Lateral cephalometric evaluation
iiL/ML
°
5.9
5.76
−17.5
31.5
6.0
12.3
6.20
−5.0
41.5
12.0
−5.9
5.80
−25.0
12.5
−6.0
−0.5
3.80
−16.0
9.5
−0.5
ii-MLPg
mm
−0.2
0.25
−0.9
1.3
−0.2
−0.4
0.17
−1.0
0.0
−0.4
0.2
0.20
−0.6
1.3
0.2
0.0
0.15
0.2
1.1
0.0
Apex-MLPg
mm
0.1
0.32
−0.6
4.5
0.1
0.1
0.17
−0.7
1.0
0.1
0.0
0.30
−0.5
0.6
0.0
0.0
0.19
−0.9
1.3
0.0
ii-ML on MLii
mm
0.1
0.36
−0.7
3.3
0.1
−0.1
0.35
−1.0
3.3
−0.1
0.1
0.16
−0.4
0.6
0.1
0.1
0.14
−0.4
1.0
0.1
Study model evaluation
Tooth 32
mm
0.1
0.30
1.0
2.0
0.0
n.a.
n.a.
n.a.
Tooth 31
mm
0.1
0.45
−2.0
2.5
0.0
n.a.
n.a.
n.a.
Tooth 41
mm
0.1
0.52
−2.0
4.0
0.0
n.a.
n.a.
n.a.
Tooth 42
mm
0.1
0.53
−1.0
4.0
0.0
n.a.
n.a.
n.a.
Average (Teeth 32–42)
mm
0.1
0.35
−1.5
2.2
0.0
n.a.
n.a.
n.a.
n.a. not available, SD standard deviation, Min minimum, Max maximum

Lateral cephalometric evaluation

While an increase of the lower incisors’ inclination (iiL/ML) by 12.3 ± 6.20° had occurred during the Herbst period (T0–T1), this value decreased by 5.9 ± 5.80° during the subsequent MBA period and by a further 0.5 ± 3.80° during retention (T2–T3). Thus, the resulting overall change (T0–T3) was an increase by 5.9 ± 5.76° (p = 0.929; Fig. 3, Table 2). However, a large interindividual range from −17.5° to 31.5° was seen.
The distance between the lower incisors’ incisal edge and a line perpendicular to the mandibular plane through pogonion (ii-MLPg) decreased by 0.4 ± 0.17 mm during Herbst treatment (T0–T1), increased during MBA treatment by 0.2 ± 0.20 mm and remained unchanged during retention (0.0 ± 0.15 mm). Thus, for the overall observation period (T0–T3) a decrease by 0.2 ± 0.25 mm (p = 0.430) occurred.
The distance between the lower incisors’ apex and a line perpendicular to the mandibular plane through pogonion (apex-MLPg) increased slightly by 0.1 ± 0.32 mm (p = 0.363) during Herbst treatment (T0–T1). It remained stable both during the MBA period (0.0 ± 0.30 mm; T1–T2) and retention (0.0 ± 0.19 mm; T2–T3). In total, an increase by 0.1 ± 0.32 was seen during the overall period (T0–T3).
The distance between the lower incisors’ incisal edge and the mandibular plane on a line perpendicular to the mandibular plane through the incisal edge (ii-MLii) decreased slightly during the Herbst period (0.1 ± 0.35 mm) and increased by 0.1 mm both during MBA treatment and the subsequent retention period (T1–T2: 0.1 ± 0.16 mm; T2–T3: 0.1 ± 0.14 mm). Thus, the resulting overall change was an increase by 0.1 ± 0.36 mm (p = 0.206) during the total observation period (T0–T3).

Study model evaluation

The average LGR magnitude was 0.0 ± 0.18 mm prior to treatment (T0) and 0.1 ± 0.31 mm after treatment and retention (T3; Table 1). Thus, the respective LGR increase was 0.1 ± 0.35 mm (T0–T3; Table 2). The lowest increase was seen for both lower lateral incisors: 90% of the patients showed no LGR development on teeth 32 and 42. On tooth 31, no LGR increase was seen in 84% of patients, while on tooth 41 no LGR increase was observed in 86% of patients.
No correlation between the lower incisors’ position changes and the incidence or progression of LGR during Herbst–MBA treatment including retention (T0–T3) could be determined (Kendall tau b, |R| ≤ 0.2; Fig. 4).

Discussion

In addition to the esthetic impairment of lower incisors, recessions might cause tooth hypersensitivity and greater susceptibility for root caries [36]. Therefore, the aim of the present investigation was to assess a possible association between the development of LGR and lower incisor (32-42) inclination and position changes during class II Herbst–MBA treatment and a subsequent retention period of ≥24 months in a large, representative sample of consecutive patients.
The morphologic LGR data determined from study casts have been previously published for II:1 [8] and II:2 [7] malocclusions; the cephalometric proclination values and the possible respective association were previously reported in an oral presentation at the 95th Congress of the European Orthodontic Society in 2019 and were published as part of the respective abstract [35].

Materials and methods

All class II patients who underwent Herbst–MBA treatment at the study center with available lateral cephalograms and study casts from before and after treatment plus ≥24 months of retention were included. The final patient sample (n = 259) is large compared with previous articles on the same topic. The patient sample was homogenous in terms of class II malocclusion and the appliances used (Herbst and MBA). However, treatment had been accomplished by several practitioners including postgraduate students, which might have had a minor impact on treatment outcome [21] and treatment duration [19].
In addition, the retention regime was not uniform as the patient sample was retrospectively collected and treated over a period of almost 30 years. During the early years of Herbst–MBA treatment, the standard retention protocol comprised of mainly removable appliances (predominantly Hawley retainers), while fixed retention was established during the later years. In any case, the inclusion of patients was performed irrespective of treatment outcome.

Results

The overall increase in lower incisor inclination during Herbst–MBA treatment plus retention was 5.9 ± 5.76°. It is difficult to compare this value with previous results from the literature. Only one publication [31] contains data on almost the same treatment protocol (Herbst plus at least partially MBA). One study investigated the proclination changes of lower incisors (n = 126 patients) solely after MBA treatment and retention [28]; the respective proclination values were lower than the present ones (2.7° for patients without LGR development, 3.0° for patients who developed at least one LGR). This might be due to the difference in treatment protocol.
Due to the large interindividual range of the amount of proclination during T0–T3, we additionally evaluated the inclination and position of the lower incisors separately for the Herbst phase and the MBA phase. While an average increase of 12.3 ± 6.20° had occurred during Herbst treatment, this value decreased by 5.9 ± 5.8° during MBA treatment and by further 0.5 ± 3.8° during retention. The amount of proclination during Herbst treatment is in concordance with previous studies (8.9–12.7°) [9, 14, 31, 38, 39]. The same holds true for the amount of reversion during subsequent MBA treatment [9, 27].
The present results showed no association between LGR development and the amount of proclination. As teeth with a minor degree of proclination were affected similarly by LGR as those with distinct proclination, respective values seem not to be directly attributable to the formation of LGR. This result is in concordance with the findings of other investigations and reviews in the literature [4, 13, 23, 26, 30, 31, 37]. Several studies found both proclined and nonproclined teeth to exhibit similar LGR development [13, 30, 31]. In contrast, other articles in the literature describe that orthodontic tooth movement might increase the risk for LGR development during retention [6, 33]. So, how can this controversy be explained? Obviously, the development of LGR is highly multifactorial [4, 28] with numerous factors (e.g., individual susceptibility, patients’ oral hygiene compliance and or technique, periodontal/symphysal morphology, gingival phenotype, bone wall thickness or bone fenestration) modifying clinical response. Therefore, LGR development of course still might occur during or after Herbst–MBA treatment due to individual predisposition, excessive general treatment changes or extraordinary treatment approaches, especially long-term. In line with the latter assumptions, Melsen and Allais demonstrated that the only important factors for the development of LGR were related to gingival morphology and periodontal health while the amount of incisor proclination was not correlated to LGR development [20]. Furthermore, aggressive tooth brushing might be an important etiologic factor [2].

Limitations

The retrospective study design (which includes the fact that, for example, no data on oral hygiene during treatment were assessed) certainly has to be considered as a limitation. In addition, the growth pattern was not considered and no comparison to an untreated control group was made, as no respective data are available and it would not be justifiable to generate respective data for ethical reasons. Furthermore, for the reasons mentioned above, we were unable to evaluate the study models from directly after active treatment (Herbst–MBA), making it impossible to say whether the respective LGRs occurred during active treatment or retention. Finally, we did not investigate a possible development of gingival recessions on the opposite, lingual side, which could be done in further research as well as the consideration of intraoral photographs.

Conclusion

The data of the present investigation and their comparison with the literature show that Herbst–MBA treatment cannot be considered a clinically relevant risk factor for LGR development on the lower incisors. Nevertheless, individual predisposition or excessive treatment changes or extraordinary treatment approaches might still lead to LGR development.

Acknowledgements

The authors acknowledge Mrs. von Hehn (Medistat GmbH, Kiel, Germany) for her advice regarding statistical analysis.

Compliance with ethical guidelines

Conflict of interest

S. Südwasser, N. C. Bock, J. Jost, S. Killat and S. Ruf declare that they have no competing interests.

Ethical standards

The protocol for this retrospective investigation was approved by the ethical committee of University of Giessen, Giessen, Germany (80/14). The study was retrospective, so—in accordance with the ethical approval—no written informed consent was obtained. The manuscript does not include data related to individual persons.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Journal of Orofacial Orthopedics - Fortschritte der Kieferorthopädie

Print-Titel

 

• Offizielles Organ der Deutschen Gesellschaft für Kieferorthopädie (DGKFO)

• Gelistet in: Science Citation Index Expanded (SciSearch), Journal Citation Reports/Science Edition, PubMed/Medline, SCOPUS, EMBASE, Google Scholar, EBSCO, Academic OneFile, CSA Environmental Sciences, EMCare, Gale, OCLC, SCImago, Summon by ProQuest

 

Literatur
1.
Zurück zum Zitat Antonarakis GS, Joss CU, Triaca A, Kuijpers-Jagtman AM, Kiliaridis S (2017) Gingival recessions of lower incisors after proclination by orthodontics alone or in combination with anterior mandibular alveolar process distraction osteogenesis. Clin Oral Invest 21:2569–2579CrossRef Antonarakis GS, Joss CU, Triaca A, Kuijpers-Jagtman AM, Kiliaridis S (2017) Gingival recessions of lower incisors after proclination by orthodontics alone or in combination with anterior mandibular alveolar process distraction osteogenesis. Clin Oral Invest 21:2569–2579CrossRef
2.
Zurück zum Zitat Årtun J, Grobéty D (2001) Periodontal status of mandibular incisors after pronounced orthodontic advancement during adolescence: a follow-up evaluation. Am J Orthod Dentofacial Orthop 119:2–10CrossRef Årtun J, Grobéty D (2001) Periodontal status of mandibular incisors after pronounced orthodontic advancement during adolescence: a follow-up evaluation. Am J Orthod Dentofacial Orthop 119:2–10CrossRef
3.
Zurück zum Zitat Årtun J, Krogstad O (1987) Periodontal status of mandibular incisors following excessive proclination. A study in adults with surgically treated mandibular prognathism. Am J Orthod Dentofacial Orthop 91:225–232CrossRef Årtun J, Krogstad O (1987) Periodontal status of mandibular incisors following excessive proclination. A study in adults with surgically treated mandibular prognathism. Am J Orthod Dentofacial Orthop 91:225–232CrossRef
4.
Zurück zum Zitat Aziz T, Flores-Mir C (2011) A systematic review of the association between appliance-induced labial movement of mandibular incisors and gingival recession. Aust Orthod J 27:33–39PubMed Aziz T, Flores-Mir C (2011) A systematic review of the association between appliance-induced labial movement of mandibular incisors and gingival recession. Aust Orthod J 27:33–39PubMed
5.
Zurück zum Zitat Batenhorst KF, Bowers GM, Williams JE Jr (1974) Tissue changes resulting from facial tipping and extrusion of incisors in monkeys. J Periodontol 45:660–668CrossRef Batenhorst KF, Bowers GM, Williams JE Jr (1974) Tissue changes resulting from facial tipping and extrusion of incisors in monkeys. J Periodontol 45:660–668CrossRef
6.
Zurück zum Zitat Bin Bahar BSK, Alkhalidy SR, Kaklamanos EG, Athanasiou AE (2020) Do orthodontic patients develop more gingival recession in anterior teeth compared to untreated individual? A systematic review of controlled studies. Int Orthod 18:1–9CrossRef Bin Bahar BSK, Alkhalidy SR, Kaklamanos EG, Athanasiou AE (2020) Do orthodontic patients develop more gingival recession in anterior teeth compared to untreated individual? A systematic review of controlled studies. Int Orthod 18:1–9CrossRef
7.
Zurück zum Zitat Bock NC, Killat S, Ruf S (2020) Class II:2 malocclusion—prevalence and progression of labial gingival recessions during Herbst-Multibracket appliance treatment. Clin Oral Invest 24:3653–3660CrossRef Bock NC, Killat S, Ruf S (2020) Class II:2 malocclusion—prevalence and progression of labial gingival recessions during Herbst-Multibracket appliance treatment. Clin Oral Invest 24:3653–3660CrossRef
8.
Zurück zum Zitat Bock NC, Ruehl J, Ruf S (2019) Prevalence, magnitude, and incidence of labial gingival recession with Herbst-multibracket appliance treatment. A retrospective cohort study. Angle Orthod 89:535–543CrossRef Bock NC, Ruehl J, Ruf S (2019) Prevalence, magnitude, and incidence of labial gingival recession with Herbst-multibracket appliance treatment. A retrospective cohort study. Angle Orthod 89:535–543CrossRef
9.
Zurück zum Zitat Bock NC, Ruf S, Wiechmann D, Jilek T (2016) Herbst plus Lingual versus Herbst plus Labial: a comparison of occlusal outcome and gingival health. Eur J Orthod 38:478–484CrossRef Bock NC, Ruf S, Wiechmann D, Jilek T (2016) Herbst plus Lingual versus Herbst plus Labial: a comparison of occlusal outcome and gingival health. Eur J Orthod 38:478–484CrossRef
10.
Zurück zum Zitat Brosius F (2013) SPSS 21. Mitp-Verlag, Heidelberg, München, Landsberg, Frechen, Hamburg Brosius F (2013) SPSS 21. Mitp-Verlag, Heidelberg, München, Landsberg, Frechen, Hamburg
11.
Zurück zum Zitat Ciavarella D, Tepedino M, Gallo C, Montaruli G, Zhurakivska K, Coppola L, Troiano G, Chimenti C, Laurenziello M, Lo Russo L (2017) Post-orthodontic position of lower incisors and gingival recession: a retrospective study. J Clin Exp Dent 9:1425–1430 Ciavarella D, Tepedino M, Gallo C, Montaruli G, Zhurakivska K, Coppola L, Troiano G, Chimenti C, Laurenziello M, Lo Russo L (2017) Post-orthodontic position of lower incisors and gingival recession: a retrospective study. J Clin Exp Dent 9:1425–1430
12.
Zurück zum Zitat de Almeida MR, Henriques JF, de Almeida RR, Weber U, McNamara JA Jr (2005) Short-term treatment effects produced by the Herbst appliance in the mixed dentition. Angle Orthod 75:540–547PubMed de Almeida MR, Henriques JF, de Almeida RR, Weber U, McNamara JA Jr (2005) Short-term treatment effects produced by the Herbst appliance in the mixed dentition. Angle Orthod 75:540–547PubMed
13.
Zurück zum Zitat de Oliveira MV, Pithon MM, Lacerda XML, Soares RV, Horta MCR, Oliveira DD (2017) Incisor proclination and gingival recessions: Is there a relationship? Braz J Oral Sci 15:180–184CrossRef de Oliveira MV, Pithon MM, Lacerda XML, Soares RV, Horta MCR, Oliveira DD (2017) Incisor proclination and gingival recessions: Is there a relationship? Braz J Oral Sci 15:180–184CrossRef
14.
Zurück zum Zitat El-Fateh T, Ruf S (2011) Herbst treatment with mandibular cast splints—revisited. Angle Orthod 81:820–827CrossRef El-Fateh T, Ruf S (2011) Herbst treatment with mandibular cast splints—revisited. Angle Orthod 81:820–827CrossRef
15.
Zurück zum Zitat Gebistorf M, Mijuskovic M, Pandis N, Fudalej PS, Katsaros C (2018) Gingival recession in orthodontic patients 10 to 15 years posttreatment: a retrospective cohort study. Am J Orthod Dentofacial Orthop 153:645–655CrossRef Gebistorf M, Mijuskovic M, Pandis N, Fudalej PS, Katsaros C (2018) Gingival recession in orthodontic patients 10 to 15 years posttreatment: a retrospective cohort study. Am J Orthod Dentofacial Orthop 153:645–655CrossRef
16.
Zurück zum Zitat Hansen K (2003) Treatment and Posttreatment effects of the Herbst appliance on the dental arches and arch relationships. Semin Orthod 9:67–73CrossRef Hansen K (2003) Treatment and Posttreatment effects of the Herbst appliance on the dental arches and arch relationships. Semin Orthod 9:67–73CrossRef
17.
Zurück zum Zitat Hansen K, Koutsonas G, Pancherz H (1997) Long-term effects of Herbst treatment on the mandibular incisor segment: a cephalometric and biometric investigation. Am J Orthod Dentofac Orthop 112:92–103CrossRef Hansen K, Koutsonas G, Pancherz H (1997) Long-term effects of Herbst treatment on the mandibular incisor segment: a cephalometric and biometric investigation. Am J Orthod Dentofac Orthop 112:92–103CrossRef
18.
Zurück zum Zitat Ji JJ, Li XD, Fan Q, Liu XJ, Yao S, Zhou Z, Yang S, Shen Y (2018) Prevalence of gingival recession after orthodontic treatment of infraversion and open bite. J Orofac Orthop 80:1–8CrossRef Ji JJ, Li XD, Fan Q, Liu XJ, Yao S, Zhou Z, Yang S, Shen Y (2018) Prevalence of gingival recession after orthodontic treatment of infraversion and open bite. J Orofac Orthop 80:1–8CrossRef
19.
Zurück zum Zitat Klaus K, Stark P, Serbesis TSP, Pancherz H, Ruf S (2017) Excellent versus unacceptable orthodontic results: influencing factors. Eur J Orthod 39:615–621CrossRef Klaus K, Stark P, Serbesis TSP, Pancherz H, Ruf S (2017) Excellent versus unacceptable orthodontic results: influencing factors. Eur J Orthod 39:615–621CrossRef
20.
Zurück zum Zitat Melsen B, Allais D (2005) Factors of importance for the development of dehiscences during labial movement of mandibular incisors: a retrospective study of adult orthodontic patients. Am J Orthod Dentofacial Orthop 127:552–561CrossRef Melsen B, Allais D (2005) Factors of importance for the development of dehiscences during labial movement of mandibular incisors: a retrospective study of adult orthodontic patients. Am J Orthod Dentofacial Orthop 127:552–561CrossRef
21.
Zurück zum Zitat Mislik B, Konstantonis D, Katsadouris A, Eliades T (2016) University clinic and private practice treatment outcomes in Class I extraction and nonextraction patients: A comparative study with the American Board of Orthodontics Objective Grading System. Am J Orthod Dentofacial Orthop 149:253–258CrossRef Mislik B, Konstantonis D, Katsadouris A, Eliades T (2016) University clinic and private practice treatment outcomes in Class I extraction and nonextraction patients: A comparative study with the American Board of Orthodontics Objective Grading System. Am J Orthod Dentofacial Orthop 149:253–258CrossRef
22.
Zurück zum Zitat Moro A, Janson G, de Freitas MR, Henriques JF, Petrelli NE, Lauris JP (2009) Class II correction with the Cantilever Bite Jumper: a variant of the Herbst. Angle Orthod 79:221–229CrossRef Moro A, Janson G, de Freitas MR, Henriques JF, Petrelli NE, Lauris JP (2009) Class II correction with the Cantilever Bite Jumper: a variant of the Herbst. Angle Orthod 79:221–229CrossRef
23.
Zurück zum Zitat Morris JW, Campbell PM, Tadlock LP, Boley J, Buschang PH (2017) Prevalence of gingival recession after orthodontic tooth movements. Am J Orthod Dentofacial Orthop 151:851–859CrossRef Morris JW, Campbell PM, Tadlock LP, Boley J, Buschang PH (2017) Prevalence of gingival recession after orthodontic tooth movements. Am J Orthod Dentofacial Orthop 151:851–859CrossRef
24.
Zurück zum Zitat Pancherz H (1981) The effect of continuous bite jumping on the dentofacial complex: a follow-up study after Herbst appliance treatment of class II malocclusions. Eur J Orthod 3:49–60CrossRef Pancherz H (1981) The effect of continuous bite jumping on the dentofacial complex: a follow-up study after Herbst appliance treatment of class II malocclusions. Eur J Orthod 3:49–60CrossRef
25.
Zurück zum Zitat Pancherz H (1997) The effects, limitations, and long-term dentofacial adaptations to treatment with the Herbst appliance. Semin Orthod 3:232–243CrossRef Pancherz H (1997) The effects, limitations, and long-term dentofacial adaptations to treatment with the Herbst appliance. Semin Orthod 3:232–243CrossRef
26.
Zurück zum Zitat Pancherz H, Bjerklin K (2014) Mandibular incisor inclination, tooth irregularity, and gingival recessions after Herbst therapy: a 32-year follow-up study. Am J Orthod Dentofacial Orthop 146:310–318CrossRef Pancherz H, Bjerklin K (2014) Mandibular incisor inclination, tooth irregularity, and gingival recessions after Herbst therapy: a 32-year follow-up study. Am J Orthod Dentofacial Orthop 146:310–318CrossRef
27.
Zurück zum Zitat Pancherz H, Hansen K (1988) Mandibular anchorage in Herbst treatment. Eur J Orthod 10:149–166CrossRef Pancherz H, Hansen K (1988) Mandibular anchorage in Herbst treatment. Eur J Orthod 10:149–166CrossRef
28.
Zurück zum Zitat Pernet F, Vento C, Pandis N, Kiliaridis S (2019) Long-term evaluation of lower incisors gingival recessions after orthodontic treatment. Eur J Orthod 41:559–564CrossRef Pernet F, Vento C, Pandis N, Kiliaridis S (2019) Long-term evaluation of lower incisors gingival recessions after orthodontic treatment. Eur J Orthod 41:559–564CrossRef
29.
Zurück zum Zitat Renkema AM, Fudalej PS, Renkema A, Bronkhorst E, Katsaros C (2013) Gingival recessions and the change of inclination of mandibular incisors during orthodontic treatment. Eur J Orthod 35:249–255CrossRef Renkema AM, Fudalej PS, Renkema A, Bronkhorst E, Katsaros C (2013) Gingival recessions and the change of inclination of mandibular incisors during orthodontic treatment. Eur J Orthod 35:249–255CrossRef
30.
Zurück zum Zitat Renkema AM, Navratilova Z, Mazurova K, Katsaros C, Fudaley PS (2015) Gingival labial recessions and the post-treatment proclination of mandibular incisors. Eur J Orthod 37:508–513CrossRef Renkema AM, Navratilova Z, Mazurova K, Katsaros C, Fudaley PS (2015) Gingival labial recessions and the post-treatment proclination of mandibular incisors. Eur J Orthod 37:508–513CrossRef
31.
Zurück zum Zitat Ruf S, Hansen K, Pancherz H (1998) Does orthodontic proclination of lower incisors in children and adolescents cause gingival recession? Am J Orthod Dentofacial Orthop 114:100–106CrossRef Ruf S, Hansen K, Pancherz H (1998) Does orthodontic proclination of lower incisors in children and adolescents cause gingival recession? Am J Orthod Dentofacial Orthop 114:100–106CrossRef
32.
Zurück zum Zitat Schwartz JP, Raveli TB, Schwartz-Filho HO, Raveli DB (2016) Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation. Dental Press J Orthod 21:95–101CrossRef Schwartz JP, Raveli TB, Schwartz-Filho HO, Raveli DB (2016) Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation. Dental Press J Orthod 21:95–101CrossRef
33.
Zurück zum Zitat Sifakakis I, Pandis N, Eliades T, Makou M, Katsaros C, Bourauel C (2011) In-vitro assessment of the forces generated by lingual fixed retainers. Am J Orthod Dentofacial Orthop 139:44–48CrossRef Sifakakis I, Pandis N, Eliades T, Makou M, Katsaros C, Bourauel C (2011) In-vitro assessment of the forces generated by lingual fixed retainers. Am J Orthod Dentofacial Orthop 139:44–48CrossRef
34.
Zurück zum Zitat Steiner GG, Pearson JK, Ainamo J (1981) Changes of the marginal periodontium as a result of labial tooth movement in monkeys. J Periodontol 52:314–320CrossRef Steiner GG, Pearson JK, Ainamo J (1981) Changes of the marginal periodontium as a result of labial tooth movement in monkeys. J Periodontol 52:314–320CrossRef
35.
Zurück zum Zitat Südwasser S, Bock NC, Baier S, Rühl J, Ruf S (2019) Herbst-Multibracket treatment: does the amount of lower incisor position changes correlate with the development of labial gingival recessions? Eur J Orthod 41:e22 (Abstract) Südwasser S, Bock NC, Baier S, Rühl J, Ruf S (2019) Herbst-Multibracket treatment: does the amount of lower incisor position changes correlate with the development of labial gingival recessions? Eur J Orthod 41:e22 (Abstract)
36.
Zurück zum Zitat Tanaka OM, Avila ALR, Silva GM, Anez MCG, Taffarel IP (2010) The effects of orthodontic movement on a subepithelias connective tissue graft in the treatment of gingival recession. J Contemp Dent Pract 11:E73–E79PubMed Tanaka OM, Avila ALR, Silva GM, Anez MCG, Taffarel IP (2010) The effects of orthodontic movement on a subepithelias connective tissue graft in the treatment of gingival recession. J Contemp Dent Pract 11:E73–E79PubMed
37.
Zurück zum Zitat Tepedino M, Franchi L, Fabbro O, Chimenti C (2018) Post-orthodontic lower incisor inclination and gingival recessions—a systematic review. Prog Orthod 19:17CrossRef Tepedino M, Franchi L, Fabbro O, Chimenti C (2018) Post-orthodontic lower incisor inclination and gingival recessions—a systematic review. Prog Orthod 19:17CrossRef
38.
Zurück zum Zitat von Bremen J, Pancherz H, Ruf S (2007) Reduced mandibular cast splints—an alternative in Herbst therapy: A prospective multicentre study. Eur J Orthod 29:609–613CrossRef von Bremen J, Pancherz H, Ruf S (2007) Reduced mandibular cast splints—an alternative in Herbst therapy: A prospective multicentre study. Eur J Orthod 29:609–613CrossRef
39.
Zurück zum Zitat Weschler D, Pancherz H (2004) Efficiency of Three Mandibular Anchorage Forms in Herbst Treatment: A Cephalometric Investigation. Angle Orthod 75:23–27 Weschler D, Pancherz H (2004) Efficiency of Three Mandibular Anchorage Forms in Herbst Treatment: A Cephalometric Investigation. Angle Orthod 75:23–27
Metadaten
Titel
Herbst–multibracket appliance treatment: is there an association between lower incisor position changes and the development of labial gingival recessions?
verfasst von
S. Südwasser
N. C. Bock
J. Jost
S. Killat
S. Ruf
Publikationsdatum
13.01.2021
Verlag
Springer Medizin
Erschienen in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Ausgabe 6/2021
Print ISSN: 1434-5293
Elektronische ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-020-00272-0

Weitere Artikel der Ausgabe 6/2021

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2021 Zur Ausgabe

Mitteilungen der DGKFO

Mitteilungen der DGKFO

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.