Skip to main content
Erschienen in: Die Pathologie 1/2022

12.09.2022 | Referate: Preisträgerinnen und Preisträger – Novartis-Preis der DGP

IL-2/IL-2R signaling and IL-2Rα-targeted therapy in anaplastic large cell lymphoma

verfasst von: Huan-Chang Liang, PhD

Erschienen in: Die Pathologie | Sonderheft 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Anaplastic large cell lymphoma (ALCL) is a CD30-positive non-Hodgkin’s T‑cell lymphoma. Despite the implementation of CD30 antibody–drug conjugate-targeted therapy into front-line treatment regimens, the prognosis of some subtypes of the disease remains unsatisfactory. In the relapsed/refractory setting, effective second-line treatment options are still lacking. However, it has been reported that blockade of direct downstream targets of activator protein‑1 (AP-1) transcription factors, which are highly dysregulated in ALCL, results in complete and sustained remission in late-stage relapsed/refractory anaplastic lymphoma kinase (ALK)-positive ALCL patients. Moreover, it has been identified that involvement of the BATF3/AP‑1 module promotes lymphomagenesis via oncogenic BATF3/IL-2/IL-2R signaling through hyperphosphorylation of ERK1/2, STAT1, and STAT5 in ALCL cells regardless of their ALK status. Therefore, targeting BATF3/IL-2/IL-2R signaling may represent a novel therapeutic alternative for ALCL patients.
Literatur
1.
Zurück zum Zitat Vose J, Armitage J, Weisenburger D et al (2008) International peripheral T‑cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130CrossRef Vose J, Armitage J, Weisenburger D et al (2008) International peripheral T‑cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130CrossRef
2.
Zurück zum Zitat Greer J, Kinney M, Collins R et al (1991) Clinical features of 31 patients with Ki‑1 anaplastic large-cell lymphoma. J Clin Oncol 9:539–547CrossRef Greer J, Kinney M, Collins R et al (1991) Clinical features of 31 patients with Ki‑1 anaplastic large-cell lymphoma. J Clin Oncol 9:539–547CrossRef
3.
Zurück zum Zitat Swerdlow S, Campo E, Harris N et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. World Health Organization, Geneva Swerdlow S, Campo E, Harris N et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. World Health Organization, Geneva
4.
Zurück zum Zitat Garces de los Fayos Alonso I, Liang HC, Turner SD et al (2018) The role of activator protein‑1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel) 10:E93CrossRef Garces de los Fayos Alonso I, Liang HC, Turner SD et al (2018) The role of activator protein‑1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel) 10:E93CrossRef
5.
Zurück zum Zitat Crescenzo R, Abate F, Lasorsa E et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27:516–532CrossRef Crescenzo R, Abate F, Lasorsa E et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27:516–532CrossRef
6.
Zurück zum Zitat Agnelli L, Mereu E, Pellegrino E et al (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120:1274–1281CrossRef Agnelli L, Mereu E, Pellegrino E et al (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120:1274–1281CrossRef
7.
Zurück zum Zitat Schleussner N, Merkel O, Costanza M et al (2018) The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 32:1994–2007CrossRef Schleussner N, Merkel O, Costanza M et al (2018) The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 32:1994–2007CrossRef
8.
Zurück zum Zitat Liang HC, Costanza M, Prutsch N et al (2021) Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 12:5577CrossRef Liang HC, Costanza M, Prutsch N et al (2021) Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 12:5577CrossRef
9.
Zurück zum Zitat Chen J, Zhang Y, Petrus MN et al (2017) Cytokine receptor signaling is required for the survival of ALK-anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci USA 114:3975–3980CrossRef Chen J, Zhang Y, Petrus MN et al (2017) Cytokine receptor signaling is required for the survival of ALK-anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci USA 114:3975–3980CrossRef
10.
Zurück zum Zitat Lamant L, de Reyniès A, Duplantier M et al (2007) Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109:2156–2164CrossRef Lamant L, de Reyniès A, Duplantier M et al (2007) Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109:2156–2164CrossRef
11.
Zurück zum Zitat Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T‑cell lymphoma and prognostication in angioimmunoblastic T‑cell lymphoma. Blood 115:1026–1036CrossRef Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T‑cell lymphoma and prognostication in angioimmunoblastic T‑cell lymphoma. Blood 115:1026–1036CrossRef
12.
Zurück zum Zitat Boulland ML, Meignin V, Leroy-Viard K et al (1998) Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol 153:1229–1237CrossRef Boulland ML, Meignin V, Leroy-Viard K et al (1998) Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol 153:1229–1237CrossRef
13.
Zurück zum Zitat Bard DJ, Gelebart P, Anand M et al (2008) Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+ anaplastic large cell lymphoma. Leukemia 22:1595–1603CrossRef Bard DJ, Gelebart P, Anand M et al (2008) Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+ anaplastic large cell lymphoma. Leukemia 22:1595–1603CrossRef
14.
Zurück zum Zitat Prutsch N, Gurnhofer E, Suske T et al (2019) Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 33:696–709CrossRef Prutsch N, Gurnhofer E, Suske T et al (2019) Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 33:696–709CrossRef
15.
Zurück zum Zitat Prokoph N, Probst N, Lee L et al (2020) IL10RA modulates crizotinib sensitivity in NPM1-ALK-positive anaplastic large cell lymphoma. Blood 136:1657–1669 Prokoph N, Probst N, Lee L et al (2020) IL10RA modulates crizotinib sensitivity in NPM1-ALK-positive anaplastic large cell lymphoma. Blood 136:1657–1669
16.
Zurück zum Zitat Couronné L, Scourzic L, Pilati C et al (2013) STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model. Haematologica 98:1748–1752CrossRef Couronné L, Scourzic L, Pilati C et al (2013) STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model. Haematologica 98:1748–1752CrossRef
17.
Zurück zum Zitat Ehrentraut S, Schneider B, Nagel S et al (2016) Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T‑cell lymphoma. Oncotarget 7:34201–34216CrossRef Ehrentraut S, Schneider B, Nagel S et al (2016) Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T‑cell lymphoma. Oncotarget 7:34201–34216CrossRef
18.
Zurück zum Zitat Silva DA, Yu S, Ulge UY et al (2019) De novo design of potent and selective mimics of IL‑2 and IL-15. Nature 565:186–191CrossRef Silva DA, Yu S, Ulge UY et al (2019) De novo design of potent and selective mimics of IL‑2 and IL-15. Nature 565:186–191CrossRef
19.
Zurück zum Zitat Waldmann TA (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3:219–227CrossRef Waldmann TA (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3:219–227CrossRef
20.
Zurück zum Zitat Zhang Q, Wang HY, Liu X et al (2011) IL-2R common γ‑chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci USA 108:11977–11982CrossRef Zhang Q, Wang HY, Liu X et al (2011) IL-2R common γ‑chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci USA 108:11977–11982CrossRef
21.
Zurück zum Zitat Pomari E, Basso G, Bresolin S et al (2017) NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma. Leukemia 31:498–501CrossRef Pomari E, Basso G, Bresolin S et al (2017) NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma. Leukemia 31:498–501CrossRef
22.
Zurück zum Zitat Dinarello CA (2007) Historical review of cytokines. Eur J Immunol 37:S34–S45CrossRef Dinarello CA (2007) Historical review of cytokines. Eur J Immunol 37:S34–S45CrossRef
23.
Zurück zum Zitat Liao W, Lin J‑X, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25CrossRef Liao W, Lin J‑X, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25CrossRef
24.
Zurück zum Zitat Müller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656CrossRef Müller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656CrossRef
25.
Zurück zum Zitat Lechner MG, Megiel C, Church CH et al (2012) Survival signals and targets for therapy in breast implant-associated ALK-anaplastic large cell lymphoma. Clin Cancer Res 18:4549–4559CrossRef Lechner MG, Megiel C, Church CH et al (2012) Survival signals and targets for therapy in breast implant-associated ALK-anaplastic large cell lymphoma. Clin Cancer Res 18:4549–4559CrossRef
26.
Zurück zum Zitat Ito M, Zhao N, Zeng Z et al (2011) Interleukin‑2 functions in anaplastic large cell lymphoma cells through augmentation of extracellular signal-regulated kinases 1/2 activation. Int J Biomed Sci 7:181–190 Ito M, Zhao N, Zeng Z et al (2011) Interleukin‑2 functions in anaplastic large cell lymphoma cells through augmentation of extracellular signal-regulated kinases 1/2 activation. Int J Biomed Sci 7:181–190
27.
Zurück zum Zitat Knörr F, Damm-Welk C, Ruf S et al (2018) Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica 103:477–485CrossRef Knörr F, Damm-Welk C, Ruf S et al (2018) Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica 103:477–485CrossRef
28.
Zurück zum Zitat Lodolce JP, Burkett PR, Koka RM et al (2002) Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 13:429–439CrossRef Lodolce JP, Burkett PR, Koka RM et al (2002) Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 13:429–439CrossRef
29.
Zurück zum Zitat Fehniger TA, Caligiuri MA (2001) Interleukin 15: biology and relevance to human disease. Blood 97:14–32CrossRef Fehniger TA, Caligiuri MA (2001) Interleukin 15: biology and relevance to human disease. Blood 97:14–32CrossRef
30.
Zurück zum Zitat Ullrich K, Blumenthal-Barby F, Lamprecht B et al (2015) The IL-15 cytokine system provides growth and survival signals in Hodgkin lymphoma and enhances the inflammatory phenotype of HRS cells. Leukemia 29:1213–1218CrossRef Ullrich K, Blumenthal-Barby F, Lamprecht B et al (2015) The IL-15 cytokine system provides growth and survival signals in Hodgkin lymphoma and enhances the inflammatory phenotype of HRS cells. Leukemia 29:1213–1218CrossRef
31.
Zurück zum Zitat Brugières L, Le Deley MC, Rosolen A et al (2009) Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL group. J Clin Oncol 27:897–903CrossRef Brugières L, Le Deley MC, Rosolen A et al (2009) Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL group. J Clin Oncol 27:897–903CrossRef
32.
Zurück zum Zitat Wrobel G, Mauguen A, Rosolen A et al (2011) Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer 56:1071–1077CrossRef Wrobel G, Mauguen A, Rosolen A et al (2011) Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer 56:1071–1077CrossRef
33.
Zurück zum Zitat Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821CrossRef Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821CrossRef
34.
Zurück zum Zitat Pro B, Advani R, Brice P et al (2014) Four-year survival data from an ongoing pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 124:3095CrossRef Pro B, Advani R, Brice P et al (2014) Four-year survival data from an ongoing pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 124:3095CrossRef
35.
Zurück zum Zitat Richardson N, Kasamon Y, Chen H et al (2019) FDA approval summary: brentuximab vedotin in first-line treatment of peripheral T‑cell lymphoma. Oncologist 24:180–187CrossRef Richardson N, Kasamon Y, Chen H et al (2019) FDA approval summary: brentuximab vedotin in first-line treatment of peripheral T‑cell lymphoma. Oncologist 24:180–187CrossRef
36.
Zurück zum Zitat Horwitz S, O’Connor OA, Pro B et al (2019) Brentuximab vedotin with chemotherapy for CD30-positive peripheral T‑cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393:229–240CrossRef Horwitz S, O’Connor OA, Pro B et al (2019) Brentuximab vedotin with chemotherapy for CD30-positive peripheral T‑cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393:229–240CrossRef
37.
Zurück zum Zitat Attia P, Maker AV, Haworth LR et al (2005) Inability of a fusion protein of IL‑2 and diphtheria toxin (denileukin diftitox, DAB389IL‑2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592CrossRef Attia P, Maker AV, Haworth LR et al (2005) Inability of a fusion protein of IL‑2 and diphtheria toxin (denileukin diftitox, DAB389IL‑2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592CrossRef
38.
Zurück zum Zitat Lansigan F, Stearns DM, Foss F (2010) Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T‑cell lymphoma. Cancer Manag Res 2:53–59CrossRef Lansigan F, Stearns DM, Foss F (2010) Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T‑cell lymphoma. Cancer Manag Res 2:53–59CrossRef
39.
Zurück zum Zitat LeMaistre CF, Saleh MN, Kuzel TM et al (1998) Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin‑2. Blood 91:399–405 LeMaistre CF, Saleh MN, Kuzel TM et al (1998) Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin‑2. Blood 91:399–405
40.
Zurück zum Zitat Duvic M, Cather J, Maize J, Frankel AE (1998) DAB389IL2 diphtheria fusion toxin produces clinical responses in tumor stage cutaneous T‑cell lymphoma. Am J Hematol 58:87–90CrossRef Duvic M, Cather J, Maize J, Frankel AE (1998) DAB389IL2 diphtheria fusion toxin produces clinical responses in tumor stage cutaneous T‑cell lymphoma. Am J Hematol 58:87–90CrossRef
41.
Zurück zum Zitat Prince HM, Duvic M, Martin A et al (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T‑cell lymphoma. J Clin Oncol 28:1870–1877CrossRef Prince HM, Duvic M, Martin A et al (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T‑cell lymphoma. J Clin Oncol 28:1870–1877CrossRef
42.
Zurück zum Zitat Wang Z, Zheng Q, Zhang H et al (2017) Ontak-like human IL‑2 fusion toxin. J Immunol Methods 448:51–58CrossRef Wang Z, Zheng Q, Zhang H et al (2017) Ontak-like human IL‑2 fusion toxin. J Immunol Methods 448:51–58CrossRef
43.
Zurück zum Zitat Flynn MJ, Zammarchi F, Tyrer PC et al (2016) ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther 15:2709–2721CrossRef Flynn MJ, Zammarchi F, Tyrer PC et al (2016) ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther 15:2709–2721CrossRef
Metadaten
Titel
IL-2/IL-2R signaling and IL-2Rα-targeted therapy in anaplastic large cell lymphoma
verfasst von
Huan-Chang Liang, PhD
Publikationsdatum
12.09.2022
Verlag
Springer Medizin
Erschienen in
Die Pathologie / Ausgabe Sonderheft 1/2022
Print ISSN: 2731-7188
Elektronische ISSN: 2731-7196
DOI
https://doi.org/10.1007/s00292-022-01108-x

Weitere Artikel der Sonderheft 1/2022

Die Pathologie 1/2022 Zur Ausgabe

Berichte der Arbeitsgemeinschaften

Bericht der AG Kinder- und Fetalpathologie

Referate: Preisträgerinnen und Preisträger – Posterpreis

Lasermikrodissektion zur Analyse molekularer Heterogenität im kolorektalen Karzinom

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.