Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 5/2022

12.07.2021 | Review Article

Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell–Derived Microvesicles to Repair the Ischemic Heart

verfasst von: Gemma Vilahur, Phuong Hue Nguyen, Lina Badimon

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Literatur
1.
Zurück zum Zitat Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–32.PubMedCrossRef Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–32.PubMedCrossRef
2.
Zurück zum Zitat Ibanez B, Vilahur G, Badimon JJ. Plaque progression and regression in atherothrombosis. J Thromb Haemost. 2007;5(Suppl 1):292–9.PubMedCrossRef Ibanez B, Vilahur G, Badimon JJ. Plaque progression and regression in atherothrombosis. J Thromb Haemost. 2007;5(Suppl 1):292–9.PubMedCrossRef
3.
Zurück zum Zitat Eitel I, de Waha S, Wohrle J, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1217–26.PubMedCrossRef Eitel I, de Waha S, Wohrle J, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1217–26.PubMedCrossRef
4.
Zurück zum Zitat Vilahur G, Badimon JJ, Bugiardini R, Badimon L. The burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur Heart J Supp. 2014;16:A7–11.CrossRef Vilahur G, Badimon JJ, Bugiardini R, Badimon L. The burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur Heart J Supp. 2014;16:A7–11.CrossRef
6.
Zurück zum Zitat Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.PubMedCrossRef Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.PubMedCrossRef
7.
8.
Zurück zum Zitat Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.PubMedCrossRef Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.PubMedCrossRef
9.
Zurück zum Zitat Grigorian SL, Sanz-Ruiz R, Climent A, et al. Insights into therapeutic products, preclinical research models and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC working group on cardiovascular regenerative and reparative medicine. Cardiovasc Res. 2020. Grigorian SL, Sanz-Ruiz R, Climent A, et al. Insights into therapeutic products, preclinical research models and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC working group on cardiovascular regenerative and reparative medicine. Cardiovasc Res. 2020.
10.
Zurück zum Zitat Fernandez-Aviles F, Sanz-Ruiz R, Climent AM, et al. Global overview of the Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes (TACTICS) recommendations: a comprehensive series of challenges and priorities of cardiovascular regenerative medicine. Circ Res. 2018;122:199–201.PubMedCrossRef Fernandez-Aviles F, Sanz-Ruiz R, Climent AM, et al. Global overview of the Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes (TACTICS) recommendations: a comprehensive series of challenges and priorities of cardiovascular regenerative medicine. Circ Res. 2018;122:199–201.PubMedCrossRef
11.
Zurück zum Zitat Menasche P. Cardiac cell therapy: current status, challenges and perspectives. Arch Cardiovasc Dis. 2020;113:285–92.PubMedCrossRef Menasche P. Cardiac cell therapy: current status, challenges and perspectives. Arch Cardiovasc Dis. 2020;113:285–92.PubMedCrossRef
12.
Zurück zum Zitat Gyongyosi M, Haller PM, Blake DJ, Martin RE. Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res. 2018;123:301–8.PubMedCrossRef Gyongyosi M, Haller PM, Blake DJ, Martin RE. Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res. 2018;123:301–8.PubMedCrossRef
13.
Zurück zum Zitat Mathur A, Fernandez-Aviles F, Bartunek J, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J. 2020;41:3702–10.PubMedPubMedCentralCrossRef Mathur A, Fernandez-Aviles F, Bartunek J, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J. 2020;41:3702–10.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther. 2015;151:8–15.PubMedCrossRef Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther. 2015;151:8–15.PubMedCrossRef
15.
Zurück zum Zitat Sanz-Ruiz R, Fernandez-Aviles F. Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res. 2018;127:92–100.PubMedCrossRef Sanz-Ruiz R, Fernandez-Aviles F. Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res. 2018;127:92–100.PubMedCrossRef
16.
Zurück zum Zitat Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular risk factors and differential transcriptomic profile of the subcutaneous and visceral adipose tissue and their resident stem cells. Cells. 2020;9. Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular risk factors and differential transcriptomic profile of the subcutaneous and visceral adipose tissue and their resident stem cells. Cells. 2020;9.
17.
Zurück zum Zitat Onate B, Vilahur G, Camino-Lopez S, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14:625.PubMedPubMedCentralCrossRef Onate B, Vilahur G, Camino-Lopez S, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14:625.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Onate B, Vilahur G, Ferrer-Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26:4327–36.PubMedCrossRef Onate B, Vilahur G, Ferrer-Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26:4327–36.PubMedCrossRef
19.
Zurück zum Zitat Fadini GP, Mehta A, Dhindsa DS, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020;41:4271–82.PubMedCrossRef Fadini GP, Mehta A, Dhindsa DS, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020;41:4271–82.PubMedCrossRef
20.
Zurück zum Zitat Bejar MT, Hernandez-Vera R, Vilahur G, Badimon L. Bone marrow cell transplant from donors with cardiovascular risk factors increases the pro-atherosclerotic phenotype in the recipients. Am J Transplant. 2016;16:3392–403.PubMedCrossRef Bejar MT, Hernandez-Vera R, Vilahur G, Badimon L. Bone marrow cell transplant from donors with cardiovascular risk factors increases the pro-atherosclerotic phenotype in the recipients. Am J Transplant. 2016;16:3392–403.PubMedCrossRef
21.
Zurück zum Zitat Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: implications for autologous transplantation. Stem Cell Rev Rep. 2019;15:194–217.PubMedCrossRef Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: implications for autologous transplantation. Stem Cell Rev Rep. 2019;15:194–217.PubMedCrossRef
22.
Zurück zum Zitat van de Vyver M. Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev. 2017;26:1042–53.PubMedCrossRef van de Vyver M. Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev. 2017;26:1042–53.PubMedCrossRef
23.
Zurück zum Zitat Yang K, Wang XQ, He YS, et al. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010;9:66.PubMedPubMedCentralCrossRef Yang K, Wang XQ, He YS, et al. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010;9:66.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Dentelli P, Barale C, Togliatto G, et al. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia. 2013;56:173–84.PubMedCrossRef Dentelli P, Barale C, Togliatto G, et al. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia. 2013;56:173–84.PubMedCrossRef
26.
Zurück zum Zitat Vecellio M, Spallotta F, Nanni S, et al. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes. 2014;63:2132–47.PubMedCrossRef Vecellio M, Spallotta F, Nanni S, et al. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes. 2014;63:2132–47.PubMedCrossRef
27.
Zurück zum Zitat Kim H, Han JW, Lee JY, et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015;24:1571–84.PubMedCrossRef Kim H, Han JW, Lee JY, et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015;24:1571–84.PubMedCrossRef
28.
Zurück zum Zitat Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES. Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012;20:243–52.PubMedCrossRef Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES. Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012;20:243–52.PubMedCrossRef
29.
Zurück zum Zitat Policha A, Zhang P, Chang L, Lamb K, Tulenko T, DiMuzio P. Endothelial differentiation of diabetic adipose-derived stem cells. J Surg Res. 2014;192:656–63.PubMedCrossRef Policha A, Zhang P, Chang L, Lamb K, Tulenko T, DiMuzio P. Endothelial differentiation of diabetic adipose-derived stem cells. J Surg Res. 2014;192:656–63.PubMedCrossRef
30.
Zurück zum Zitat Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care. 2013; 36: 943–9. Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care. 2013; 36: 943–9.
31.
Zurück zum Zitat Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle). 2015;4:623–30.CrossRef Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle). 2015;4:623–30.CrossRef
32.
Zurück zum Zitat Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res. 2019;115:277–91.PubMedCrossRef Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res. 2019;115:277–91.PubMedCrossRef
34.
Zurück zum Zitat Henry TD, Moye L, Traverse JH. Consistently inconsistent-bone marrow mononuclear stem cell therapy following acute myocardial infarction: a decade later. Circ Res. 2016;119:404–6.PubMedPubMedCentralCrossRef Henry TD, Moye L, Traverse JH. Consistently inconsistent-bone marrow mononuclear stem cell therapy following acute myocardial infarction: a decade later. Circ Res. 2016;119:404–6.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Andreadou I, Cabrera-Fuentes HA, Devaux Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115:1117–30.PubMedPubMedCentralCrossRef Andreadou I, Cabrera-Fuentes HA, Devaux Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115:1117–30.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959.PubMedPubMedCentralCrossRef Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3240.PubMed Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3240.PubMed
38.
Zurück zum Zitat Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev. 2019;35:e3083.PubMedCrossRef Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev. 2019;35:e3083.PubMedCrossRef
39.
Zurück zum Zitat Hernandez Vera R, Vilahur G, Ferrer-Lorente R, Pena E, Badimon L. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:2141–8.PubMedCrossRef Hernandez Vera R, Vilahur G, Ferrer-Lorente R, Pena E, Badimon L. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:2141–8.PubMedCrossRef
40.
Zurück zum Zitat Badimon L, Hernandez Vera R, Vilahur G. Atherothrombotic risk in obesity. Hamostaseologie. 2013;33:259–68.PubMedCrossRef Badimon L, Hernandez Vera R, Vilahur G. Atherothrombotic risk in obesity. Hamostaseologie. 2013;33:259–68.PubMedCrossRef
41.
Zurück zum Zitat Hernandez Vera R, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker Fatty rats. Thromb Haemost. 2013;109:319–27.PubMedCrossRef Hernandez Vera R, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker Fatty rats. Thromb Haemost. 2013;109:319–27.PubMedCrossRef
42.
Zurück zum Zitat Vasam G, Joshi S, Jarajapu YP. Impaired mobilization of vascular reparative bone marrow cells in streptozotocin-induced diabetes but not in leptin receptor-deficient db/db mice. Sci Rep. 2016;6:26131.PubMedPubMedCentralCrossRef Vasam G, Joshi S, Jarajapu YP. Impaired mobilization of vascular reparative bone marrow cells in streptozotocin-induced diabetes but not in leptin receptor-deficient db/db mice. Sci Rep. 2016;6:26131.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat van den Berg SM, Seijkens TT, Kusters PJ, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30:1779–88.PubMedCrossRef van den Berg SM, Seijkens TT, Kusters PJ, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30:1779–88.PubMedCrossRef
44.
Zurück zum Zitat Li H, Liu J, Wang Y, et al. MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in type 2 diabetes. Am J Physiol Endocrinol Metab. 2017;313:E391–401.PubMedPubMedCentralCrossRef Li H, Liu J, Wang Y, et al. MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in type 2 diabetes. Am J Physiol Endocrinol Metab. 2017;313:E391–401.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24.PubMedCrossRef Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24.PubMedCrossRef
46.
Zurück zum Zitat Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015;64:1420–30.PubMedCrossRef Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015;64:1420–30.PubMedCrossRef
47.
Zurück zum Zitat Barman PK, Urao N, Koh TJ. Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. J Pathol. 2019;249:435–46.PubMedPubMedCentralCrossRef Barman PK, Urao N, Koh TJ. Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. J Pathol. 2019;249:435–46.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Davis FM, Gallagher KA. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:623–34.PubMedPubMedCentralCrossRef Davis FM, Gallagher KA. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:623–34.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11:936–44.PubMedCrossRef Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11:936–44.PubMedCrossRef
50.
Zurück zum Zitat Hsu AT, Lupancu TJ, Lee MC, et al. Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chem. 2018;293:11415–23.PubMedPubMedCentralCrossRef Hsu AT, Lupancu TJ, Lee MC, et al. Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chem. 2018;293:11415–23.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Kruidenier L, Chung CW, Cheng Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8.PubMedPubMedCentralCrossRef Kruidenier L, Chung CW, Cheng Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhang X, Wang Y, Yuan J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215:1365–82.PubMedPubMedCentralCrossRef Zhang X, Wang Y, Yuan J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215:1365–82.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Yan J, Tie G, Wang S, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 2018;9:33.PubMedPubMedCentralCrossRef Yan J, Tie G, Wang S, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 2018;9:33.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19. Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19.
56.
Zurück zum Zitat Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 2018;33:1154–65.PubMedCrossRef Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 2018;33:1154–65.PubMedCrossRef
57.
Zurück zum Zitat Ferland-McCollough D, Maselli D, Spinetti G, et al. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone barrow of patients with diabetes. Diabetes. 2018;67:1380–94.PubMedCrossRef Ferland-McCollough D, Maselli D, Spinetti G, et al. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone barrow of patients with diabetes. Diabetes. 2018;67:1380–94.PubMedCrossRef
58.
Zurück zum Zitat Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.PubMedCrossRef Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.PubMedCrossRef
59.
Zurück zum Zitat Rabbani PS, Soares MA, Hameedi SG, et al. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68:141–55.PubMedCrossRef Rabbani PS, Soares MA, Hameedi SG, et al. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68:141–55.PubMedCrossRef
60.
61.
Zurück zum Zitat Nagaishi K, Mizue Y, Chikenji T, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep. 2017;7:8484.PubMedPubMedCentralCrossRef Nagaishi K, Mizue Y, Chikenji T, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep. 2017;7:8484.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Cassidy FC, Shortiss C, Murphy CG, et al. Impact of type 2 diabetes mellitus on human bone marrow stromal cell number and phenotypic characteristics. Int J Mol Sci. 2020;21. Cassidy FC, Shortiss C, Murphy CG, et al. Impact of type 2 diabetes mellitus on human bone marrow stromal cell number and phenotypic characteristics. Int J Mol Sci. 2020;21.
63.
Zurück zum Zitat Zhu M, He X, Wang XH, et al. Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications. Diabetologia. 2017;60:1822–33.PubMedCrossRef Zhu M, He X, Wang XH, et al. Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications. Diabetologia. 2017;60:1822–33.PubMedCrossRef
65.
Zurück zum Zitat Badimon L, Bugiardini R, Cenko E, et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J. 2017;38:1951–8.PubMedCrossRef Badimon L, Bugiardini R, Cenko E, et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J. 2017;38:1951–8.PubMedCrossRef
66.
Zurück zum Zitat Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017;113:1046–54.PubMedCrossRef Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017;113:1046–54.PubMedCrossRef
67.
Zurück zum Zitat Rocca B, Fox KAA, Ajjan RA, et al. Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis. Eur Heart J. 2018;39:1672–86.PubMedCrossRef Rocca B, Fox KAA, Ajjan RA, et al. Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis. Eur Heart J. 2018;39:1672–86.PubMedCrossRef
68.
Zurück zum Zitat Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15:639–60.PubMedCrossRef Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15:639–60.PubMedCrossRef
69.
Zurück zum Zitat McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96:E1756–60.PubMedPubMedCentralCrossRef McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96:E1756–60.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Badimon L, Onate B, Vilahur G. Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Rev Esp Cardiol (Engl Ed). 2015;68:599–611.CrossRef Badimon L, Onate B, Vilahur G. Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Rev Esp Cardiol (Engl Ed). 2015;68:599–611.CrossRef
71.
Zurück zum Zitat Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 2019;20. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 2019;20.
72.
Zurück zum Zitat Shafei AE, Ali MA, Ghanem HG, et al. Mechanistic effects of mesenchymal and hematopoietic stem cells: new therapeutic targets in myocardial infarction. J Cell Biochem. 2018;119:5274–86.PubMedCrossRef Shafei AE, Ali MA, Ghanem HG, et al. Mechanistic effects of mesenchymal and hematopoietic stem cells: new therapeutic targets in myocardial infarction. J Cell Biochem. 2018;119:5274–86.PubMedCrossRef
73.
Zurück zum Zitat Vilahur G, Onate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;8:52.PubMedPubMedCentralCrossRef Vilahur G, Onate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;8:52.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Arderiu G, Pena E, Aledo R, et al. MicroRNA-145 regulates the differentiation of adipose stem cells toward microvascular endothelial cells and promotes angiogenesis. Circ Res. 2019;125:74–89.PubMedCrossRef Arderiu G, Pena E, Aledo R, et al. MicroRNA-145 regulates the differentiation of adipose stem cells toward microvascular endothelial cells and promotes angiogenesis. Circ Res. 2019;125:74–89.PubMedCrossRef
75.
Zurück zum Zitat Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12.
76.
Zurück zum Zitat Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59:560–70.PubMedCrossRef Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59:560–70.PubMedCrossRef
77.
Zurück zum Zitat Gustafson B, Nerstedt A, Smith U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun. 2019;10:2757.PubMedPubMedCentralCrossRef Gustafson B, Nerstedt A, Smith U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun. 2019;10:2757.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Nawaz A, Aminuddin A, Kado T, et al. CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017;8:286.PubMedPubMedCentralCrossRef Nawaz A, Aminuddin A, Kado T, et al. CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017;8:286.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Prasad M, Chen EW, Toh SA, Gascoigne NRJ. Autoimmune responses and inflammation in type 2 diabetes. J Leukoc Biol. 2020;107:739–48.PubMedCrossRef Prasad M, Chen EW, Toh SA, Gascoigne NRJ. Autoimmune responses and inflammation in type 2 diabetes. J Leukoc Biol. 2020;107:739–48.PubMedCrossRef
80.
Zurück zum Zitat Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019;364. Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019;364.
81.
Zurück zum Zitat Spallanzani RG, Zemmour D, Xiao T, et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol. 2019;4. Spallanzani RG, Zemmour D, Xiao T, et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol. 2019;4.
82.
Zurück zum Zitat Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2:97–109.PubMedCrossRef Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2:97–109.PubMedCrossRef
83.
Zurück zum Zitat Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34:2559–73.PubMedCrossRef Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34:2559–73.PubMedCrossRef
84.
Zurück zum Zitat Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia. 2014;57:246–56.PubMedCrossRef Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia. 2014;57:246–56.PubMedCrossRef
85.
Zurück zum Zitat Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752–60.PubMedCrossRef Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752–60.PubMedCrossRef
86.
Zurück zum Zitat Tura O, Skinner EM, Barclay GR, et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells. 2013;31:338–48.PubMedCrossRef Tura O, Skinner EM, Barclay GR, et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells. 2013;31:338–48.PubMedCrossRef
87.
Zurück zum Zitat Toshner M, Dunmore BJ, McKinney EF, et al. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One. 2014;9:e91334.PubMedPubMedCentralCrossRef Toshner M, Dunmore BJ, McKinney EF, et al. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One. 2014;9:e91334.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.PubMedCrossRef Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.PubMedCrossRef
89.
Zurück zum Zitat Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007;109:4761–8.PubMedCrossRef Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007;109:4761–8.PubMedCrossRef
90.
Zurück zum Zitat Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef
91.
Zurück zum Zitat Lyons CJ, O’Brien T. The functionality of endothelial-colony-forming cells from patients with diabetes mellitus. Cells. 2020;9. Lyons CJ, O’Brien T. The functionality of endothelial-colony-forming cells from patients with diabetes mellitus. Cells. 2020;9.
92.
Zurück zum Zitat Jarajapu YP, Hazra S, Segal M, et al. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One. 2014;9:e93965.PubMedPubMedCentralCrossRef Jarajapu YP, Hazra S, Segal M, et al. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One. 2014;9:e93965.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Li H, Zhang X, Guan X, et al. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc Diabetol. 2012;11:46.PubMedPubMedCentralCrossRef Li H, Zhang X, Guan X, et al. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc Diabetol. 2012;11:46.PubMedPubMedCentralCrossRef
94.
95.
Zurück zum Zitat Suades R, Padro T, Badimon L. The role of blood-borne microparticles in inflammation and hemostasis. Semin Thromb Hemost. 2015;41:590–606.PubMedCrossRef Suades R, Padro T, Badimon L. The role of blood-borne microparticles in inflammation and hemostasis. Semin Thromb Hemost. 2015;41:590–606.PubMedCrossRef
96.
Zurück zum Zitat Ridger VC, Boulanger CM, Angelillo-Scherrer A, et al. Microvesicles in vascular homeostasis and diseases Position. Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost. 2017;117:1296–316.PubMedCrossRef Ridger VC, Boulanger CM, Angelillo-Scherrer A, et al. Microvesicles in vascular homeostasis and diseases Position. Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost. 2017;117:1296–316.PubMedCrossRef
97.
Zurück zum Zitat Chiva-Blanch G, Badimon L. Cross-talk between lipoproteins and inflammation: the role of microvesicles. J Clin Med. 2019;8. Chiva-Blanch G, Badimon L. Cross-talk between lipoproteins and inflammation: the role of microvesicles. J Clin Med. 2019;8.
98.
Zurück zum Zitat Badimon L, Suades R, Vilella-Figuerola A, et al. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal. 2020;33:645–62.PubMedCrossRef Badimon L, Suades R, Vilella-Figuerola A, et al. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal. 2020;33:645–62.PubMedCrossRef
99.
Zurück zum Zitat van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef
100.
Zurück zum Zitat Suades R, Padro T, Crespo J, et al. Liquid biopsy of extracellular microvesicles predicts future major ischemic events in genetically characterized familial hypercholesterolemia patients. Arterioscler Thromb Vasc Biol. 2019;39:1172–81.PubMedCrossRef Suades R, Padro T, Crespo J, et al. Liquid biopsy of extracellular microvesicles predicts future major ischemic events in genetically characterized familial hypercholesterolemia patients. Arterioscler Thromb Vasc Biol. 2019;39:1172–81.PubMedCrossRef
101.
Zurück zum Zitat Chiva-Blanch G, Padro T, Alonso R, et al. Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2019;39:945–55.PubMedCrossRef Chiva-Blanch G, Padro T, Alonso R, et al. Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2019;39:945–55.PubMedCrossRef
102.
Zurück zum Zitat Badimon L. Monocyte-platelet complexes in myocardial infarction: sub-sets and platelet-derived microvesicles matter. Thromb Haemost. 2018;118:1854–5.PubMedCrossRef Badimon L. Monocyte-platelet complexes in myocardial infarction: sub-sets and platelet-derived microvesicles matter. Thromb Haemost. 2018;118:1854–5.PubMedCrossRef
103.
Zurück zum Zitat Chiva-Blanch G, Suades R, Crespo J, et al. CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol. 2016;208:147–9.PubMedCrossRef Chiva-Blanch G, Suades R, Crespo J, et al. CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol. 2016;208:147–9.PubMedCrossRef
104.
Zurück zum Zitat Suades R, Padro T, Vilahur G, et al. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost. 2015;13:1776–86.PubMedCrossRef Suades R, Padro T, Vilahur G, et al. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost. 2015;13:1776–86.PubMedCrossRef
105.
Zurück zum Zitat Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: stem cells and beyond. Int J Mol Sci. 2019;20. Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: stem cells and beyond. Int J Mol Sci. 2019;20.
107.
Zurück zum Zitat Sluijter JPG, Davidson SM, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114:19–34.PubMedCrossRef Sluijter JPG, Davidson SM, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114:19–34.PubMedCrossRef
108.
Zurück zum Zitat Wiklander OPB, Brennan MA, Lotvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11. Wiklander OPB, Brennan MA, Lotvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11.
110.
Zurück zum Zitat Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.PubMedPubMedCentralCrossRef Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.PubMedPubMedCentralCrossRef
111.
112.
Zurück zum Zitat Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol. 2018;119:125–37.PubMedCrossRef Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol. 2018;119:125–37.PubMedCrossRef
113.
Zurück zum Zitat Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465:103–14.PubMedCrossRef Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465:103–14.PubMedCrossRef
114.
Zurück zum Zitat Wendt S, Goetzenich A, Goettsch C, et al. Evaluation of the cardioprotective potential of extracellular vesicles - a systematic review and meta-analysis. Sci Rep. 2018;8:15702.PubMedPubMedCentralCrossRef Wendt S, Goetzenich A, Goettsch C, et al. Evaluation of the cardioprotective potential of extracellular vesicles - a systematic review and meta-analysis. Sci Rep. 2018;8:15702.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Deng W, Tang T, Hou Y, et al. Extracellular vesicles in atherosclerosis. Clin Chim Acta. 2019;495:109–17.PubMedCrossRef Deng W, Tang T, Hou Y, et al. Extracellular vesicles in atherosclerosis. Clin Chim Acta. 2019;495:109–17.PubMedCrossRef
116.
Zurück zum Zitat Zhao L, Hu C, Zhang P, Jiang H, Chen J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res Ther. 2019;10:119.PubMedPubMedCentralCrossRef Zhao L, Hu C, Zhang P, Jiang H, Chen J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res Ther. 2019;10:119.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2085–92.PubMedCrossRef Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2085–92.PubMedCrossRef
118.
Zurück zum Zitat Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.PubMedCrossRef Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.PubMedCrossRef
119.
Zurück zum Zitat Wang QL, Wang HJ, Li ZH, Wang YL, Wu XP, Tan YZ. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med. 2017;21:1751–66.PubMedPubMedCentralCrossRef Wang QL, Wang HJ, Li ZH, Wang YL, Wu XP, Tan YZ. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med. 2017;21:1751–66.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114:105564.PubMedCrossRef Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114:105564.PubMedCrossRef
121.
Zurück zum Zitat Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43:52–68.PubMedCrossRef Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43:52–68.PubMedCrossRef
122.
Zurück zum Zitat Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41:835–42.PubMedCrossRef Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41:835–42.PubMedCrossRef
123.
Zurück zum Zitat Lambert C, Arderiu G, Bejar MT, et al. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther. 2019;10:361.PubMedPubMedCentralCrossRef Lambert C, Arderiu G, Bejar MT, et al. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther. 2019;10:361.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med. 2018;60:81–91.PubMedCrossRef Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med. 2018;60:81–91.PubMedCrossRef
125.
Zurück zum Zitat Rezaie J, Nejati V, Khaksar M, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018;374:555–65.PubMedCrossRef Rezaie J, Nejati V, Khaksar M, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018;374:555–65.PubMedCrossRef
126.
Zurück zum Zitat Trinh NT, Yamashita T, Ohneda K, et al. Increased expression of EGR-1 in diabetic human adipose tissue-derived mesenchymal stem cells reduces their wound healing capacity. Stem Cells Dev. 2016;25:760–73.PubMedPubMedCentralCrossRef Trinh NT, Yamashita T, Ohneda K, et al. Increased expression of EGR-1 in diabetic human adipose tissue-derived mesenchymal stem cells reduces their wound healing capacity. Stem Cells Dev. 2016;25:760–73.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Morris AD, Dalal S, Li H, Brewster LP. Human diabetic mesenchymal stem cells from peripheral arterial disease patients promote angiogenesis through unique secretome signatures. Surgery. 2018;163:870–6.PubMedCrossRef Morris AD, Dalal S, Li H, Brewster LP. Human diabetic mesenchymal stem cells from peripheral arterial disease patients promote angiogenesis through unique secretome signatures. Surgery. 2018;163:870–6.PubMedCrossRef
128.
Zurück zum Zitat Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med. 2017;21:349–63.PubMedCrossRef Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med. 2017;21:349–63.PubMedCrossRef
130.
Zurück zum Zitat Povsic TJ, Sanz-Ruiz R, Climent AM, et al. Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Fail. 2021. Povsic TJ, Sanz-Ruiz R, Climent AM, et al. Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Fail. 2021.
131.
Zurück zum Zitat Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.PubMedCrossRef Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.PubMedCrossRef
132.
Zurück zum Zitat Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222–32.PubMedCrossRef Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222–32.PubMedCrossRef
133.
Zurück zum Zitat Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.PubMedCrossRef Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.PubMedCrossRef
134.
Zurück zum Zitat Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.PubMedCrossRef Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.PubMedCrossRef
135.
Zurück zum Zitat Colombo A, Castellani M, Piccaluga E, et al. Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J Cardiovasc Med (Hagerstown). 2011;12:239–48.CrossRef Colombo A, Castellani M, Piccaluga E, et al. Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J Cardiovasc Med (Hagerstown). 2011;12:239–48.CrossRef
136.
Zurück zum Zitat Piepoli MF, Vallisa D, Arbasi M, et al. Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study). Eur J Heart Fail. 2010;12:172–80.PubMedCrossRef Piepoli MF, Vallisa D, Arbasi M, et al. Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study). Eur J Heart Fail. 2010;12:172–80.PubMedCrossRef
137.
Zurück zum Zitat Ang KL, Chin D, Leyva F, et al. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med. 2008;5:663–70.PubMedCrossRef Ang KL, Chin D, Leyva F, et al. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med. 2008;5:663–70.PubMedCrossRef
138.
Zurück zum Zitat Huikuri HV, Kervinen K, Niemela M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.PubMedCrossRef Huikuri HV, Kervinen K, Niemela M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.PubMedCrossRef
139.
Zurück zum Zitat Cao F, Sun D, Li C, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J. 2009;30:1986–94.PubMedPubMedCentralCrossRef Cao F, Sun D, Li C, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J. 2009;30:1986–94.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Wohrle J, von Scheidt F, Schauwecker P, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013;102:765–70.PubMedCrossRef Wohrle J, von Scheidt F, Schauwecker P, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013;102:765–70.PubMedCrossRef
141.
142.
Zurück zum Zitat Roncalli J, Mouquet F, Piot C, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32:1748–57.PubMedCrossRef Roncalli J, Mouquet F, Piot C, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32:1748–57.PubMedCrossRef
143.
Zurück zum Zitat Hu S, Liu S, Zheng Z, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2011;57:2409–15.PubMedCrossRef Hu S, Liu S, Zheng Z, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2011;57:2409–15.PubMedCrossRef
144.
Zurück zum Zitat Perin EC, Silva GV, Zheng Y, et al. Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 2012;163:415–21, 21 e1. Perin EC, Silva GV, Zheng Y, et al. Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 2012;163:415–21, 21 e1.
145.
Zurück zum Zitat San Roman JA, Sanchez PL, Villa A, et al. Comparison of different bone marrow-derived stem cell approaches in reperfused STEMI. A multicenter, prospective, randomized, open-labeled TECAM trial. J Am Coll Cardiol. 2015;65:2372–82.PubMedCrossRef San Roman JA, Sanchez PL, Villa A, et al. Comparison of different bone marrow-derived stem cell approaches in reperfused STEMI. A multicenter, prospective, randomized, open-labeled TECAM trial. J Am Coll Cardiol. 2015;65:2372–82.PubMedCrossRef
146.
Zurück zum Zitat Lee JW, Lee SH, Youn YJ, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29:23–31.PubMedCrossRef Lee JW, Lee SH, Youn YJ, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29:23–31.PubMedCrossRef
147.
Zurück zum Zitat Traverse JH, McKenna DH, Harvey K, et al. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160:428–34.PubMedPubMedCentralCrossRef Traverse JH, McKenna DH, Harvey K, et al. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160:428–34.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Patila T, Lehtinen M, Vento A, et al. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: a prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Heart Lung Transplant. 2014;33:567–74.PubMedCrossRef Patila T, Lehtinen M, Vento A, et al. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: a prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Heart Lung Transplant. 2014;33:567–74.PubMedCrossRef
149.
Zurück zum Zitat Nasseri BA, Ebell W, Dandel M, et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35:1263–74.PubMedCrossRef Nasseri BA, Ebell W, Dandel M, et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35:1263–74.PubMedCrossRef
150.
Zurück zum Zitat Santoso T, Siu CW, Irawan C, et al. Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). J Cardiovasc Transl Res. 2014;7:545–52.PubMedCrossRef Santoso T, Siu CW, Irawan C, et al. Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). J Cardiovasc Transl Res. 2014;7:545–52.PubMedCrossRef
151.
Zurück zum Zitat Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res. 2014;115:950–60.PubMedCrossRef Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res. 2014;115:950–60.PubMedCrossRef
152.
Zurück zum Zitat Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307:1717–26.PubMedPubMedCentralCrossRef Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307:1717–26.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Naseri MH, Madani H, Ahmadi Tafti SH, et al. COMPARE CPM-RMI trial: intramyocardial transplantation of autologous bone marrow-derived CD133+ cells and MNCs during CABG in patients with recent MI: a phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial. Cell J. 2018;20:267–77.PubMedPubMedCentral Naseri MH, Madani H, Ahmadi Tafti SH, et al. COMPARE CPM-RMI trial: intramyocardial transplantation of autologous bone marrow-derived CD133+ cells and MNCs during CABG in patients with recent MI: a phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial. Cell J. 2018;20:267–77.PubMedPubMedCentral
154.
Zurück zum Zitat Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.PubMedPubMedCentralCrossRef Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Quyyumi AA, Waller EK, Murrow J, et al. CD34(+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J. 2011;161:98–105.PubMedCrossRef Quyyumi AA, Waller EK, Murrow J, et al. CD34(+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J. 2011;161:98–105.PubMedCrossRef
156.
Zurück zum Zitat Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311:62–73.PubMedPubMedCentralCrossRef Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311:62–73.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Qayyum AA, Mathiasen AB, Mygind ND, et al. Adipose-derived stromal cells for treatment of patients with chronic ischemic heart disease (MyStromalCell Trial): a randomized placebo-controlled study. Stem Cells Int. 2017;2017:5237063.PubMedPubMedCentralCrossRef Qayyum AA, Mathiasen AB, Mygind ND, et al. Adipose-derived stromal cells for treatment of patients with chronic ischemic heart disease (MyStromalCell Trial): a randomized placebo-controlled study. Stem Cells Int. 2017;2017:5237063.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Nicolau JC, Furtado RHM, Silva SA, et al. Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol. 2018;41:392–9.PubMedPubMedCentralCrossRef Nicolau JC, Furtado RHM, Silva SA, et al. Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol. 2018;41:392–9.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Ryabov VV, Kirgizova MA, Suslova TE, Karas SI, Markov VA, Karpov RS. Relationships of growth factors, proinflammatory cytokines, and anti-inflammatory cytokines with long-term clinical results of autologous bone marrow mononuclear cell transplantation in STEMI. PLoS One. 2017;12:e0176900.PubMedPubMedCentralCrossRef Ryabov VV, Kirgizova MA, Suslova TE, Karas SI, Markov VA, Karpov RS. Relationships of growth factors, proinflammatory cytokines, and anti-inflammatory cytokines with long-term clinical results of autologous bone marrow mononuclear cell transplantation in STEMI. PLoS One. 2017;12:e0176900.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Noiseux N, Mansour S, Weisel R, et al. The IMPACT-CABG trial : a multicenter, randomized clinical trial of CD133(+) stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2016;152:1582-8 e2.PubMedCrossRef Noiseux N, Mansour S, Weisel R, et al. The IMPACT-CABG trial : a multicenter, randomized clinical trial of CD133(+) stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2016;152:1582-8 e2.PubMedCrossRef
161.
Zurück zum Zitat Quyyumi AA, Vasquez A, Kereiakes DJ, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120:324–31.PubMedCrossRef Quyyumi AA, Vasquez A, Kereiakes DJ, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120:324–31.PubMedCrossRef
162.
Zurück zum Zitat Wojakowski W, Jadczyk T, Michalewska-Wludarczyk A, et al. Effects of transendocardial delivery of bone marrow-derived CD133(+) cells on left ventricle perfusion and function in patients with refractory angina: final results of randomized, double-blinded, placebo-controlled REGENT-VSEL trial. Circ Res. 2017;120:670–80.PubMedCrossRef Wojakowski W, Jadczyk T, Michalewska-Wludarczyk A, et al. Effects of transendocardial delivery of bone marrow-derived CD133(+) cells on left ventricle perfusion and function in patients with refractory angina: final results of randomized, double-blinded, placebo-controlled REGENT-VSEL trial. Circ Res. 2017;120:670–80.PubMedCrossRef
163.
Zurück zum Zitat Henry TD, Pepine CJ, Lambert CR, et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv. 2017;89:169–77.PubMedCrossRef Henry TD, Pepine CJ, Lambert CR, et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv. 2017;89:169–77.PubMedCrossRef
164.
Zurück zum Zitat Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trialdagger. Eur Heart J. 2016;37:256–63.PubMedCrossRef Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trialdagger. Eur Heart J. 2016;37:256–63.PubMedCrossRef
165.
Zurück zum Zitat Soetisna TW, Sukmawan R, Setianto B, et al. Combined transepicardial and transseptal implantation of autologous CD 133+ bone marrow cells during bypass grafting improves cardiac function in patients with low ejection fraction. J Card Surg. 2020;35:740–6.PubMedPubMedCentralCrossRef Soetisna TW, Sukmawan R, Setianto B, et al. Combined transepicardial and transseptal implantation of autologous CD 133+ bone marrow cells during bypass grafting improves cardiac function in patients with low ejection fraction. J Card Surg. 2020;35:740–6.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.PubMedCrossRef Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.PubMedCrossRef
167.
Zurück zum Zitat Pokushalov E, Romanov A, Chernyavsky A, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–8.PubMedCrossRef Pokushalov E, Romanov A, Chernyavsky A, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–8.PubMedCrossRef
168.
Zurück zum Zitat Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac function improvement and bone marrow response -: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133(+) Application After Myocardial Infarction. EBioMedicine. 2017;22:208–24.PubMedPubMedCentralCrossRef Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac function improvement and bone marrow response -: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133(+) Application After Myocardial Infarction. EBioMedicine. 2017;22:208–24.PubMedPubMedCentralCrossRef
Metadaten
Titel
Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell–Derived Microvesicles to Repair the Ischemic Heart
verfasst von
Gemma Vilahur
Phuong Hue Nguyen
Lina Badimon
Publikationsdatum
12.07.2021
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 5/2022
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07208-9

Weitere Artikel der Ausgabe 5/2022

Cardiovascular Drugs and Therapy 5/2022 Zur Ausgabe

So beeinflussen Herzinfarkte auf lange Sicht die Sterblichkeit

20.06.2024 ST-Hebungsinfarkt Nachrichten

Wie hoch ist bei Patienten, die nach einem ST-Hebungs-Myokardinfarkt die initiale Hochrisikophase überleben, auf lange Sicht das Sterberisiko? Eine Studie aus Dänemark liefert dazu nun aufschlussreiche Daten.

Protonenpumpenhemmer stoppt Arrhythmie

20.06.2024 Protonenpumpenhemmstoffe Nachrichten

Wenn Nervenfasern aus dem Magen und dem Herzen im Gehirn dicht beieinander liegen, kann auch mal etwas schiefgehen: So lässt sich erklären, weshalb Schmerzen durch einen Magentumor bei einem Mann eine ventrikuläre Extrasystolie auslösen – und PPI diese beenden.

Ob Apixaban nützt oder schadet, entscheidet der CHA2DS2-VASc-Score

20.06.2024 Therapie des Vorhofflimmerns Nachrichten

Patienten mit subklinischem Vorhofflimmern tragen ein erhöhtes Risiko für Schlaganfälle. Da stellt sich die Frage nach einer medikamentösen Antikoagulation. Offenbar hängt es aber vom CHA2DS2-VASc-Score ab, ob die Gabe von Apixaban von Vorteil ist.

Wie SGLT2-Hemmer es schaffen, die Mortalität zu reduzieren

20.06.2024 Kardiologische Therapie Nachrichten

SGLT2-Hemmer verhindern keine Herzinfarkte oder Schlaganfälle. Aber sie reduzieren die kardiovaskuläre Mortalität bei einem breiten Spektrum von Patienten. Wie sie das schaffen, verdeutlicht eine Metaanalyse von Daten aus elf randomisierten Studien.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.